Le 7: point-mass filter and particle filter

Whiteboard:
- Derivation and explanation of the PMF and PF.

Slides:
- Point-mass filter (PMF)
- Particle filter (PF)
- Examples and applications

Lecture 6: summary

Key tool for a unified derivation of KF, EKF, UKF.

\[
\begin{pmatrix} X \\ Y \end{pmatrix} \sim N \left(\begin{pmatrix} \mu_x \\ \mu_y \end{pmatrix}, \begin{pmatrix} P_{xx} & P_{xy} \\ P_{yx} & P_{yy} \end{pmatrix} \right)
\]

\[
\implies (X \mid Y = y) \sim N(\mu_x + P_{xy} P_{yy}^{-1} (y - \mu_y), P_{xx} - P_{xy} P_{yy}^{-1} P_{yx}^T).
\]

The Kalman gain is in this notation given by
\[
K_k = P_{xy} P_{yy}^{-1}.
\]

- In KF, \(P_{xy} \) and \(P_{yy} \) follow from a linear Gaussian model.
- In EKF, \(P_{xy} \) and \(P_{yy} \) can be computed from a linearized model (requires analytic gradients).
- In EKF and UKF, \(P_{xy} \) and \(P_{yy} \) computed by NLT for transformation of \((x^T, v^T)^T\) and \((x^T, e^T)^T\), respectively. No gradients required, just function evaluations.

Point-Mass Filter
Chapter 9 Overview

Particle filter
- Algorithms and derivation.
- Practical and theoretical issues.
- Computational aspects.
- Marginalization to beat the curse of dimensionality.

Model and Bayesian Recursion

General nonlinear state-space model:

\[
x_{k+1} = f(x_k, u_k, v_k) \\
y_k = h(x_k, u_k, e_k)
\]

or even more general Markov model:

\[
x_k | x_{k-1} \sim p(x_k | x_{k-1}) \\
y_k | x_k \sim p(y_k | x_k)
\]

Bayes Optimal Filter: measurement update

Bayes’ rule

\[
p(A|B, C) = \frac{p(B|A, C)p(A|C)}{p(B|C)}
\]

using \(A = x_k \), \(B, C = y_{1:k} \), \(B = y_k \) and \(C = y_{1:k-1} \), yields

\[
p(x_k | y_{1:k}) = \frac{p(y_k | x_k, y_{1:k-1})p(x_k | y_{1:k-1})}{p(y_k | y_{1:k-1})} = \frac{p(y_k | x_k)p(x_k | y_{1:k-1})}{p(y_k | y_{1:k-1})}.
\]

The Markov property \(p(y_k | x_k, y_{1:k-1}) = p(y_k | x_k) \) is used in the last equality.

Bayes Optimal Filter: time update

The definition of conditional probability

\[
p(A, B|C) = p(A|B, C)p(B|C)
\]

gives

\[
p(x_{k+1}, x_k | y_{1:k}) = p(x_{k+1} | x_k, y_{1:k}) p(x_k | y_{1:k}) = p(x_{k+1} | x_k) p(x_k | y_{1:k}).
\]

Again, the Markov property is used in the last step.

Marginalization of \(x_k \) by integrating both sides with respect to \(x_k \) yields

\[
p(x_{k+1} | y_{1:k}) = \int p(x_{k+1} | x_k) p(x_k | y_{1:k}) \, dx_k.
\]

This is known as the *Chapman-Kolmogorov* equation.
Bayes Optimal Filter: summary

General Bayesian recursion (time and measurement updates)

\[p(x_{k+1}|y_{1:k}) = \int p(x_{k+1}|x_k)p(x_k|y_{1:k}) \, dx_k, \]
\[p(x_k|y_{1:k}) = \frac{p(y_k|x_k)p(x_k|y_{1:k-1})}{p(y_k|y_{1:k-1})}. \]

- Analytic solution available in a few special cases: linear Gaussian model (KF) and finite state-space model (HMM).
- However, for a given trajectory, the recursion can be computed (neglect the integral).
- We can numerically evaluate different trajectories by comparing their likelihoods. But there are many possible trajectories, so Monte Carlo sampling of trajectories directly does not work.

Measurement Update

The measurement follows directly, without any extra approximations

\[\hat{p}(x_k|y_{1:k}) = \sum_{i=1}^{N} \frac{1}{c_k} p(y_k|x_k^{(i)}) w_k^{(i)} \delta(x_k - x_k^{(i)}) \]
\[c_k = \sum_{i=1}^{N} p(y_k|x_k^{(i)}) w_k^{(i)} \]

The normalization constant \(c_k \) corresponds to assuring that \(\sum_{i=1}^{N} w_k^{(i)} = 1 \).

Numerical Approximation

Basic idea: postulate a discrete approximation of the posterior. For the predictive density, we have

\[\hat{p}(x_k|y_{1:k-1}) = \sum_{i=1}^{N} w_{k|k-1}^{(i)} \delta(x_k - x_k^{(i)}). \]

The first moments (mean and covariance) are simple to compute from this approximation:

\[\bar{x}_{k|k-1} = E(x_k) = \sum_{i=1}^{N} w_{k|k-1}^{(i)} x_k^{(i)}, \]
\[P_{k|k-1} = \text{cov}(x_k) = \sum_{i=1}^{N} w_{k|k-1}^{(i)} (x_k^{(i)} - \bar{x}_{k|k-1})(x_k^{(i)} - \bar{x}_{k|k-1})^T. \]

Also, the MAP estimate can be useful:

\[\hat{x}_{k|k-1}^\text{MAP} = \arg \max_{x_k} \hat{p}(x_k|y_{1:k-1}). \]

Time Update

Bayesian time update gives a continuous distribution

\[\hat{p}(x_{k+1}|y_{1:k}) = \sum_{i=1}^{N} w_{k+1|k}^{(i)} p(x_{k+1}|x_k^{(i)}). \]

To keep the approximation form, the distribution is sampled at points \(x_k^{(i)} \), and the weights are updated as

\[w_{k+1|k}^{(i)} = \hat{p}(x_{k+1}|y_{1:k}) = \sum_{j=1}^{N} w_{k|j}^{(j)} p(x_{k+1}|x_k^{(j)}), \quad i = 1, 2, \ldots, N. \]

Two principles:
- Keep the same grid, so \(x_{k+1}^{(i)} = x_k^{(i)} \), which yields the point mass filter.
- Generate new samples from the posterior distribution \(x_k^{(i)} \sim \hat{p}(x_{k+1}|y_{1:k}) \), which yields the marginal particle filter.

Both alternatives have quadratic complexity (\(N \) weights \(w_{k+1|k}^{(i)} \), each one involving a sum with \(N \) terms).
Point-Mass Filter (PMF)

Advantages:
- Simple to implement.
- Works excellent when \(n_x \leq 2 \).
- Gives the complete posterior, not only \(\hat{x} \) and \(P \).
- Global search, no local minima.

Problems:
- Grid inefficient in higher dimensions, since the probability to be at one grid point depends on the transition probability from all other grid points.
- The grid should be adaptive (rough initially, then finer).
- Sparse matrices can be used for multi-modal distributions.

PMF Example: 2 DOA sensors, 2 targets

- Data from the FOCUS project (map overlay).
- Two microphone arrays (black x) compute two DOA.
- Two road-bound targets (green *).
- One grid point (stem plot) every meter on the road.

Particle Filter

- Trick to avoid cubic complexity: sample trajectories, not states
- Time update for trajectory:

\[
p(x_{1:k+1}^{(i)} | y_{1:k}) = p(x_{k+1}^{(i)} | x_{1:k}^{(i)}, y_{1:k}) \frac{p(x_{k+1}^{(i)} | x_{1:k}^{(i)})}{p(x_{k+1}^{(i)} | x_{1:k}^{(i)})} \frac{w_{i|k}^{(i)}}{w_{i|k}^{(i)}} = w_{i|k}^{(i)} p(x_{k+1}^{(i)} | x_{1:k}^{(i)}) = w_{k+1}^{(i)}.
\]

No sum involved here!
- The new sample is sampled from the prior in the original PF (SIR, or bootstrap, PF)

\[
x_{k+1}^{(i)} \sim p(x_{k+1}^{(i)} | x_{k}^{(i)}).
\]
Basic SIR PF Algorithm

Choose the number of particles \(N \).

Initialization: Generate \(x^{(i)}_0 \sim p(x_0), i = 1, \ldots, N \) particles.

Iterate for \(k = 1, 2, \ldots, t \):

1. **Measurement update:** For \(k = 1, 2, \ldots \),
 \[
 w^{(i)}_k = w^{(i)}_{k-1} P(y_k | x^{(i)}_k).
 \]
2. **Normalize:** \(w^{(i)}_k = w^{(i)}_k / \sum_j w^{(j)}_k \).
3. **Estimation:** MMSE \(\hat{x}_k \approx \sum_i w^{(i)}_k x^{(i)}_k \) or MAP.
4. **Resampling:** Bayesian bootstrap: Take \(N \) samples with replacement from the set \(\{ x^{(i)}_k \}_{i=1}^N \) where the probability to take sample \(i \) is \(w^{(i)}_k \). Let \(w^{(i)}_k = 1/N \).
5. **Prediction:** Generate random process noise samples \(v^{(i)}_k \sim p(v_k) \), \(x^{(i)}_{k+1} = f(x^{(i)}_k, v^{(i)}_k) \).

PF Code

Input arguments: NL object m, SIG object z.

Output arguments: SIG object zhat.

```matlab
y = z.y; u = z.u; xp = m.x0 + rand(m.px0, Np); % Initialization
for k = 1:N
    v = rand(m.pv, Np); % Random process noise
    xp = m.f(k, xp, u(:, k), m.th) + v; % State prediction
    yp = m.h(k, xp, u(:, k), m.th); % Measurement prediction
    w = pdf(m.pe, y(:, k) - yp); % Likelihood
    xhat(k, :) = mean(w(:) .* xp); % Estimation
    [xp, w] = resample(xp, w); % Resampling
    xMC(:, k, :) = xp; % MC uncertainty repr.
end
```

Example: 1D terrain navigation

Problem: Measured velocity \(u_k \), unknown velocity disturbance \(v_k \), known altitude profile \(h(x) \) which is observed with \(y_k \).

Model:
\[
x_{k+1} = x_k + u_k + v_k,
\]
\[
y_k = h(x_k) + e_k.
\]

Step 1. MUP \(p(x_1 | y_1) \)

Step 4. Resampling \(p(x_1 | y_1) \)

Step 5. TUP \(p(x_2 | y_1) \)

Example: 2D terrain navigation

Same assumptions as in 1D: aircraft measures ground altitude as measurement \(y_k \) and noisy speed \(u_k = v_k + w_k \), terrain elevation map (TAM) provides \(h(x_k) \).
Example: 2D street navigation by odometry
Wheel speed sensors provide speed and yaw rate, street map provides constraints on turns.

Video illustrates how a uniform prior over a part of the road network eventually converge to a single particle cluster when sufficient information is obtained (but many local particle clusters initially).

Example: 2D street navigation by fingerprinting
WiMAX network (Brussels here) provides signal strength measurements, RSS map provides a fingerprint $h(x_k)$, street map (optional) provides constraints on turns.

First half of video shows PF without street constraint, second half with road constraint (with superior performance).

Example: 2D underwater navigation
Underwater vessel measures its own depth and distance to bottom, and sea chart provides depth $h(x_k)$.

Video shows how a uniform prior quickly converges to a unimodal particle cloud. Note how the cloud changes form when passing the ridge.

Example: 2D surface navigation
On-board radar measures range to shore and possible its speed, sea chart provides conditional distance to shore $h(x_k)$.

First video shows animated ship and radar measurements. Second video shows radar measurements overlayed on sea chart (given estimated position), the estimated (PF) position of the own ship, and the estimated (EKF) positions of other ships and 1 minute prediction of their position (collision warning).
Summary

TSRT14 Lecture 7
Gustaf Hendeby
Spring 2019

Lecture 7: summary
Basic SIR PF algorithm
Choose the number of particles N.

- **Initialization**: Generate $x_0^{(i)} \sim p_{x_0}$, $i = 1, \ldots, N$, particles.

Iterate for $k = 1, 2, \ldots, t$:

1. **Measurement update**: For $k = 1, 2, \ldots$,
 $$\tilde{w}_k^{(i)} = w_k^{(i)} \cdot p(y_k | x_k^{(i)}).$$

2. **Normalize**:
 $$w_k^{(i)} = \tilde{w}_k^{(i)} / \sum_i \tilde{w}_k^{(i)}.$$

3. **Estimation**: MMSE $\hat{x}_k \approx \sum_i N w_k^{(i)} x_k^{(i)}$ or MAP.

4. **Resampling**: Bayesian bootstrap: Take N samples with replacement from the set $\{x_k^{(i)}\}_{i=1}^N$ where the probability to take sample i is $w_k^{(i)}$. Let $w_k^{(i)} = 1/N$. Let $w_k^{(i)} = 1/N$.

5. **Prediction**: Generate random process noise samples
 $$v_k^{(i)} \sim p_{v_k}, \quad x_{k+1}^{(i)} = f(x_k^{(i)}, v_k^{(i)}) \quad w_{k+1|k} = w_k^{(i)}.$$