Robot modeling - the dynamics

Lecture 3
Mikael Norrlöf

Background

Kinematics - the geometric behavior of the robot. Dynamics - full consideration of the forces / torques necessary to produce the motion.


```
PhDCourse Robot modeling and contro
Lecture 3
```


Why are the dynamic models so important?

- Important in the manipulator design
- Virtual prototyping
- Life time estimation
- Design optimization
- Fundamental for control design
- Identification
- Model based control
- "Must have" in optimal trajectory planning
- ...
- Position
- Jacobians
- DH parameterization

Systematic ways to derive the dynamic equations

- Analytical mechanics
- Lagrange's equation
- Newton - Euler iterative technique
- Kane's method
- ...
- Graphic / Component modeling
- Modelica
- SimMechanics
- ...
- FEM - modeling
- ...

Basic assumptions

Consider a system of n particles. Newton's second law,

$$
F_{i}=m_{i} \ddot{r}_{i}, \quad r_{i} \in R^{3}, i=1, \ldots, k
$$

The particles are connected. Introduce constraints

$$
g_{j}\left(r_{1}, \ldots, r_{k}\right)=0 \quad j=1, \ldots, l
$$

Holonomic constraint: Algebraic relation between positions.

Non holonomic constraints ...

Limitations

- Consider open chain robot structures

- This constraint can be relaxed ...
- Actuator dynamics are neglected (e.g., motors are assumed to be ideal, torque reference in - torque out)
- Can also be relaxed with an additional modeling effort

PhDCourse Robot modeling and contro

Lecture 3

Constraint forces

- The constraints form a smooth surface in $R^{3 k}$
- Constraint forces act to keep the system velocity tangent to this surface - hence they are normal to the surface
- The constraint forces do not produce any work!
- The system equations can be written as
$F=\left(\begin{array}{ccc}m_{1} I & & 0 \\ & \ddots & \\ 0 & & m_{k} I\end{array}\right)\left(\begin{array}{c}\ddot{r}_{i} \\ \vdots \\ \ddot{r}_{k}\end{array}\right)+\sum_{j=1}^{l} \Gamma_{j} \lambda_{j}, \quad g_{j}\left(r_{1}, \ldots, r_{k}\right)=0 \quad j=1, \ldots, l$
where $\Gamma_{1}, \ldots, \Gamma_{k} \in R^{3 k}$ are a basis for the constraint forces and λ_{j} are scale factors.
Γ_{j} can be chosen as gradient of the constraints g_{j}.

Better system representation

- For a system of k particles with l constraints, find $n=3 k-l$ variables $q_{1}, \ldots, q_{\mathrm{n}}$ and functions f_{1}, \ldots, f_{k}

$$
\begin{array}{cc}
r_{i}=f_{i}\left(q_{1}, \ldots, q_{n}\right) & g_{j}\left(r_{1}, \ldots, r_{k}\right)=0 \\
i=1, \ldots, k & j=1, \ldots, l
\end{array}
$$

q_{i} are called generalized coordinates.

- Generalized forces are forces acting along the generalized coordinates.

Example: Robot manipulator with rotational joints. The generalized forces are torques acting around the joints.

- The dynamic equations can be expressed in terms of the new variables.

Dynamic case (D'Alembert's principle)

"if one introduces a
fictitious additional force $-\dot{p}_{i}$
on particle i for each i,
where p_{i} is the
momentum of the particle,
then each particle will be in equilibrium"

Dynamic case (D'Alembert's principle)

(Spong etal, p247)

$$
\begin{aligned}
\sum_{i=1}^{k} F_{i}^{T} \delta r_{i} & =0 \\
\sum_{i=1}^{k}\left(f_{i}^{(a)}\right)^{T} \delta r_{i} & =0 \\
\sum_{i=1}^{k} f_{i}^{T} \delta r_{i} & =0
\end{aligned}
$$

AUTOMATC CONTROL
Principal of virtual work: "The work done by external forces corresponding to any set of virtual displacements is zero."

$$
\begin{aligned}
& \sum_{i=1}^{k} f_{i}^{T} \delta r_{i}-\sum_{i=1}^{k} \dot{p}_{i}^{T} \delta r_{i}=0 \\
& \sum_{i=1}^{k} f_{i}^{T} \delta r_{i}=\sum_{i=1}^{k} \sum_{j=1}^{n} f_{i}^{T} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}} \delta q_{j}=\sum_{j=1}^{n} \psi_{j} \delta q_{j} \\
& \psi_{j}=\sum_{i=1}^{k} f_{i}^{T} \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}}
\end{aligned}
$$

$$
\sum_{i=1}^{k} \dot{p}_{i}^{T} \delta r_{i}=\sum_{i=1}^{k} \sum_{j=1}^{n} m_{i} \ddot{r}_{i}^{T} \frac{\partial r_{i}}{\partial q_{j}} \delta q_{j}
$$

Lagrangian and Lagrange's equation

- The Lagrangian is defined as

$$
\begin{aligned}
& \quad L(q, \dot{q})=K(q, \dot{q})-P(q) \\
& \text { Kinetic energy }
\end{aligned}
$$

- Lagrange's equation

$$
\frac{d}{d t} \frac{\partial L(q, \dot{q})}{\partial \dot{q}_{i}}-\frac{\partial L(q, \dot{q})}{\partial q_{i}}=\tau_{i}, \quad i=1, \ldots, n
$$

- Newton's law in generalized coordinates

$$
\frac{d}{d t} \frac{\partial L(q, \dot{q})}{\partial \dot{q}}=\frac{\partial L(q, \dot{q})}{\partial q}+\tau
$$

$$
\frac{d}{d t}(\text { momentum })=\text { applied force }
$$

Example

Kinetic and potential energy

- Kinetic energy for body B

$$
K=\frac{1}{2} m \dot{r}^{T} \dot{r}+\frac{1}{2} \omega^{T} I \omega
$$

m is the mass and I is the inertia tensor.

- Inertia tensor
- 3×3 matrix

- Symmetric
- Positive definite
- Constant in a body fixed coordinate system

```
PhDCourse Robot modeling and contro
```

Lecture 3

Inertia tensor

- Computation of the inertia tensor. $\rho(x, y, z)$ is the mass density as a function of position.

$$
\begin{array}{lll}
I_{x x}=\iiint\left(y^{2}+z^{2}\right) \rho(x, y, z) d x d y d z & I_{x y}=I_{y x}=-\iiint x y \rho(x, y, z) d x d y d z \\
I_{y y}=\iiint\left(x^{2}+z^{2}\right) \rho(x, y, z) d x d y d z & I_{x z}=I_{z x}=-\iiint x z \rho(x, y, z) d x d y d z \\
I_{z z}=\iiint\left(x^{2}+y^{2}\right) \rho(x, y, z) d x d y d z & I_{y z}=I_{z y}=-\iiint y z \rho(x, y, z) d x d y d z
\end{array}
$$

Example: Uniform rectangular solid

Kinetic energy for an n-link manipulator

Body frame attached to center of gravity.

Notice that

$\rho a b c=m$
Inertia of two bodies expressed in the same coordinate frame can be added (subtracted)

```
PhDCourse Robot modeling and control
```

Lecture 3

Potential energy for an n-link manipulator

In rigid dynamics, gravity is the only source of potential energy.

$$
P=\sum_{i=1}^{n} P_{i}=\sum_{i=1}^{n} m_{i} g^{T} r_{c i}
$$

If the robot contains elastic components the energy stored in the elasticities has to be included in the potential energy.

From lecture 2 we know

$$
v_{i}=J_{v_{i}}(q) \dot{q}, \quad \omega_{i}=J_{\omega_{i}}(q) \dot{q}
$$

where v_{i} and ω_{i} can be for any point on the manipulator (depends on the Jacobian).
The kinetic energy can now be expressed as

$$
\begin{aligned}
K & =\frac{1}{2} \dot{q}^{T} \sum_{i=1}^{n}\left[m_{i} J_{v_{i}}(q)^{T} J_{v_{i}}(q)+J_{\omega_{i}}(q)^{T} R_{i}(q) I_{i} R_{i}(q)^{T} J_{\omega_{i}}(q)\right] \dot{q} \\
& =\frac{1}{2} \dot{q}^{T} D(q) \dot{q}
\end{aligned}
$$

where $D(q)$ is the inertia matrix.

Properties: Symmetric and positive definite.

PhDCourse Robot modeling and control Lecture 3	$\begin{aligned} & \text { AUTOMATIC CONTROL } \\ & \text { REGLERTEKNK } \\ & \text { LINKÖPDGS UNVERSTTET } \end{aligned}$

Dynamic equations

Lagrangian $\quad L=K-P=\frac{1}{2} \sum_{i, j} d_{i j}(q) \dot{q}_{i} \dot{q}_{j}-P(q)$
Recall: Lagrange's equation

$$
\frac{d}{d t} \frac{\partial L(q, \dot{q})}{\partial \dot{q}_{k}}-\frac{\partial L(q, \dot{q})}{\partial q_{k}}=\tau_{k}, \quad k=1, \ldots, n
$$

In terms of L above this gives

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{q}_{k}}=\sum_{j} d_{k j} \dot{q}_{j} \Rightarrow \frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{k}}=\sum_{j} d_{k j} \ddot{q}_{j}+\sum_{i, j} \frac{\partial d_{k j}}{\partial q_{i}} \dot{q}_{i} \dot{q}_{j} \\
& \frac{\partial L}{\partial q_{k}}=\frac{1}{2} \sum_{i, j} \frac{\partial d_{i j}}{\partial q_{k}} \dot{q}_{i} \dot{q}_{j}-\frac{\partial P}{\partial q_{k}}
\end{aligned}
$$

Dynamic equations, cont'd

$$
\begin{gathered}
\sum_{j} d_{k j} \ddot{q}_{j}+\sum_{i, j}\left\{\frac{\partial d_{k j}}{\partial q_{i}}-\frac{1}{2} \frac{\partial d_{i j}}{\partial q_{k}}\right\} \dot{q}_{i} \dot{q}_{j}+\frac{\partial P}{\partial q_{k}}=\tau_{k} \\
\Rightarrow \sum_{j} d_{k j} \ddot{q}_{j}+\sum_{i, j}^{\frac{1}{2}} \underbrace{\left\{\frac{\partial d_{k j}}{\partial q_{i}}+\frac{\partial d_{k i}}{\partial q_{j}}-\frac{\partial d_{i j}}{\partial q_{k}}\right\}}_{c_{i j k}} \dot{q}_{i} \dot{q}_{j}+\frac{\partial P}{\partial q_{k}}=\tau_{k} \\
c_{i j k}=c_{j i k}
\end{gathered}
$$

Dynamic equations

PhDCourse Robot modeling and control
Lecture 3
PhDCourse Robot modeling and control
Lecture 3

AUTOMATIC CONTROL
AUTOMATC CONTROL
RELEERTEKNIK
LINKÓPNGS UNVERSTIET

Some properties

The following matrix is skew symmetric

$$
N(q, \dot{q})=\dot{D}(q)-2 C(q, \dot{q})
$$

The system is passive.
The inertia matrix is bounded (constant lower/upper bound when only revolute joints)

$$
\lambda_{m} I_{n x n} \leq D(q) \leq \lambda_{M} I_{n x n}<\infty
$$

Newton-Euler

- Different approach to find the dynamic equations
- A more local approach
- Each link is modeled separately
- Links interconnected, leads to a forward - backward iteration scheme

Balance equations: $f_{i}-R_{i+1}^{i} f_{i+1}+m_{i} g_{i}=m_{i} a_{c, i}$

Newton-Euler, cont'd

Newton-Euler, cont'd

Solve from $i=0$ to n

$$
\begin{aligned}
\omega_{i} & =\left(R_{i}^{i-1}\right)^{T} \omega_{i-1}+b_{i} \dot{q}_{i} \\
b_{i} & =\left(R_{i}^{0}\right)^{T} z_{i-1} \\
\alpha_{i} & =\left(R_{i-1}^{i}\right)^{T} \alpha_{i-1}+b_{i} \ddot{q}_{i}+\omega_{i} \times b_{i} \dot{q}_{i} \\
a_{e, i} & =\left(R_{i}^{i-1}\right)^{T} a_{e, i-1}+\dot{\omega}_{i} \times r_{i, i+1}+\omega_{i} \times\left(\omega_{i} \times r_{i, i+1}\right) \\
a_{c, i} & =\left(R_{i}^{i-1}\right)^{T} a_{e, i, i 1}+\dot{\omega}_{i} \times r_{i, c i}+\omega_{i} \times\left(\omega_{i} \times r_{i, c i}\right)
\end{aligned}
$$

PhDCourse Robot modeling and control

Newton-Euler vs Langrangian

- Solves the same problem.
- Lagrangian technique gives the dynamic equations "directly".
- Newton-Euler gives all torques / forces, not just the generalized torques. Will be very important later ...
- ...

$$
\begin{array}{ll}
\text { Balance equations: } & f_{i}-R_{i+1}^{i} f_{i+1}+m_{i} g_{i}=m_{i} a_{c, i} \\
& \tau_{i}-R_{i+1}^{i} \tau_{i+1}+f_{i} \times r_{i, c i}-\left(R_{i+1}^{i} f_{i+1}\right) \times r_{i+1, c i} \\
& =\alpha_{i}+\omega_{i} \times\left(I_{i} \omega_{i}\right)
\end{array}
$$

- Find f_{i} and τ_{i} by solving the equations from $f_{n+1}=0$ and $\tau_{n+1}=0$.

$$
\begin{aligned}
f_{i} & =R_{i+1}^{i} f_{i+1}+m_{i} a_{c, i}-m_{i} g_{i} \\
\tau_{i} & =R_{i+1}^{i} \tau_{i+1}-f_{i} \times r_{i, c i}+\left(R_{i+1}^{i} f_{i+1}\right) \times r_{i+1, c i}+\alpha_{i}+\omega_{i} \times\left(I_{i} \omega_{i}\right)
\end{aligned}
$$

PhDCourse Robot modeling and control	AUTOMATIC CONTROL RECERTRKKNK Lecture 3
LNKÖNGS UNVERSITET	

Home assignment, part I

- From a blue-print of a robot (IRB1600-8/1.45) find a
- Kinematic model
- Assume the robot to consist of hollow uniform rectangular beams made out of metal (steel, aluminum, iron, ...)
- Compute the inertia matrix for each link
- Derive a dynamic model using for example Lagrange's equation
- The dynamic model can be restricted to 3-DOF while the kinematics shall be derived for a full 6-DOF manipulator.
- Inverse kinematic should be implemented (can be numerical)
- Include gear-box in the model (gear ratio [-100 100 100-60-60 40]:1), motor inertia can be assumed to be $50-100 \%$ link inertia when transformed to the arm-side, i.e., after the gearbox)
- Motor torque max, [6 1050.60 .6 0.5] Nm

The robot in the assignment

A small/mid size robot
Main applications

- Arc Welding
- Machine tending
- Material handling
- Continuous processes

PhDCourse Robot modeling and control

Lecture 3

AUTOMATIC CONTROL AUTOMATC CONTROL
RELLERTEKNK INKÖPNGS UNVERSTITET

Kinematic data (pdf-files on the homepage)

