Lecture 1. Rigid body motion.

Mikael Norrlöf, mino@isy.liu.se

Content

- Rigid body transformation
- Rotation
 - Rotation matrices
 - Euler's theorem
 - Parameterization of SO(3)
- Homogeneous representation
 - Matrix representation
 - Chasles' theorem

Background to modeling

Kinematics

 studies the motion of objects without consideration of the circumstances leading to the motion

Dynamics

 studies the relationship between the motion of objects and its causes

Rigid body motion

Rigid body motion

Content

- Rigid body transformation
- Rotation
 - Rotation matrices
 - Euler's theorem
 - Parameterization of SO(3)
- Homogeneous representation
 - Matrix representation

Representation of orientation

- Rotation matrices
- Angle axis representation
- Euler angles
- Quaternion

•

. . .

Exponential coordinates

Composition of rotation

⊗ The order of rotation axes is important

Example

Example 2.8

Suppose R is defined by the following sequence of basic rotations in the order specified:

- 1. A rotation of θ about the current x-axis
- 2. A rotation of ϕ about the current z-axis
- 3. A rotation of α about the fixed z-axis
- 4. A rotation of β about the current y-axis
- 5. A rotation of δ about the fixed x-axis

In order to determine the cumulative effect of these rotations we simply begin with the first rotation $R_{x,\theta}$ and pre- or post-multiply as the case may be to obtain

$$R = R_{x,\delta} R_{z,\alpha} R_{x,\theta} R_{z,\phi} R_{y,\beta} \tag{2.24}$$

Euler angles

⊖ Gimbal lock (Apollo IMU Gimbal lock 1, 2)

$$R(\alpha, \frac{\pi}{2}, \gamma) = \begin{pmatrix} 0 & \cos\gamma\sin\alpha - \cos\alpha\sin\gamma & \cos\alpha\cos\gamma + \sin\alpha\sin\gamma & 0\\ 0 & \cos\alpha\cos\gamma + \sin\alpha\sin\gamma & \cos\alpha\sin\gamma - \cos\gamma\sin\alpha & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & \sin(\alpha - \gamma) & \cos(\alpha - \gamma) & 0\\ 0 & \cos(\alpha - \gamma) & \sin(\alpha - \gamma) & 0\\ -1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Euler angles

- ☺ Implementing interpolation is difficult
- Ambiguous correspondence to rotations
- ☺ The result of composition is not apparent
- ⊗ Non-linear dynamics
- ③ Mathematics is well known
- Can be visualized "in the mind"

Quaternions

Sir William Rowan Hamilton (1809-1865)

LECTURES ON QUATERNIONS: CONTAINING A SYSTEMATIC STATEMENT OF

A New Mathematical Method

OF WHICH THE PRINCIPLES WERE COMMUNICATED IN 1843 TO THE ROYAL IRISH ACADEMY; AND WHICH HAS SINCE FORMED THE SUBJECT OF SUCCESSIVE COURSES OF LECTURES, DELIVERED IN 1848 AND SUBSEQUENT YEARS IN THE HALLS OF TRINITY COLLEGE, DUBLIN: WITH NUMEROUS ILLUSTRATIVE DIAGRAMS, AND WITH SOME GEOMETRICAL AND PHYSICAL APPLICATIONS.

Quaternions

Generalization of complex numbers to 3D.

s + i x + j y + k zwith $i^2 = j^2 = k^2 = ijk = -1$, ij = -ji = k, jk = -kj = i, ki = -ik = j.

A quaternion is usually represented as $q = \langle s, v \rangle$ with

- *s* scalar (real part)
- v vector in \mathbb{R}^3 (complex part)

Unit quaternion ||q|| = 1.

Rotation with quaternions

Angle axis to quaternion

$$\theta, v \Rightarrow q = \left\langle \cos \frac{\theta}{2}, \sin \frac{\theta}{2} v \right\rangle$$

Composition of rotations, q_1 then q_2

 $q = q_2 q_1$

Rotation with quaternions

Rotation of a vector, u = Rv

 $v_q = \langle 0, v \rangle$, q is quaternion representation of R

$$u_q = q v_q q^{-1} = <0, u>$$

$$R_{q}(\mathbf{q}) = \begin{bmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2q_{1}q_{2} + 2q_{0}q_{3} & 2q_{1}q_{3} - 2q_{0}q_{2} \\ 2q_{1}q_{2} - 2q_{0}q_{3} & q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2} & 2q_{2}q_{3} + 2q_{0}q_{1} \\ 2q_{1}q_{3} + 2q_{0}q_{2} & 2q_{2}q_{3} - 2q_{0}q_{1} & q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{bmatrix}$$

Some remarks

• *q* and –*q* represent the same rotation

• $q = \langle s, v \rangle$ and $q^{-1} = \langle s, -v \rangle$

Quaternions

- Can only represent orientation
- Outernion math is not so well known
- © Compact representation, based upor
- © Simple interpolation methods
- O gimbal lock
- Simple composition
- © Linear (bi-linear) dynamics, (NASA)

United States Patent [19] Whitmore				Patent Number: Date of Patent:	6,061,611 May 9, 2000		
[54] [75]	QUATER KINEMA	-FORM INTEGRATOR FOR THE NION (EULER ANGLE) TICS EQUATIONS Stephen A. Whitmore, Lake Hughes,	kinemati angles of	The invention is embodied in a method of integrating kinematics equations for updating a set of vehicle attitude angles of a vehicle using 3-dimensional angular velocities of			
[73]	Assignce:	Calif. the vehicle, which includes computing an integrating factor matrix from quantities corresponding to 14th 3-dimensional angular velocities, computing a total integrated angular rate from the National Aeronautics and Space Administration, Washington, D. C. di Inter complementary function of the total integrate					
[21]	Appl. No.	No.: 09/002,871 angular rate and (b) the integrating factor mate by a second complementary function of the to					
[22]	Filed:	Jan. 6, 1998	using th	ate, and updating the set of e state transition matrix. P			
[51] [52] [58]	U.S. Cl		quantitie velocitie attitude : by (a) u	further includes computing a quanternion vector from the quantities corresponding to the 3-dimensional angular velocities, in which case the updating of the set of vehicle attitude angles using the state transition matrix is carried ou by (a) updating the quanternion vector by multiplying th			
[56]		References Cited		ion vector by the state transi ed quanternion vector and (b)			
	U.	S. PATENT DOCUMENTS	set of ve	hicle attitude angles from th the first and second trigon	e updated quanternion		
5 5 5 5 5 7 7	,406,489 ,799,901 ,850,615 ,886,257 ,918,832 ary Examin	0/1990 Farineau 244/195 0/1995 Odder 701/4 0/1998 Odder 701/4 0/1998 Odder 701/4 1/1998 Odder 701/4 1/1998 Odder 701/4 1/1999 Odder of all 701/78 1/1999 Zerweckh 701/78 1/1999 Zerweckh 244/17.13 er-William A. Cuchlinski, Jr. rer-Olga Hermandez	complen correspo include velocitie quanterr whereby	the info the sector a tight and the information of the sector and the information respective averages of the : is over plural time frames, ion vector preserves the the updated set of vehicle error-free.	cosine. The quantities al angular velocities 3-dimensional angular The updating of the norm of the vector,		
		or Firm—John H. Kusmiss		21 Claims, 9 Drawing	g Sheets		
		210 EULER ANGLE PROCESSOR					

INTEGRATION

LOOP LOGIC

(WHEN NECESSARY

REVERSE

I OGIC 312

RANSFORMATION

(WHEN NECESSARY) NAVIGATIONAL PROCESSOR

INITIAL

COMPUTATION

LOGIC

Homogeneous transformations

$$\operatorname{Trans}_{x,a} = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \quad \operatorname{Rot}_{x,\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha} & -s_{\alpha} & 0 \\ 0 & s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{Trans}_{y,b} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; \quad \operatorname{Rot}_{y,\beta} = \begin{bmatrix} c_{\beta} & 0 & s_{\beta} & 0 \\ 0 & 1 & 0 & 0 \\ -s_{\beta} & 0 & c_{\beta} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\operatorname{Trans}_{z,c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & 1 \end{bmatrix}; \quad \operatorname{Rot}_{x,\gamma} = \begin{bmatrix} c_{\gamma} & -s_{\gamma} & 0 & 0 \\ s_{\gamma} & c_{\gamma} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Composition Rule for Homogeneous Transformations

The same interpretation regarding composition and ordering of transformations holds for 4×4 homogeneous transformations as for 3×3 rotations. Given a homogeneous transformation H_1^0 relating two frames, if a second rigid motion, represented by $H \in SE(3)$ is performed relative to the current frame, then

$$H_2^0 = H_1^0 H$$

whereas if the second rigid motion is performed relative to the fixed frame, then

$$H_2^0 = HH_1^0$$

Comparison for different operations

Performance comparison of rotation chaining operations

Method	Storage	# multiplies	# add/subtracts	total operations
Rotation matrix	9	27	18	45
Quaternions	4	16	12	28

Performance comparison of various rotation operations

Method	Storage	# multiplies	# add/subtracts	# sin/cos	total operations
Rotation matrix	9	9	6	0	15
Quaternions	4	21	18	0	39
Angle/axis	4*	23	16	2	41

Further studies

- R.M. Murray, Z. Li, and S.S. Sastry: A mathematical introduction to Robotic Manipulation (Chapter 2)
- James Diebel: Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors
- Erik B. Dam, Martin Koch, and Martin Lillholm: **Quaternions, Interpolation and Animation**