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2Nonlinear models - Outline

■ General aspects

■ Black-box models
■ Grey-box models

■ Special issues for non-linear models
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3General Aspects

Let Zt denote all available (input-output) data up to time t. A mathematical
model for the system is a function from these data to the space where the
output at time t, y(t) lives, in general

ŷ(t|t− 1) = g(Zt−1, t)

The function can be thought of as a predictor of the next output.
A parametric model structure is a parameterized family of such models:

g(Zt−1, θ)

All aspects on curve fitting applies pretty much also to this case. The difficulty
is the enormous richness in possibilities of parameterizations. There are two
main cases

■ Black-box models: General models of great flexibility

■ Grey-box models: Models that incorporate some knowledge of the
character of the actual system.
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4Nonlinear models - Outline

■ General aspects

■ Black-box models
• Choice of regressors and nonlinear function
• Functions for a scalar regressor
• Expansion into multiple regressors
• Examples of “named” structures

■ Grey-box Models

■ Special issues for non-linear models
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5Black-box Models: General Comments

The general mapping g(Zt−1, θ) is normally too flexible. Let us split it into one
mapping from Zt−1 to a regression vector ϕ(t) of fixed dimension d and a
mapping g from Rd to R (assuming the output to be scalar):

g(Zt−1, θ) = g(ϕ(t), θ)

ϕ(t) = ϕ(Zt−1) ( or ϕ(t, θ) = ϕ(Zt−1, θ))

Leaves two problems

1. Choose the mapping g(ϕ, θ)

2. Choose the regression vector ϕ(t)
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6NL Black Box: Choice of g

First, consider ϕ to be scalar. Basic form

g(ϕ, θ) =

N
∑

k=1

αkκ(βk(ϕ− γk))

■ κ(x) = cos(x): Fourier transform

■ κ(x) = U(x): Unit pulse, gives piecewise constant functions g.

• Soft version: κ(x) = e−x2/2

■ κ(x) = H(x): Step at x = 0, gives also piecewise constant functions

• Soft version: κ(x) = 1
1+e−x

■ α coordinates, β scale or dilation, γ location
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7Several Regressors

Consider now ϕ to be a d-dimensional vector, but let still κ(x) be a function of
one variable. How to interpret κ(β(ϕ− γ))?

Radial β(ϕ− γ) = ‖ϕ− γ||β = (ϕ− γ)T β(ϕ− γ)

γ a d-dimensional vector, β a d|d-matrix (positive definite) or scaled
version of the identity matrix with β a scalar.
Describes an ellipsoid in Rd.

Ridge β(ϕ− γ) = βT ϕ− γ

β a d-dimensional vector, γ a scalar.
Describes a hyperplane in Rd

Tensor κ is a product of factors corresponding to the components of the

vector: κ(β(ϕ− γ)) =
∏d

k=1 κ(βk(ϕk − γk))

γ and β are d-dimensional vectors and subscript denotes component.
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8Examples of Named Structures

■ ANN: artificial Neural Networks
• One hidden layer sigmoidal: κ(x) = 1

1+e−x , ridge extension

• Radial Basis Networks: κ(x) = e−x2/2, radial extension

■ Wavelets: κ is the “mother wavelet” and βj = 2j , γk = 2−jk (double
indexing) as fixed choices

■ (Neuro)-Fuzzy models: κ are the membership functions, tensor
expansion



System Identification: Nonlinear Models
Lennart Ljung

Berkeley, 2005 AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET
COMMUNICATION SYSTEMS

9Simulation and Prediction

Suppose ϕ(t) = [y(t− 1), u(t− 1)]T

The (one-step ahead) predicted output at time for a given model θ is then

ŷp(t|θ) = g([y(t− 1), u(t− 1)]T , θ)

It uses the previous measurement y(t− 1).

A tougher test is to check how the model would behave in simulation, i.e.
when only the input sequence u is used. The simulated output is obtained as
above, by replacing the measured output by the simulated output from the
previous step:

ŷs(t, θ) = g([ŷs(t− 1, θ), u(t− 1)]T , θ)

Notice a possible stability problem!
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10Choice of Regressors

Four players:

■ Outputs y(t− k), Inputs u(t− k)

■ Simulated model outputs ŷs(t− k, θ)

■ Predicted model outputs ŷp(t− k|θ)
Regressors for dynamical systems are typically chosen among those:

■ NFIR-models use past inputs

■ NARX-models use past inputs and outputs

■ NOE-models use past inputs and past simulated outputs

■ NARMAX-models use inputs, outputs predicted outputs

■ NBJ-models use all four regressor types
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11Recurrent Networks

For NOE, NARMAX and NBJ, previous outputs from the model have to be fed
back into the model computations on-line:

ϕ κΣ

11

Σ
κΣ

q
-1

q
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g

These are called recurrent networks and require considerable more
computational work to fit to data.
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12Network Aspects – Several Layers

The model structures are really basis function expansions. However, since
the basis functions are variants of the same function κ, a graphical
description looks like a network. One can also let the regressors be outputs
from a previous layer of the network:

Input layer Hidden layers Output layer
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13Example: Hydraulic Crane Data

These are data from a forest harvest machine:
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14Linear Model

Black: Measured Output
Blue: Model Simulated Output
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Linear model: Fit 41.71 %
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15Sigmoidal ANN model
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Sigmoidal NN: Fit 54.19 %
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16Wavenet Model (Radial BF ANN Model)
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17Nonlinear models - Outline

■ General aspects

■ Black-box models
■ Grey-box Models

• Physical Modeling
• Semi-physical Modeling
• Block-models
• Local Linear Models

■ Special issues for non-linear models
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18Physical Modeling

Perform physical modeling (e.g. in MODELICA) and denote unknown physical
parameters by θ. Collect the model equations as

ẋ(t) = f(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ)

(or in DAE, Differential Algebraic Equations, form.) For each parameter θ this
defines a simulated (predicted) output ŷ(t|θ) which is the parameterized
function

ŷ(t|θ) = g(Zt−1, θ)

in somewhat implicit form. To be a correct predictor this really assumes
white measurement noise. Some more sophistical noise modeling is
possible, usually involving ad hoc non-linear observers.

The approach is conceptually simple, but could be very demanding in practice.

.
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19Example: Missile

10 inputs, 5 outputs, 16 unknown parameters.
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20The Equations

function [dx, y] = missile(t, x, p, u);

MISSILE A non-linear missile system.

Output equation.

y = [x(1); ... % Angular velocity around x-axis.

x(2); ... % Angular velocity around y-axis.

x(3); ... % Angular velocity around z-axis.

-p(18) * u(4) * (p(1) * x(5)+p(2) * u(3))/p(22); ... % Acceleration in y-direction.

-p(18) * u(4) * (p(3) * x(4)+p(4) * u(2))/p(22) ... % Acceleration in z-direction.

];

% State equations.

dx = [1/p(19) * (p(17) * p(18) * (p(5) * x(5)+0.5 * p(6) * p(17) * x(1)/u(5)+ ... % Angular

p(7) * u(1)) * u(4)-(p(21)-p(20)) * x(2) * x(3))+ ...

p(23) * (u(6)-x(1)); ...

1/p(20) * (p(17) * p(18) * (p(8) * x(4)+0.5 * p(9) * p(17) * x(2)/u(5)+

... % Angular velocity around y-axis.
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21Equations ...

p(10) * u(2)) * u(4)-(p(19)-p(21)) * x(1) * x(3))+ ...

p(23) * (u(7)-x(2)); ...

1/p(21) * (p(17) * p(18) * (p(11) * x(5)+p(12) * x(4) * x(5)+ ... % Angular

0.5 * p(13) * p(17) * x(3)/u(5)+p(14) * u(1)+ ...

p(15) * u(3)) * u(4)-(p(20)-p(19)) * x(1) * x(2))+ ...

p(23) * (u(8)-x(3)); ...

(-p(18) * u(4) * (p(3) * x(4)+p(4) * u(2)))/(p(22) * u(5))- ... % Attack

x(1) * x(5)+x(2)+p(23) * (u(9)/u(5)-x(4))+p(16) * x(5)ˆ2; ...

(-p(18) * u(4) * (p(1) * x(5)+p(2) * u(3)))/(p(22) * u(5))- ... % Slide angle.

x(3)+x(1) * x(4)+p(23) * (u(10)/u(5)-x(5)) ...

];
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22Initial Fit between Model and Data
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23Adjusted Fit between Model and Data
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24Semi-physical Models

Apply non-linear transformations to the measured data, so that the
transformed data stand a better chance to describe the system in a linear
relationship.
“Rules: Only high-school physics and max 10 minutes”
Simple examples: . . ..

Another example:...
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25A Solar Heated House

Solar Panel

Pump

Pump Storage

y(t) : temperature in storage, I(t) : Solar intensity u(t) : Pump velocity
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26Data
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27Linear Model
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28Think ...

Suppose we had measured the temperature x(t) in the solar panel:

x(t + 1) − x(t) = d2I(t) − d3x(t) − d0x(t) · u(t)

y(t + 1) − y(t) = d0x(t) · u(t) − d1y(t)

Eliminate x(t):

y(t) =(1 + d1)y(t − 1) + (1 − d3)
y(t − 1)u(t − 1)

u(t − 2)

+ (d3 − 1)(1 + d1)
y(t − 2)u(t − 1)

u(t − 2)
+ d0d2u(t − 1) · I(t − 2)

− d0u(t − 1)y(t − 1) + d0(1 + d1)u(t − 1)y(t − 2)

Reparameterize with θ being the coefficiente above, ignoring links between them.

System Identification: Nonlinear Models
Lennart Ljung

Berkeley, 2005 AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET
COMMUNICATION SYSTEMS

29Semi-physical Model
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30Neural Network Model
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31Nonlinear models - Outline

■ General aspects

■ Black-box models
■ Grey-box Models

• Physical Modeling
• Semi-physical Modeling
• Block-oriented models
• Local Linear Models

■ Special issues for non-linear models
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32Block-oriented Models

Building Blocks:

Linear Dynamic System
G(s)

Nonlinear static function
f(u)
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33Common Models

Wiener

Hammerstein

Hammerstein-
Wiener
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34Other Combinations

With the linear blocks parameterized as a linear dynamic system and the
static blocks parameterized as a function (“curve”), this gives a
parameterization of the output as

ŷ(t|θ) = g(Zt−1, θ)

and the general approach of model fitting can be applied.

However, in this contexts many algorithmic variants have been suggested.
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35The Hydraulic Crane Again
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Hammerstein model: Fit 71.61 %
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36Local Linear Models

Non-linear systems are often handled by linearization around a working point.
The idea behind Local Linear Models is to deal with the nonlinearities by
selecting or averaging over relevant linearized models.

Example: Tank with inflow u and outflow y and level h: Equations:

ḣ = −
√

h + u

y =
√

h

Linearize around level h∗ with corresponding flows u∗ = y∗ =
√

h∗:

ḣ = − 1

2
√

h∗
(h− h∗) + (u− u∗)

y = y∗ +
1

2
√

h∗
(h− h∗)
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37Tank Example, ctd

Sampled data model around level h∗:

ŷh∗(t) = θT
h∗ϕ(t)

ϕ(t) =
[

1 −y(t− Ts) u(t− Ts)
]T

Ts= sampling time

θh∗ =
[

γ∗ αh∗ βh∗
]T

Total model: select or average over these local predictions, computed at a
grid of values of h∗

ŷ(t) =

d
∑

k=1

wk(h, hk)ŷhk
(t)

Choices of weights wk : . . ..
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38Data and Linear Model

Measured data: Linear Model (d = 1)
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39Local Linear Models

Two models (d=2) Five models (d = 5)
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40Local Linear Models: General Comments

Let the measured working point variable (tank level in example) be denoted
by ρ(t) (sometimes called regime variable). If the regime variable is
partitioned into d values ρk, the predicted output will be

ŷ(t) =

d
∑

k=1

wk(ρ(t), ρk)ŷ(k)(t)

If the prediction ŷ(k)(t) corresponding to ρk is linear in the parameters,

ŷ(k)(t) = ϕT (t)θ(k) the whole model will be a linear regression. .
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41To Build a Local Linear Model

To build the model, we need to

■ Select the regime variable ρ

■ Decide the partition of the regime variable wk(ρ(t), η). Here η is a
parameter that describes the partition

■ Find the local models in each partition.

If the local models are linear regressions, the total model will be

ŷ(t, θ, η) =
d

∑

k=1

wk(ρ(t), η)ϕT (t)θ(k)

which for fixed η is a linear regression.
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42Hybrid Models and LPV Models

ŷ(t, θ, η) =

d
∑

k=1

wk(ρ(t), η)ϕT (t)θ(k)

is also an example of a hybrid model (piecewise linear). If the partition is to
be estimated too, the problem is considerably more difficult.

So called Linear Parameter Varying (LPV) are also closely related:

ẋ = A(ρ(t))x + B(ρ(t))u

y = C(ρ(t))x + D(ρ(t))u
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43Nonlinear models - Outline

■ General aspects

■ Black-box models
■ Grey-box Models

■ Special issues for non-linear models
• Input design
• Sparsity
• Local minima
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44Experiment Design

The design of inputs for non-linear models is considerable more difficult than
for linear models. For example, it is clear that a binary input will not work.
(Think of a Hammerstein model!)
In addition to exciting all frequencies, an input for a general nonlinear model
must also excite all amplitudes.
Gaussian noise (white or colored) would be an example of a signal that is
generically exciting for nonlinear models.
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45Sparsity

The basic problem:

■ Non-linear surfaces in high dimensions can be very complicated and
need support of many observed data points.

■ How to find parameterizations of such surfaces that both give a good
chance of being close to the true system, and also use a moderate
amount of parameters?

■ The data cloud of observations is by necessity sparse in the surface
space.
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46Sparsity: Some ideas

■ Using physical insight in grey-box models is one way to allow
extrapolation and interpolation in the data space on physical grounds.

■ Hoping that most of the non-linear action takes place across
hyperplanes or hyperspaces is another idea that will radically reduce the
flexibility of the model.

■ In statistics the problem to find such subspaces is known as the index
problem. Finding projections S of dimension r|m, r << m such that
f(ϕ) = g(Sϕ) captures most of nonlinearity consequently is an important
problem.

■ The Ridge-based neural networks can be seen as one way to find
several such hyperplanes that define the structure of the non-linear
effects.
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47Local Minima

Adjusting a parameterized model structure to data typically is a non-convex
problem and several local minima of the criterion function may exist.
This is one of the most pressing problem in non-linear identification, and calls
for sophisticated initialization procedures.

■ In Neural Networks, some normalization is first applied to the data, and
then a randomized initialization is made. Typically one will have to try
several initializations

■ Wavenets use an initialization based on fixed location and dilation
parameters, which gives a linear regression

■ For physical models, algebraic methods may produce linear regressions
for initial estimates

■ Block oriented models often employ several steps, fixing linear and/or
nonlinear block to create smaller problems.
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48Conclusions Theme 3: Nonlinear Models

■ A nonlinear model can be seen as nonlinear mapping from past data to
the space where the output lives: ŷ(t|t− 1) = g(Zt−1, t). Observations
are then y(t) = ŷ(t|t− 1) + e(t).

■ Useful split of mapping: g(Zt−1) = g(ϕ(Zt−1))

■ Non-parametric and Parametric methods

■ Black-box and Grey-box parameterizations g(ϕ, θ)

■ Black-box parameterizations usually employ one basic basis-function,
that is scaled and located at different points

■ Grey-boxes can be based on (serious) physical modeling and on more
leisurely semi-physical modeling.

■ Non-convexity of the optimization remains one of the more serious
problems for most parametric methods.


