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2The Problem
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3Data from Gripen
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4Questions

■ How do the control surface angles affect the pitch rate?

■ Aerodynamical derivatives?

■ How to use the information in flight data?
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5Aircraft Dynamics: From input 1
y(t) pitch rate at time t. u1(t) canard angle at time t. Try

y(t) = −a1y(t− T )− a2y(t− 2T )− a3y(t− 3T )− a4y(t− 4T )

+ b1u1(t− T ) + b2u1(t− 2T ) + b3u1(t− 3T ) + b4u1(t− 4T ) T = 1/60s.
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Dashed line: Actual Pitch rate. Solid line: 10 step ahead predicted pitch rate,
based on the fourth order model from canard angle only.
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6Using all inputs

u1 canard angle; u2 Elevator angle; u3 Leading edge flap;

y(t) = −a1y(t− T )− a2y(t− 2T )− a3y(t− 3T )− a4y(t− 4T ) + b1
1u1(t− T ) + . . .

+ b1
4u1(t− 4T ) + . . . + b3

1u3(t− T ) + . . . + b3
4u3(t− 4T ) T = 1/60s.
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7System Identification: Issues

■ Select a class of candidate models
■ Select a member in this class using the observed data

■ Evaluate the quality of the obtained model

■ Design the experiment so that the model will be “good”.
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8Course Outline: Themes

1. The basic questions and (statistical) tools illustrated for a simple curve
fitting problem.

2. Linear models: The model structures, Special techniques for linear
models. Time and frequency domain data.

3. Software session with hands-on experience

4. Nonlinear models: Parameterizations, problems and techniques.

5. Some practical issues in system identification: Experiment design and
data quality.
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9Curve Fitting - Outline

■ Corrupted observations of function values

■ Model function parameterizations

■ Least squares fit and variants

■ Example of fit depending on model size

■ Statistical asymptotic analysis of parametric methods

■ Bias - Variance trade off
■ Nonparametric methods
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10Background Terms

■ Random (stochastic) variable, Expectation, Variance

■ Independent random variables, random processes

■ Law of Large Numbers, Central Limit Theorem
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11Curve Fitting

Most basic ideas from system identification, choice of model structures and
model sizes are brought out by considering the basic curve fitting problem
from elementary statistics.
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Unknown function g0(x). For a sequence of x-values (regressors)
{x1, x2, . . . , xN} (that may or may not be chosen by the user) observe the
corresponding function values with some noise:

y(k) = g0(xk) + e(k)

Construct an estimate ĝN (x) from {y(1), x1, y(2), x2, . . . , y(N), xN}

.
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12Curve Fitting II: Several Regressors

“Surface fitting”:
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■ The floor is formed by the regressors x, and the upright wall is the
function value y = g0(x).
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13The Curve-fitting problem

y(k) = g0(xk) + e(k)

Construct an estimate ĝN (x) from {y(1), x1, y(2), x2, . . . , y(N), xN}
The error ĝN (x)− g0(x) should be “as small as possible”
Approaches:

■ Parametric: Construct ĝN (x) by searching over a parameterized set of
candidate functions.

■ Non-parametric: Construct ĝN (x) by smoothing over (carefully chosen
subsets of) y(k)
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14Curve Fitting - Outline

■ Corrupted observations of function values

■ Model function parameterizations

■ Least squares fit and variants

■ Example of fit depending on model size

■ Statistical asymptotic analysis of parametric methods

■ Bias - Variance trade off
■ Nonparametric methods
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15Parametric Approach

Search for the function g0 in a parameterized family of functions:

g(x, θ) =

n
∑

k=1

αkfk(x, θ̃k), θ = {αk, θ̃k, k = 1, . . . , n}

■ Grey box/Black box

■ Local/Global basis functions
Examples: g(x, θ) = θ1 + θ2x + . . . + θnxn−1

g(x, θ) =
θ1 + θ2x + . . . + θnxn−1

1 + θn+1x + . . . + θn+m−1xm−1

g(x, θ) = θ0 +

n
∑

k=1

θ2k−1 cos(kπx) + θ2k sin(kπx)

g(x, θ) =

n
∑

k=1

αkU((x− γk)/βk), U(x) unit pulse
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16The Choices in the Parametric case

3 Type of function family (Basis functions fk(x, θ))

2 Size of model (n or dim θ)

1 The parameter values
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17The Choices in the Parametric case

3 Type of function family (Basis functions fk(x, θ))

2 Size of model (n or dim θ)

1 The parameter values
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18Curve Fitting - Outline

■ Corrupted observations of function values

■ Model function parameterizations

■ Least squares fit and variants

■ Example of fit depending on model size

■ Statistical asymptotic analysis of parametric methods

■ Bias - Variance trade off
■ Nonparametric methods
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19Parametric Curve Fitting: Choice of parameters

y(t) = g0(xt) + e(t)

Weighted Least Squares:

θ̂N = arg min
θ

VN (θ)+δ|θ|2

VN (θ) =
1

N

N
∑

t=1

L(xt)|y(t)− g(xt, θ)|2/lambdat

λt Proportional to ’reliability’ of t:th measurement ∼ Ee2(t)

A extra weighting L(xt) could also reflect the ’relevance’ of the point xt.
(’Focus in fit’)

.
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20Parametric Curve Fitting: Choice of parameters
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21Parametric Curve Fitting: Choice of parameters

y(t) = g0(xt) + e(t)
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22Parametric Curve Fitting: Choice of parameters

y(t) = g0(xt) + e(t)

(Regularized) Least squares:

θ̂N = arg min
θ

VN (θ) + δ|θ|2

VN (θ) =
1

N

N
∑

t=1

|y(t)− g(xt, θ)|2

δ|θ|2 penalizes excessive model flexibility. Could come in various forms.
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23Why the Least Squares Criterion?

■ Gauss!
■ Maximum Likelihood:

θ̂N = arg min
θ

1

N

N
∑

t=1

ℓ(y(t)− g(xt, θ), t)

ℓ(z, t) = − log p(z, t), p(z, t) is the probability density function (pdf) of e(t)

Gaussian distribution p(z, t) ∼ e−z2/2λt gives a quadratic criterion!

■ Other choices
• minθ maxt |y(t)− g(xt, θ)| (“unknown-but-bounded”)

• min
∑

|y(t)− g(xt, θ)|ǫ (ǫ-insensitive ℓ1 norm, “Support vector
machines”)
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24Linear Least squares

Note that if the parameterization g(x, θ) is linear in θ, the basic criterion
becomes quadratic in θ, and the minimum can be found analytically:

g(x, θ) = ϕ(x)T θ

VN (θ) =
∑

(y(t)− ϕ(xt)
T θ)2 = ‖Y − Φθ‖2

Y =col y(t), Φ = col ϕ(xt)
T

θ̂N = (ΦT Φ)−1ΦT Y
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25Choices in Parametric Methods

So, the choice of parameters within a parameterized model is not that
difficult: Fit to the observed data, by one criterion or another.
The choice of model size and model parameterization is a more interesting
issue.
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26Curve Fitting - Outline

■ Corrupted observations of function values

■ Model function parameterizations

■ Least squares fit and variants

■ Example of fit depending on model size

■ Statistical asymptotic analysis of parametric methods

■ Bias - Variance trade off
■ Nonparametric methods
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27Choice of Model Size: Example

Observed data with true curve
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Fit polynomials of different orders.
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28Choice of Model Size: Example

Example: Observed data with true curve
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Fit polynomials of different orders.
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29The Model Fit

The value of the criterion as a function of polynomial order. The fit between
the true curve and the model curve. The value of the criterion evaluated on a
fresh data set.
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30Model Curves

Blue: True curve. Green: 2nd order. Red: 4th order. Cyan: 10th order.
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31The Model Fit

The value of the criterion as a function of polynomial order. The fit between
the true curve and the model curve. The value of the criterion evaluated on a
fresh data set.
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32The Model Fit

The value of the criterion as a function of polynomial order. The fit between
the true curve and the model curve. The value of the criterion evaluated on a
fresh data set.
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33Choice of Size and Structure

This is a more difficult choice, and we need to understand how the model
error ĝN (x)− g0(x) depends on our choices.
Players:

■ The fit for a certain data set Z: VN (θ, Z) = 1

N

∑

(y(t)− g(xt, θ))
2

■ Estimation (training) data Ze. Validation (generalization) data Zv.

■ The empirical fit: VN (θ̂N , Ze) = minθ VN (θ, Ze) (blue curve)

■ The validation fit VN (θ̂N , Zv) (black curve)

■ The curve fit H(x, θ) = |g0(x)− g(x, θ)|2

• For given xt-sequence HN (θ) = 1

N

∑

H(xt, θ). HN (θ̂N ) was the red
curve.

■ The expected (typical) value of HN (θ̂N ) would be a suitable goodness
measure for the chosen parameterization.

System Identification: Curve Fitting
Lennart Ljung

Berkeley, 2005 AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET
COMMUNICATION SYSTEMS

34Testing the Model Parameterizations

■ Test by simulation: Monte-Carlo.

• Do not get fooled by the empirical fit VN (θ̂N , Ze)

• Need to understand how the empirical fit relates to HN (θ̂N )

■ Compute by calculations: Analysis
• “Analytical Monte-Carlo”: Assume certain properties of xk and e(k),

the compute (if possible) the error.

System Identification: Curve Fitting
Lennart Ljung

Berkeley, 2005 AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET
COMMUNICATION SYSTEMS

35Curve Fitting - Outline

■ Corrupted observations of function values

■ Model function parameterizations

■ Least squares fit and variants

■ Example of fit depending on model size

■ Statistical asymptotic analysis of parametric methods

■ Bias - Variance trade off
■ Nonparametric methods
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36Basic Tools for Analysis

For a stationary stochastic process e(·) under mild conditions

■ Law of large numbers (LLN)

• limN→∞
1

N

∑N
t=1

e(t) = Ee(t)

■ Central limit theorem (CLT)
If e(t) has zero mean:

• 1√
N

∑N
t=1

e(t) converges in distribution to the normal (Gaussian)

distribution with zero mean and variance λ = lim 1

N

∑N
t,s=1

Ee(t)e(s).

“ 1√
N

∑N
t=1

e(t) → N(0, λ)”
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37Asymptotic Analysis: Probabilistic Setup

“Analytical Monte-Carlo Experiment”: For a given g0(·) and a given sequence
xt collect the data

y(t) = g0(xt) + e(t), Ee(t)2 = λ

where the stochastic process e(·) obeys the LLN and CLT and has variance
λ. Use a parameterization g(x, θ). Form the estimate

θ̂N = arg min
1

N

N
∑

t=1

(y(t)− g(xt, θ))
2

ĝN (x) = g(x, θ̂N )

Then θ̂N and ĝN (x) are random variables with properties inherited from e.
What can be said about their distributions?
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38Asymptotic Analysis: Basic Facts – BIAS

Except for very simple parameterizations g(x, θ), the distribution of θ̂N cannot
be calculated (mainly due to “arg min”).
However its asymptotic distribution as N →∞ can be established:

■ E = averaging over xk: Ef(x) = limN→∞
1

N

∑N
k=1

f(xk)

■ H(θ) = limN→∞HN (θ) = E|g0(xt)− g(xt, θ)|2

■ Best possible model in parameterization: θ∗ = arg minH(θ)

■ If H(θ∗) = 0 we have a perfect curve fit, otherwise there be some bias in
the curve fit.

■ Main Result: limN→∞ θ̂N = θ∗
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39Proof: Formal Calculations

VN (θ) =
1

N

∑

(g0(xt) + e(t)− g(xt, θ))
2

=
1

N

∑

(g0(xt)− g(xt, θ))
2 +

1

N

∑

e2(t) +
2

N

∑

(g0(xt)− g(xt, θ))e(t)

LLN:
1

N

∑

(g0(xt)− g(xt, θ))e(t)→ 0 (uniformly in θ!)

so VN (θ)→ H(θ) as N →∞
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40Asymptotic Analysis: Basic Facts – VARIANCE

Suppose the limit model is correct: g(x, θ∗) ≈ g0(x) and e white noise with
variance λ:

■ The asymptotic distribution of
√

N(θ̂N − θ∗) is normal with zero mean
and covariance matrix P = λ[Eψ(t)ψT (t)]−1, ψ(t) = d

dθg(xt, θ
∗)

■ “Cov θ̂N ∼ λ
N

[Eψ(t)ψT (t)]−1”
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41Proof: Formal Calculations

0 = V ′

N
(θ̂N ) = V ′

N
(θ∗) + V ′′

N
(θ∗)(θ̂N − θ∗)

(θ̂N − θ∗) = −[V ′′

N
(θ∗)]−1V ′

N
(θ∗)

V ′

N
(θ) =

2

N

∑

(y(t)− g(xt, θ))g
′(xt, θ)

V ′

N
(θ∗) =

2

N

∑

e(t)ψ(t)

LLN: V ′′

N
(θ∗) =

2

N

∑

ψ(t)ψT (t) +
2

N

∑

e(t)g′′(xt, θ
∗)→ 2EψψT

CLT:
1
√

N

∑

e(t)ψ(t)→ N(0, λEψψT )

√
N(θ̂N − θ∗)→ N(0, λ[EψψT ]−1)
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42A Remarkable Observation

Recall the curve fit H(x, θ) = |g0(x)− g(x, θ)|2, H(θ) = limN→∞
1

N

∑

H(xt, θ)

(For the x-sequence of the estimation data.)
H(θ̂N ) is a random variable, since the estimate depends on the e-sequence,
and

EH(θ̂N ) = H(θ∗) + λ
d

N

where d is the number of estimated parameters independently of the
parameterization!
(Proof: .... )
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43Proof: Formal Calculations

g0(x) = g(x, θ∗) ( assumption )

H(θ̂N ) = H(θ∗) + H′(θ∗)(θ̂N − θ∗) +
1

2
(θ̂N − θ∗)T H′′(θ∗)(θ̂N − θ∗)

H′(θ∗) = 0 (θ∗ minimizes H(θ))

H′(θ) =
2

N

∑

(g0(xt)− g(xt, θ))g
′(xt, θ)

T

H′′(θ∗) =
2

N

∑

g′(xt, θ
∗)g′(xt, θ

∗)T = 2Eψ(t)ψT (t)

EH(θ̂N ) = H(θ∗) + E
1

2
(θ̂N − θ∗)T H′′(θ∗)(θ̂N − θ∗)

Etr [
1

2
(θ̂N − θ∗)T H′′(θ∗)(θ̂N − θ∗)] = Etr [

1

2
H′′(θ∗)(θ̂N − θ∗)(θ̂N − θ∗)T ]

= tr
1

2
H′′(θ∗)Cov θ̂N =

λ

N
tr

[

(EψψT )(EψψT )−1

]

= d
λ

N
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44The Regularized Case

The variance is reduced by regularization, at the price of some bias.
In the previous result, the number of parameters d is replaced by deff :
Effective dimension of θ ≈ Number of eigenvalues of the Hessian of V̄ that
are larger than δ (the regularization parameter). Note: deff ≤ d = dimθ

System Identification: Curve Fitting
Lennart Ljung

Berkeley, 2005 AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET
COMMUNICATION SYSTEMS

45Curve Fitting - Outline

■ Corrupted observations of function values

■ Model function parameterizations

■ Least squares fit and variants

■ Example of fit depending on model size

■ Statistical asymptotic analysis of parametric methods

■ Bias - Variance trade off
■ Nonparametric methods
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46Choice of Size: Basic Trade-off

■ H(θ) = lim 1

N

∑

t |g0(xt)− g(xt, θ)|2,
EH(θ̂N ) ≈ H(θ∗) + λ

N d

■ A good model size is one that minimizes this expression

■ H(θ∗) is the best possible fit that can be achieved within the
parameterization. A smaller value of this means less bias. Thus, more
parameters gives a more flexible model parameterization and hence less
bias.

■ More parameters lead however to higher variance.

■ The model size is thus a bias – variance trade-off.
■ Note that this balance is usually reached with a non-zero H(θ∗), that is,

it is normal to accept bias. Also a larger size model can be used when
more data are available (larger N ).

■ If a regularized criterion is used, the size of the regularization parameter
δ can also be used to control the flexibility of the parametrization.
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47Choice of Type (basis functions)

Generally speaking, the parameterization should be such that useful flexibility
is achieved with as few parameters as possible:
⇒
Grey box models

■ Tunable or Non-tunable Basis functions:
g(x, θ) =

∑n
k=1

αkfk(x, θ)

• + More flexible structure = Less parameters
• − More work to minimize (non-tunable = Linear Least Squares)

■ Use (number of parameters) d or (regularization parameter) δ as a
size-tuning knob
• When no natural ordering of structures: Easier to use δ.
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48Curve Fitting - Outline

■ Corrupted observations of function values

■ Model function parameterizations

■ Least squares fit and variants

■ Example of fit depending on model size

■ Statistical asymptotic analysis of parametric methods

■ Bias - Variance trade off
■ Nonparametric methods
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49Non-Parametric Methods

A simple idea is to locally smooth the noisy observations of the function
values:

ĝN (x) =

N
∑

k=1

C(x, xk)y(k)

N
∑

k=1

C(x, xk) = 1 ∀x

Often C(x, xk) = c̃(x− xk)/λk and c̃(r) = 0 for |r| > β, β = the “bandwidth”

These are known as “kernel methods” in statistics.
If C(x, xt) is chosen so that it is non-zero (= 1/k) only for k observed values
xt around x, this is the k-nearest neighbor method.
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50Example

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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C(x, xk) = U((x− xk)/β); U(·) the unit pulse. β = 0.25.

Cyan dots: Computed for x = −1.75 : 0.5 : 1.75
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51Analysis of Non-parametric Methods

εN (x) = ĝN (x)− g0(x) =

N
∑

k=1

C(x, xk)y(k)− g0(x) =

N
∑

k=1

C(x, xk)(e(k) + [g0(xk)− g0(x)])

EεN (x) =

N
∑

k=1

C(x, xk)[g0(xk)− g0(x)]

Var εN (x) =

N
∑

k=1

C2(x, xk)λ (for white e with variance λ)
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52The Trade-off

Think of C(x, xk) = U((x− xk)/β) where U is the unit pulse:

C(x, xk) =

{

1

Nk

if |x− xk| ≤ β
0 else

Nk = number of xk in the bin |x− xk| ≤ β

MSE: H(x) =
N

∑

k=1

C2(x, xk)λ +

[

N
∑

k=1

C(x, xk)[g0(xk)− g0(x)]

]2

≈

1

Nk
λ + variation of g0(x) over |x− xk| ≤ β

Trade-off: Want β to be small for small bias. Want β to be large for small
variance. The best choice depends on the nature of g0.
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53Parametric and Nonparametric Methods

Consider the parametric method using unit pulses U(x):

g(x, θ) =
n

∑

k=1

θkU((x− γk)/β) β and γk given γk − γk−1 = β

N
∑

t=1

(y(t)− g(xt, θ))
2 =

n
∑

k=1

∑

t:|xt−γk|<β

(y(t)− g(xt, θ))
2 =

n
∑

k=1

∑

t:|xt−γk|<β

(y(t)− θk)2 ⇒ θ̂k =
1

Nk

∑

t:|xt−γk|<β

y(t)

This means that ĝ(γk) = θ̂k.
If we use a nonparametric method to estimate g at x = γk with
C(x, xk) = 1

Nk

U((x− xk)/β) we obtain the same estimate.
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54Summary Theme 1

■ We have used the simple case of curve-fitting to illustrate basic issues,
frameworks and techniques for linear and nonlinear system identification

■ Parametric – Nonparametric methods

■ Choice of model parametrization, model size and parameter values.

■ Parameter values easy: Some version of least squares fit.

■ Basic asymptotic properties: θ̂N → θ∗, best possible approximation
available in the parameterization (for the used xt-sequence)

■
√

N(θ̂N − θ∗) ∼ N(0, P ), P = λ[Eψ(t)ψT (t)]−1 (Normal distribution)

■ Choice of parametric model structure guided by bias-variance trade off
(number of parameters)

■ Choice of nonparametric method guided by bias-variance trade off
(band-with of the kernel)


