Course content
The general problem is to estimate a state or parameter x from a multitude of sensor observations y distributed over time, space and modality (=type of sensor). The course and book are structured as follows.The static case (x is constant)
- General fusion theory.
- Estimation theory in the linear case (y=Hx+e). Extensions to the non-linear case (y=H(x)+e, or H(y,x,e)=0).
- Bayesian fusion perspective, the sensor fusion formula.
- Computational estimation issues: Centralized versus decentralized fusion (information propagation and double-counting, covariance intersection techniques). Batch computations versus sensor iterations.
- Detection theory T(x)>h: likelihood ratio concepts, Neyman-Pearson, GLRT and other tests.
- Computational detection issues: Centralized and distributed detection. Censoring sensors.
- Diagnosis H(i): x=x(i): The vector model. Error approximations.
- Localization of a target based on one snap-shot from available sensors.
- Sensor networks: Range and range-difference measurements. Triangulation from bearings. Information limitations and censoring sensors.
- Measurement to target association, and extended target models (the fusion before detection principle).
The dynamic case (x is time-varying)
- Filter theory.
- General non-linear filter theory for dx/dt=f(x,u,v), y=h(x,u,e): Numeric evaluation using the point mass filter. Two special cases (KF and HMM) and fundamental limitations (CRLB). Structured models and marginalization.
- Kalman filtering: Basic theory, implementation aspects, practical issues, information filter, smoothing).
- Approximative algorithms for non-linear models (Extended KF and HMM, UKF and sigma-point filters, KF banks).
- The particle filter: theory, implementation, proposal methods, sampling principles, smoothing, practical aspects.
- Time synchronization and coordinate system calibration in filtering.
- Dynamic state dimension problems.
- Multi-target tracking: association, track handling
- Simultaneous localization and tracking (SLAM).
Practice
- Sensors, sensor models H(y,x,e)=0 and sensor-near
signal processing.
- Wheel speed sensors and odometry.
- IMU and dead-reckoning.
- GPS.
- Camera
- Radar, laser, sonar
- Networked sensors: radio measurements, microphones, seismometers, magnetic field sensors
- Motion models dx/dt=f(x,u,v)
- Multi-purpose motion models
- Standard models for different platforms (wheeled vehicles, surface and underwater vessels, aircraft,...).
- Extended target models (track before detect, grid based methods for fusion)
Informationsansvarig: Gustaf Hendeby
Senast uppdaterad: 2022-06-02