Lecture 1. Rigid body motion.

Mikael Norrlöf, mino@isy.liu.se

Content

- Rigid body transformation
- Rotation
- Rotation matrices
- Euler's theorem
- Parameterization of SO(3)
- Homogeneous representation
- Matrix representation
- Chasles' theorem

Background to modeling

Kinematics

- studies the motion of objects without consideration of the circumstances leading to the motion

Dynamics

- studies the relationship between the motion of objects and its causes

Rigid body motion

Rigid body motion

The motion of a rigid body can be parameterized as

- position - orientation
of one point of the object. The configuration.

Content

- Rigid body transformation
- Rotation
- Rotation matrices
- Euler's theorem
- Parameterization of SO(3)
- Homogeneous representation
- Matrix representation

Representation of orientation

- Rotation matrices
- Angle - axis representation
- Euler angles
- Quaternion
- Exponential coordinates

Composition of rotation

© The order of rotation axes is important

i)

ii)

iii)
$R_{1}(\alpha)=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\alpha) & \sin (\alpha) \\ 0 & -\sin (\alpha) & \cos (\alpha)\end{array}\right]$
$R_{2}(\alpha)=\left[\begin{array}{ccc}\cos (\alpha) & 0 & -\sin (\alpha) \\ 0 & 1 & 0 \\ \sin (\alpha) & 0 & \cos (\alpha)\end{array}\right]$
$R_{3}(\alpha)=\left[\begin{array}{ccc}\cos (\alpha) & \sin (\alpha) & 0 \\ -\sin (\alpha) & \cos (\alpha) & 0 \\ 0 & 0 & 1\end{array}\right]$
ii) $x y z$, iii) $z y x$

Example

Example 2.8

Suppose R is defined by the following sequence of basic rotations in the order specified:

1. A rotation of θ about the current x-axis
2. A rotation of ϕ about the current z-axis
3. A rotation of α about the fixed z-axis
4. A rotation of β about the current y-axis
5. A rotation of δ about the fixed x-axis

In order to determine the cumulative effect of these rotations we simply begin with the first rotation $R_{x, \theta}$ and pre- or post-multiply as the case may be to obtain

$$
\begin{equation*}
R=R_{x, \delta} R_{z, \alpha} R_{x, \theta} R_{z, \phi} R_{y, \beta} \tag{2.24}
\end{equation*}
$$

Euler angles

Euler angles

: Gimbal lock (Apollo IMU Gimbal lock 1, 2)

$$
\begin{aligned}
R\left(\alpha, \frac{\pi}{2}, \gamma\right) & =\left(\begin{array}{ccccc}
0 & \cos \gamma \sin \alpha-\cos \alpha \sin \gamma & \cos \alpha \cos \gamma+\sin \alpha \sin \gamma & 0 \\
0 & \cos \alpha \cos \gamma+\sin \alpha \sin \gamma & \cos \alpha \sin \gamma-\cos \gamma \sin \alpha & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cccc}
0 & \sin (\alpha-\gamma) & \cos (\alpha-\gamma) & 0 \\
0 & \cos (\alpha-\gamma) & \sin (\alpha-\gamma) & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Euler angles

: Implementing interpolation is difficult

- Ambiguous correspondence to rotations
* The result of composition is not apparent
© Non-linear dynamics
© Mathematics is well known
© Can be visualized "in the mind"

Quaternions

Sir William Rowan Hamilton (1809-1865)

Lectures on Quaternions: Containing a systematic statement of $\mathfrak{A} \mathfrak{N e w}$ Mathematical Method
of which the principles were communicated in 1843 to the royal Irish aCademy; and which has since formed the subject of successive courses of lectures, delivered in 1848 and Subsequent years in the halls of trinity college, Dublin: with numerous illustrative diagrams, and with SOME GEOMETRICAL AND PHYSICAL APPLICATIONS.

Quaternions

Generalization of complex numbers to 3D.

$$
\begin{aligned}
& \begin{array}{l}
s+i x+j y+k z
\end{array} \\
& \text { with } \mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{ijk}=-1, \mathrm{ij}=-\mathrm{ji}=\mathrm{k}, \mathrm{jk}=-\mathrm{kj}=\mathrm{i}, \mathrm{ki}=-\mathrm{ik}=\mathrm{j} .
\end{aligned}
$$

A quaternion is usually represented as $q=\langle s, v\rangle$ with

- s scalar (real part)
- v vector in R^{3} (complex part)

Unit quaternion $\|q\|=1$.

Rotation with quaternions

Angle axis to quaternion

$$
\theta, v \Rightarrow \quad q=\left\langle\cos \frac{\theta}{2}, \sin \frac{\theta}{2} v\right\rangle
$$

Composition of rotations, q_{1} then q_{2}

$$
q=q_{2} q_{1}
$$

Rotation with quaternions

Rotation of a vector, $u=R v$
$\mathrm{v}_{\mathrm{q}}=\langle 0, \mathrm{v}\rangle, q$ is quaternion representation of R

$$
u_{q}=q v_{q} q^{-1}=\langle 0, u\rangle
$$

$$
\begin{aligned}
& R_{q}(\mathbf{q})= \\
& {\left[\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{1} q_{3}-2 q_{0} q_{2} \\
2 q_{1} q_{2}-2 q_{0} q_{3} & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} \\
2 q_{1} q_{3}+2 q_{0} q_{2} & 2 q_{2} q_{3}-2 q_{0} q_{1} & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right] .}
\end{aligned}
$$

Some remarks

- q and -q represent the same rotation

- $q=\langle s, v\rangle$ and $q^{-1}=\langle s,-v\rangle$

Quaternions

© Can only represent orientation
© Quaternion math is not so well known
© Compact representation, based upor
© Simple interpolation methods
© No gimbal lock
© Simple composition
© Linear (bi-linear) dynamics, (NASA)

Homogeneous transformations

$$
\begin{array}{ll}
\operatorname{Trans}_{x, a} & =\left[\begin{array}{cccc}
1 & 0 & 0 & a \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \operatorname{Rot}_{x, \alpha}=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & c_{\alpha} & -s_{\alpha} & 0 \\
0 & s_{\alpha} & c_{\alpha} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\operatorname{Trans}_{y, b}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & b \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \operatorname{Rot}_{y, \beta}=\left[\begin{array}{rrrr}
c_{\beta} & 0 & s_{\beta} & 0 \\
0 & 1 & 0 & 0 \\
-s_{\beta} & 0 & c_{\beta} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\operatorname{Trans}_{z, c}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & c \\
0 & 0 & 0 & 1
\end{array}\right] ; \quad \operatorname{Rot}_{x, \gamma}=\left[\begin{array}{rrrr}
c_{\gamma} & -s_{\gamma} & 0 & 0 \\
s_{\gamma} & c_{\gamma} & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{array}
$$

Homogeneous transformations

Composition Rule for Homogeneous Transformations

The same interpretation regarding composition and ordering of transformations holds for 4×4 homogeneous transformations as for 3×3 rotations. Given a homogeneous transformation H_{1}^{0} relating two frames, if a second rigid motion, represented by $H \in S E(3)$ is performed relative to the current frame, then

$$
H_{2}^{0}=H_{1}^{0} H
$$

whereas if the second rigid motion is performed relative to the fixed frame, then

$$
H_{2}^{0}=H H_{1}^{0}
$$

Comparison for different operations

Performance comparison of rotation chaining operations

Method	Storage	\# multiplies	\# add/subtracts	total operations
Rotation matrix	9	27	18	45
Quaternions	4	16	12	28

Performance comparison of various rotation operations

Method	Storage	\# multiplies	\# add/subtracts	\# sin/cos	total operations
Rotation matrix	9	9	6	0	15
Quaternions	4	21	18	0	39
Angle/axis	4^{*}	23	16	2	41

Further studies

- R.M. Murray, Z. Li, and S.S. Sastry: A mathematical introduction to Robotic Manipulation (Chapter 2)
- James Diebel: Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors
- Erik B. Dam, Martin Koch, and Martin Lillholm: Quaternions, Interpolation and Animation

