Path and trajectory planning

Lecture 5 Mikael Norrlöf

Up till now

- Lecture 1
 - Rigid body motion
 - Representation of rotation
 - Homogenous transformation
- Lecture 2
 - Kinematics
 - Position
 - Velocity via Jacobian
 - DH parameterization
- Lecture 3
 - · Lagrange's equation
 - (Newton Euler)
 - Parameter identification
 - Experiment design
 - Model structure

PhDCourse Robot modeling and control Lecture 4 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Outline

- Path vs trajectory
- Standard path planning techniques in industrial robots
- Trajectory generation an introduction to the problem
- More general path planning algorithms
 - Potential field approach
 - An introduction to Probabilistic Road Maps (PRMs)
- Lab session: date/time to be decided

Path and trajectory planning

What is the difference between path and trajectory?

Path: Only geometric considerations. The way to go from config a to b.

Trajectory: Include time, i.e., consider the dynamics.

Lecture 4

Robot Motion Control

Current and Torque Control

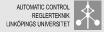
· Control Methods for Rigid

and Flexible Robots

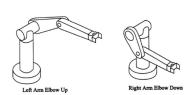
Interaction with the

environment

Overview


Compare: kinematics versus dynamics.

AUTOMATIC CONTROL


LINKÖPINGS UNIVERSITET

REGLERTEKNIK

Path planning

- In industrial robot applications two path planning modes can be identified
 - Change configuration

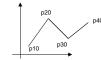
· Perform an operation

PhDCourse Robot modeling and control Lecture 4

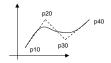
Rapid, robot motion instructions

- Linear in
 - joint space: MoveJ
 - Cartesian space: MoveL
- Circle segment
 - MoveC

Path planning

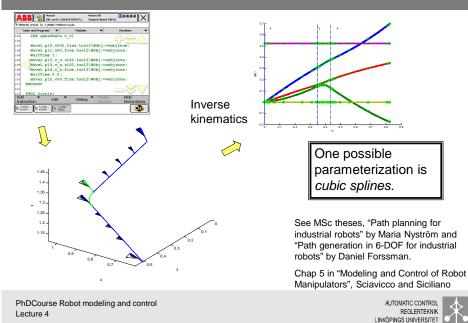

- In industrial robot applications two path planning modes can be identified
 - Change configuration
 In RAPID (ABB's programming language)
 MoveJ p10, v1000, z10, tool;
 - Perform an operation MoveL p20, v50, z1, tool; MoveC p30, p40, v25, fine, tool;

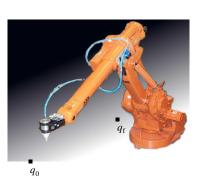
PhDCourse Robot modeling and control Lecture 4



Via points

Point-to-point (fine points in Rapid). Robot has to stop.


 Via points (zones in Rapid). Robot does not reach the programmed position.


Geometric description

The trajectory generation problem

Optimal control!

$\begin{aligned} \min t_f \\ M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) &= u(t) \\ u(t) \in [\tau_{\min}, \tau_{\max}] \\ q(0) &= q_0, \ q(t_f) = q_f, \\ \dot{q}(0) &= 0, \ \dot{q}(t_f) = 0 \end{aligned}$

Orientation interpolation

- The orientation along the path is interpolated to get a smooth change of orientation.
- Given initial orientation (as a quaternion), q₀ and final orientation q₁ compute

 $q_{01} = q_1 q_0^{-1}$

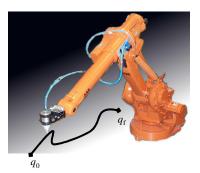
and interpolate the angle α from 0 to θ_{01} in

 $q_{ip}(\alpha) = \langle \cos(\alpha/2), \sin(\alpha/2) s_{01} \rangle$

where (θ_{01}, s_{01}) is the angle-axis representation of q_{01}

The interpolation scheme is often referred to as *slerp* interpolation

PhDCourse Robot modeling and control Lecture 4

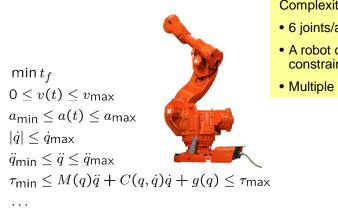


The trajectory generation problem

Optimal control!

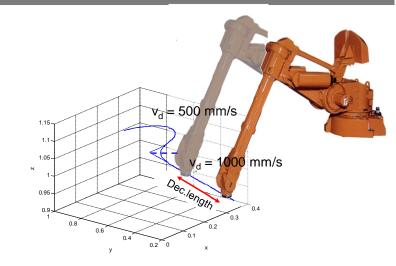
 $\begin{aligned} \min t_f \\ M(q)\ddot{q} + C(q,\dot{q})\dot{q} + g(q) &= u(t) \\ u(t) \in [\tau_{\min}, \tau_{\max}] \\ q(0) &= q_0, \ q(t_f) = q_f, \\ \dot{q}(0) &= 0, \ \dot{q}(t_f) = 0 \end{aligned}$

The path is parameterized in some index $s \Rightarrow q_r(s)$ which introduces additional constraints.



PhDCourse Robot modeling and control Lecture 4

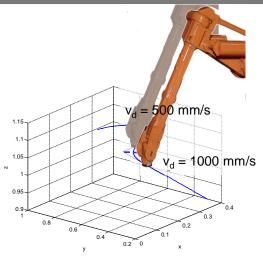
The trajectory generation problem


Resulting optimization problem

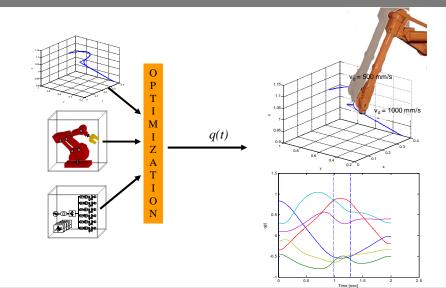
Complexity:

- 6 joints/actuators
- A robot can have > 100 constraints
- Multiple robots possible

Trajectory generation problem


PhDCourse Robot modeling and control Lecture 4

PhDCourse Robot modeling and control Lecture 4


AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Trajectory generation problem

Dynamisk optimering

PhDCourse Robot modeling and control Lecture 4

2318 IE	EE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009
Time-Optimal Path Tracking for Robots: A Convex Optimization Approach	
Advance—This paper focuses on time-optimal path tracking, a subproblem in time-optimal motion planning of robot systems. Tracking problem is transformed here into a convex optimal path tracking problem is transformed here into a convex optimal path tracking. A direct transcription method is presented optimal path tracking. A direct transcription method is presented that are forely available. Validation against known examples and policitation to a more complex cample libratrate the versatility and practically of the new method. Inder Tarmo-Scond-order come program (SOCP)-based sub- tion method.	such as the dynamics of the robotic manipulator. In the sub- sequent path tracking or path tracking stage, a time-optimal trajectory along the geometric path is determined, whereby the manipulator dynamics and actuator constraints are taken into account [7,11(0)-[23]. The path tracking stage constitutes the focus of this paper. Time optimality along a predefined path implies realizing as high as possible a velocity along this path, without violating actuator constraints. To this end, the optimal trajectory should exploit the actuators' maximum acceleration and deceleration abits [10,11] [3], such that [3] [5]. Methods for time-optimal robot path tracking subject to ac- tuator constraints have been proposed in [71, 10]-214. While these optimal control methods can roughly be divided into three steppion.
T IME-OPTIMAL motion planning is of significant impor- tance for maximizing the productivity of robot systems. Solving the motion planning problem in its entirety, however, is	be described by a single path coordinate s and its time derivative s [7], [10], [13]. Hence, the multi-dimensional state space of a robotic manipulator can be reduced to a <i>two-dimensional state</i>
in general a highly complex and difficult task [1]–[6]. Therefore, instead of solving the entire motion planning problem directly in the general difficult distribution of the direct second	space. The (s, s) curve, sometimes referred to as the switching curve [10], [14], unambiguously determines the solution of the time-optimal nath tracking problem.

Dynamic scaling of trajectories

- The dynamic model can be rewritten in the form $D(q)\ddot{q} + \underbrace{C(q,\dot{q})\dot{q}}_{\Gamma(q)[\dot{q}\dot{q}]} + g(q) = \tau$
- Let r = ct (time scaling). The original speed/acc dep torque is
 τ_s = D(q) \bar{q} + Γ(q) [\bar{q} \bar{q}]

If time scaling is applied

$$\tau_s = \dot{r}^2 \overline{\tau}_s + \ddot{r} D(q(r))q'(r)$$

and with linear time scaling

$$\tau_s = c^2 \overline{\tau}_s$$

PhDCourse Robot modeling and control Lecture 4

A more general path planning scheme

PhDCourse Robot modeling and control Lecture 4

PhDCourse Robot modeling and control Lecture 4

Application to a robot system

Use more than one robot to increase the flexibility in an application.

Here with application arc welding.

Configuration space

- A complete specification of the location of every point on the robot is a *configuration* (*Q*).
- The set of all configurations is called the *configuration space.*
- q + kinematics give configuration.

Obstacles

The workspace of the robot is W. The subset of W occupied by the robot is A(q).

The configuration space obstacle is defined as

 $QO = \left\{ q \in Q \middle| A(q) \cap O \neq \emptyset \right\}$

with $O = \bigcup O_i$

The collision free configurations are $Q_{\text{free}} = Q \setminus QO$

PhDCourse Robot modeling and control Lecture 4

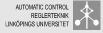
Collision detection

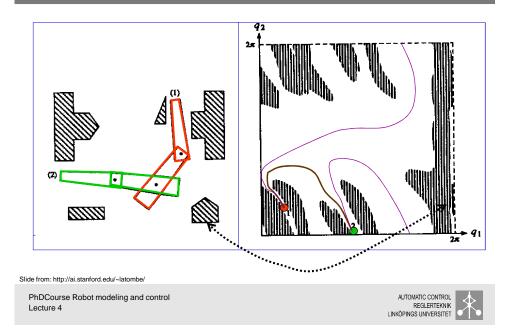
- A number of packages exists on the internet:
 - One example is from the group "team gamma" at Berkley http://gamma.cs.unc.edu/research/collision/packages.html
 - Another at University of Oxford
 http://web.com/ab.ox.ac.uk/people/Stephen.Cameron/distances/
 - See also wikipedia
 <u>http://en.wikipedia.org/wiki/Collision_detection</u>
- An application where collision detection is used can be found in MSc thesis

http://www.control.isy.liu.se/student/exjobb/xfiles/2050.pdf

PhDCourse Robot modeling and control Lecture 4 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

General formulation of the path planning problem


Find a collision free path from an initial configuration q_s to a final configuration q_f


More formally $\gamma : [0,1] \rightarrow Q_{\text{free}}$ with $\gamma(0) = q_s$ and $\gamma(1) = q_f$

Examples of methods:

- Path planning using potential fields
- Probabilistic road maps (PRMs)

Construction of the field **U**

 U can be constructed as an addition of an attractive field and a second component that repels the robot from the boundary of QO

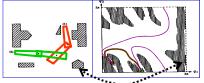
$$U(q) = U_{att}(q) + U_{rep}(q)$$

 Path planning can be treated as an optimization problem, finding the global minimum of U(q). One simple approach is to use a gradient descent algorithm.

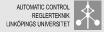
Let
$$\tau(q) = -\nabla U(q) = -\nabla U_{att}(q) - \nabla U_{rep}(q)$$

Artificial potential field

- Idea: Treat the robot as a point particle in the configuration space, influenced by an artificial potential field. Construct the field U such that the robot is attracted to the final configuration q_f while being repelled from the boundaries of QO.
- In general it is difficult/impossible to construct a field without having local minima.


PhDCourse Robot modeling and control Lecture 4

Construction of the field *U*


Comments

- In general difficult to construct the potential field in configuration space (the field is often based on the norm of the min length to the obstacles)
- Easier to define the field in the robot workspace

- For an n-link manipulator a potential field is constructed for each DH-frame
- The link between workspace and configuration space is the Jacobian

The attractive field

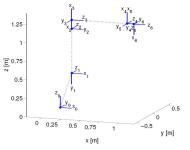
- Conic well potential $(U_{\text{att},i}(q) = ||o_i(q) o_i(q_f)||)$
- Parabolic well potential $(U_{\text{att},i}(q) = \frac{1}{2} \xi_i ||o_i(q) o_i(q_f)||^2)$
- Parabolic well potential with upper bound

$U_{att,i}(q) = \begin{cases} \frac{1}{2}\zeta_i \|o_i(q) - o_i(q_f)\|^2, & \|o_i(q) - o_i(q_f)\| \le d\\ d\zeta_i \|o_i(q) - o_i(q_f)\|^2 - \frac{1}{2}d^2\zeta_i, & \|o_i(q) - o_i(q_f)\| > d \end{cases}$

and

$$F_{att,i}(q) = \begin{cases} -\zeta_i (o_i(q) - o_i(q_f)), & \|o_i(q) - o_i(q_f)\| \le d \\ d\zeta_i \frac{o_i(q) - o_i(q_f)}{\|o_i(q) - o_i(q_f)\|}, & \|o_i(q) - o_i(q_f)\| > d \end{cases}$$

PhDCourse Robot modeling and control Lecture 4



Path planning – obstacle free path

Notice:

Including only the origin of the DH-frames does not guarantee collision free path. (Additional points can however be added.)

The repulsive field

Criteria for the repulsive field to satisfy,

- Repel the robot from obstacles (never allow the robot to collide)
- Obstacles should not affect the robot when being far away

PhDCourse Robot modeling and control Lecture 4

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

The repulsive field

One possible choice

$$U_{rep,i}(q) = \begin{cases} \frac{1}{2} \eta_i \left(\frac{1}{\rho(o_i(q))} - \frac{1}{\rho_0} \right)^2, & \rho(o_i(q)) \le \rho_0 \\ 0, & \rho(o_i(q)) > \rho_0 \end{cases}$$

with

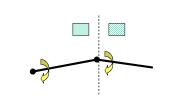
$$F_{rep,i}(q) = \eta_i \left(\frac{1}{\rho(o_i(q))} - \frac{1}{\rho_0}\right) \frac{1}{\rho^2(o_i(q))} \nabla \rho(o_i(q))$$

If the obstacle region is convex and b is the closest point to o_i

$$\rho(o_{i}(q)) = \|o_{i}(q) - b\|,$$

$$\nabla \rho(x)|_{x=o_{i}(q)} = \frac{o_{i}(q) - b}{\|o_{i}(q) - b\|}$$

PhDCourse Robot modeling and control Lecture 4



PhDCourse Robot modeling and control Lecture 4

Comment, the "convex assumption"

- The force vector has a discontinuity
- Distance function not differentiable everywhere

Can be avoided if repulsive fields of distinct obstacles do not overlap.

Mapping the workspace forces into joint torques

If a force is exerted at the end-effector $J_v^T F = \tau$

The Jacobian can be derived in all the points o_i .

Notice that the full Jacobian can be used when mapping forces and torques from workspace to torques in configuration space.

PhDCourse Robot modeling and control Lecture 4

Path construction in configuration space

• Build the path using the resulting configuration space torques and an optimization algorithm

Gradient descent algorithm

$$\begin{array}{lll} 1. & q^0 \leftarrow q_{\mathrm{init}}, \, i \leftarrow 0 \\ 2. & \mathbf{IF} \; q^i \neq q_{\mathrm{final}} \\ & q^{i+1} \leftarrow q^i + \alpha^i \frac{F(q^i)}{||F(q^i)||} \\ & i \leftarrow i+1 \\ & \mathbf{ELSE} \; \mathrm{return} < q^0, q^1 \cdots q^i > \\ 3. & \mathbf{GO} \; \mathbf{TO} \; 2 \end{array}$$

Design parameters, α^i , ζ_i , η_i , ρ_0 .

Typical problem: Can get stuck in local minima.

Escape local minima using randomization

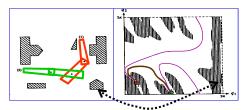
When stuck in a local minimum execute a random walk

New problems:

PhDCourse Robot modeling and control

Lecture 4

- Detect when a local minimum is reached
- Define how the random walk should behave (how many steps, define the random terms, variance, distribution, ...)



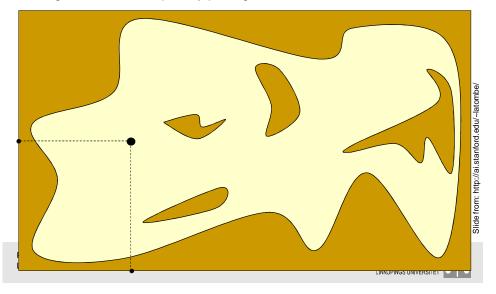
AUTOMATIC CONTROL

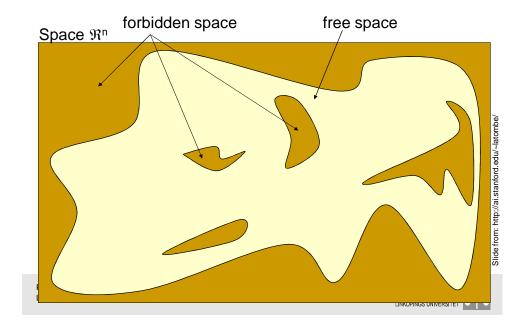
LINKÖPINGS UNIVERSITET

REGLERTEKNIK

A more systematic way to build collision free paths

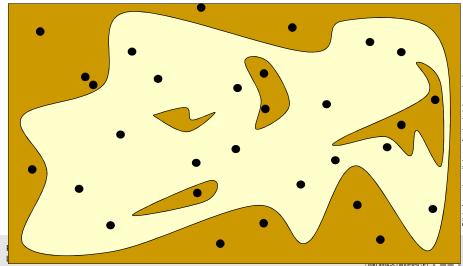
- The cost of computing an exact representation of the configuration space of a multi-joint articulated object is often prohibitive.
- But very fast algorithms exist that can check if an articulated object at a given configuration collides with obstacles.
- → Basic idea of Probabilistic Roadmaps (PRMs):
 Compute a very simplified representation of the free space by sampling configurations at random.


PhDCourse Robot modeling and control Lecture 4

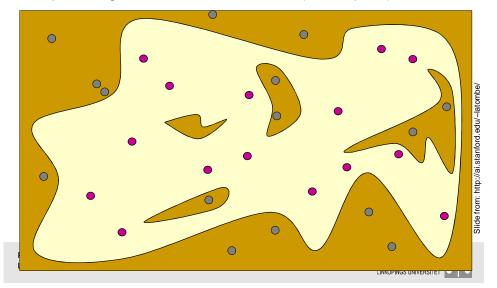

Slide from: http://ai.stanford.edu/~latombe/

Probabilistic Roadmap (PRM)

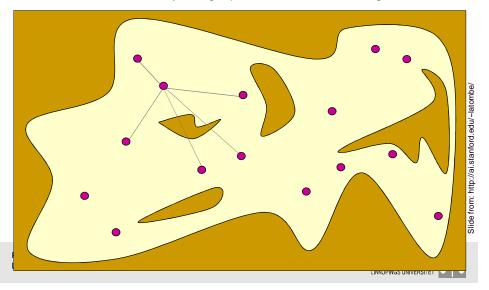
Configurations are sampled by picking coordinates at random



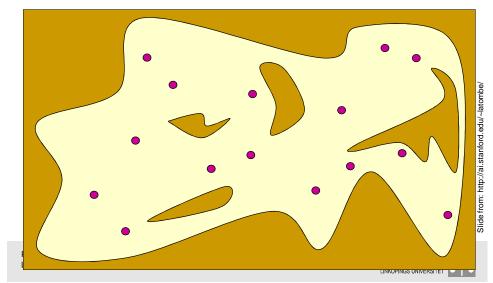
Probabilistic Roadmap (PRM)


Probabilistic Roadmap (PRM)

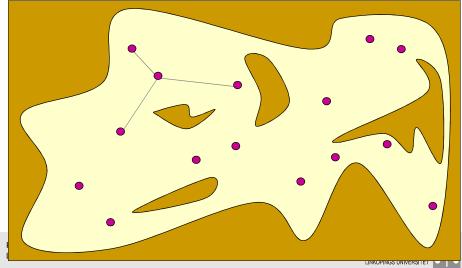
Configurations are sampled by picking coordinates at random


INKOPINGS UNIVERSITET

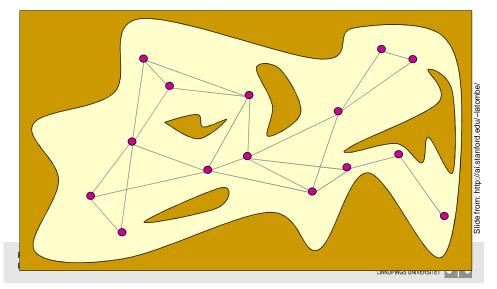
Sampled configurations are tested for collision (in workspace!)


Probabilistic Roadmap (PRM)

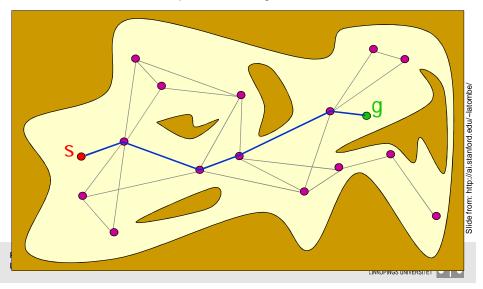
Each milestone is linked by straight paths to its k-nearest neighbors


Probabilistic Roadmap (PRM)

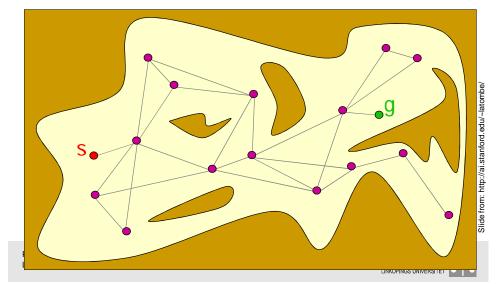
The collision-free configurations are retained as "milestones"


Probabilistic Roadmap (PRM)

Each milestone is linked by straight paths to its k-nearest neighbors


Slide from: http://ai.stanford.edu

The collision-free links are retained to form the PRM


Probabilistic Roadmap (PRM)

The PRM is searched for a path from s to g

Probabilistic Roadmap (PRM)

The start and goal configurations are included as milestones

Comments

- In industrial robotic applications the path planning problem is very much left to the user
- New ideas from mobile robotics (potential field algorithms, PRMs, etc. could be applied)
- Automatic planning algorithms highly complex
- The trajectory generation problem can be solved by applying optimal control techniques
- Conceptually easy to solve the offline problem
- Difficult to implement online

PhDCourse Robot modeling and control Lecture 4

Other planning requirements in many applications

PhDCourse Robot modeling and control Lecture 4

Lab session

- Suggestion
 - Jan 31 Time 9-15 (?)
 - Explore the possibilities in Rapid/RobotStudio
 - Exercise based on the previous lab but including multiple frames and also including moving frames (additional mechanical units)

PhDCourse Robot modeling and control Lecture 4

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Projects

- Kinematic redundancy
- Estimation and control
- Modeling and Identification
- Path planning and trajectory generation
 - Energy optimal
 - Sensor control (conveyor tracking)
 - ...
- Daignosis
- ROS Robot operating system
- Further develop the robot from the exercises modeling and control
- Further explore the DH parameterization and the possibility to use it in RobotStudio

• ...

