
Mikael Norrlöf
PhDCourse Robot Modeling and Control

Rapid and robot programming
Lab preparation and exercises

Mikael Norrlöf



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Robot safety

§ The robot control system can be in three distinct
modes
� Manual, the speed is reduced to a maximum 250 mm/s
� Manual 100%, full performance is reached but the user has

to keep pushed an extra button on the flex pendent
� Auto, the robot moves at full speed completely “autonomous”

§ Under no circumstances it is allowed to be inside the
robot cell when the robot runs in “Manual 100%” or
“Auto”!

§ The robot is potentially dangerous also at low
speeds. Do not stay close when running a program
(also in “Manual”)



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Robot hardware

Teach pendent
(FlexPendant)

Mode selector key

Emergency stop
button (also available
on the TeachPendant)

Motors on / acknowledge restart of
motors after system stop



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Robot hardware

Teach pendant



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Robot hardware



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Moving the robot with the joystick (jogging)

Choose jog-mode
§ Motion mode decides how to use the joystick
§ Coordinate system affects the jogging directions
§ Tool affects the position and also the jogging directions if

Coordinate system is tool
§ Work object affects the position and also the jogging directions if

Coord is wobj



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Coordinate systems

Base frame

x
y

z
Work object / User
frame

To help in the programming it is possible to define a number of
coordinate systems. Some can be defined/calibrated using the robot.

x
y

z
World frame

Tool frame



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Define a tool coordinate system

Approach a world fixed tip
from (at least) four directions.
Mass and inertia data can be
identified using pre-defined
movements of the robot.



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Define a work object

§ The work object coordinate frame can be defined
using a three point method.



Mikael Norrlöf
PhDCourse Robot Modeling and Control

A Rapid module (program)

Language originally developed in collaboration with SoftLab.

MODULE MainModule
VAR num length;
VAR num width;
VAR num area;

PROC main()
length := 10;
width := 5;
area := length * width;
TPWrite "The area of the rectangle is “ \Num:=area;

END

PROCENDMODULE



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Controlling the program flow

§ IF THEN ELSE (ELSEIF)
VAR num time := 38.7;
IF time < 40 THEN
TPWrite "Part produced at fast rate";

ELSEIF time < 60 THEN
TPWrite "Part produced at average rate";

ELSE
TPWrite "Part produced at slow rate";

ENDIF

§ FOR
FOR i FROM 1 TO 5 DO
TPWrite "Hello";

ENDFOR

§ WHILE
VAR num sum := 0;
VAR num i := 0;
WHILE sum <= 100 DO
i := i + 1;
sum := sum + i;

ENDWHILE



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Other useful commands

§ Control external devices (digital output)

To close the gripper,
SetDO do1, 1;

To open the gripper,
SetDO do1, 0;



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Syntax comments

§ A statement in Rapid ends with a semicolon, exceptions are IF
ENDIF, FOR ENDFOR, …

§ A comment in Rapid starts with a !

! Calculate the area of the rectangle
area := length * width;

§ The Rapid interpreter is not case sensitive but it is
recommended that all reserved words (e.g. VAR, PROC) are
written in capital letters.



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Move instructions

MoveL p10, v1000, fine, tool0;

§ p10 specifies the position that the robot shall move to.
§ v1000 specifies that the speed of the robot shall be 1000 mm/s.
§ fine specifies that the robot shall go exactly to the specified position

and not cut any corners on its way to the next position.
§ tool0 specifies that it is the mounting flange at the tip of the robot that

should move to the specified position.

MoveC p10, p20, v1000, fine, tool0;

MoveJ p10, v1000, fine, tool0;

MoveAbsJ j10, v50, z50, tool0;



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Offset function

§ With Offs() it is possible to add an offset to a point in the x-, y-,
and z-direction

MoveL Offs(p10,0,0,20), v1000, fine, tool0;

The robot will move to a point 20mm i z-direction relative to p10.
Offs() is a very efficient tool to offline produce a desired motion
given a reference-point.



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Configuration supervision

§ To avoid problems with configuration warning/error it
is possible to use

ConfL \Off; ! For MoveL
ConfJ \Off; ! For MoveJ



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Coordinate systems

Base frame

x
y

z
Work object / User
frame

The coordinates can be expressed in another coordinate system
(work object) by attaching an additional argument to the move
instruction:
MoveL p10, v1000, fine, tool0 \WObj:=wobj1 ;

x
y

z
World frame

x
y

z
Tool frame



Mikael Norrlöf
PhDCourse Robot Modeling and Control

RobotStudio – some tricks and tips

§ Zoom in and out,
ctrl + right mouse button + move mouse left/right

§ Pan
ctrl + left mouse button + move mouse
up/down/left/right

§ Rotate
shift + ctrl + left mouse button + move move mouse
up/down/left/right



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Exercise 1.
a) Jog the robot using the teach pendant while testing the different

jog-modes.
b) Try jogging close to a singularity
c) Jog the other mechanical units while using different coordinate

systems.

Lab



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Exercise 2.
Program the robot to draw the figure below. The inner geometry is
optional. Simulate that the robot uses a pen by moving to a
specified fixed position before and after the figure is drawn.

It is important that the program uses the right tool and work object.
Try to move the work object (using the positioner) to see how this
affects the program. You can also move the robot using the track
while drawing.

Lab



Mikael Norrlöf
PhDCourse Robot Modeling and Control

Program template

MODULE MainModule
CONST jointtarget jpos10:=[[0,0,0,0,0,0],[0,0,0,9E+09,9E+09,9E+09]];
TASK PERS wobjdata wobj1:=[FALSE,FALSE,"STN1",[[0,0,0],[1,0,0,0]],[[0,0,0],[1,0,0,0]]];
CONST robtarget p10:=[[200,0,100],[0.7071,0,0.7071,0],[0,0,0,0],[0,0,0,9E+09,9E+09,9E+09]];
CONST robtarget p20:=[[1662.50,0.00,2055.00],[0.707107,0,0.707107,0],[0,0,0,0],[0,0,0,9E+09,9E+09,9E+09]];
PROC main()

MoveAbsJ jpos10\NoEOffs, v1000, z50, tool0;
!MoveJ p10, v1000, z50, tool0\WObj:=wobj1;

ENDPROC

PROC DrawLiuLogo(
PERS tooldata LocalTool,
PERS wobjdata LocalWorkObj)

ENDPROC

PROC TestInterpSingPos()
SingArea\Wrist;
MoveL Offs(p20,0,-400, 0), v100, fine, tool0;
MoveL Offs(p20,0, 400, 0), v100, fine, tool0;
SingArea\Off;
ConfL\Off;
MoveL Offs(p20,0,200, 20), v100, fine, tool0;
MoveL Offs(p20,0, -200, 20), v100, fine, tool0;
ConfL\On;

ENDPROC

ENDMODULE


