

## **Curve Fitting - Outline**

9

- Corrupted observations of function values
- Model function parameterizations
- Least squares fit and variants
- Example of fit depending on model size
- Statistical asymptotic analysis of parametric methods
- Bias Variance trade off
- Nonparametric methods

- Random (stochastic) variable, Expectation, Variance
- Independent random variables, random processes
- Law of Large Numbers, Central Limit Theorem

System Identification: Curve Fitting Lennart Ljung System Identification: Curve Fitting Lennart Ljung Berkelev, 2005 Berkeley, 2005 **Curve Fitting II: Several Regressors Curve Fitting** Most basic ideas from system identification, choice of model structures and model sizes are brought out by considering the basic curve fitting problem "Surface fitting": from elementary statistics. Unknown function  $g_0(x)$ . For a sequence of x-values (regressors)  $\{x_1, x_2, \ldots, x_N\}$  (that may or may not be chosen by the user) observe the corresponding function values with some noise:  $y(k) = g_0(x_k) + e(k)$ ■ The floor is formed by the regressors *x*, and the upright wall is the Construct an estimate  $\hat{g}_N(x)$  from  $\{y(1), x_1, y(2), x_2, \dots, y(N), x_N\}$ function value  $y = g_0(x)$ . AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET System Identification: Curve Fitting Lennart Ljung Berkeley, 2005 System Identification: Curve Fitting Lennart Ljung Berkeley, 2005 The Curve-fitting problem **Curve Fitting - Outline**  Corrupted observations of function values  $y(k) = g_0(x_k) + e(k)$  Model function parameterizations Construct an estimate  $\hat{g}_N(x)$  from  $\{y(1), x_1, y(2), x_2, \dots, y(N), x_N\}$ The error  $\hat{g}_N(x) - g_0(x)$  should be "as small as possible" Least squares fit and variants Approaches: Example of fit depending on model size **Parametric:** Construct  $\hat{g}_N(x)$  by searching over a parameterized set of Statistical asymptotic analysis of parametric methods candidate functions. Bias - Variance trade off Non-parametric: Construct  $\hat{g}_N(x)$  by smoothing over (carefully chosen Nonparametric methods subsets of) y(k)



**3** Type of function family (Basis functions  $f_k(x, \theta)$ )

**2** Size of model (*n* or dim  $\theta$ )

1 The parameter values

System Identification: Curve Fitting Lennart Ljung

Berkeley, 2005 AUTOMATIC CC COMMUNICATION SY LINKÖPINGS UNIVE

- Corrupted observations of function values
- Model function parameterizations
  - Least squares fit and variants
- Example of fit depending on model size
- Statistical asymptotic analysis of parametric methods
- Bias Variance trade off

Nonparametric methods

System Identification: Curve Fitting Lennart Ljung

Parametric Curve Fitting: Choice of parameters Parametric Curve Fitting: Choice of parameters  $y(t) = g_0(x_t) + e(t)$  $y(t) = g_0(x_t) + e(t)$ Least Squares: Weighted Least Squares:  $\hat{\theta}_N = \arg\min_{\theta} V_N(\theta)$  $\hat{\theta}_N = \arg\min_{\theta} V_N(\theta)$  $V_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} \qquad |y(t) - g(x_t, \theta)|^2 / \lambda_t$  $V_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} \qquad |y(t) - g(x_t, \theta)|^2$  $\lambda_t$  Proportional to 'reliability' of  $t{:}{\rm th}\ {\rm measurement}\ \sim Ee^2(t)$ AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET System Identification: Curve Fitting Lennart Ljung Berkeley, 2005 System Identification: Curve Fitting Lennart Ljung Berkeley, 2005 AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS LINIVERSITET Parametric Curve Fitting: Choice of parameters Parametric Curve Fitting: Choice of parameters  $y(t) = g_0(x_t) + e(t)$  $y(t) = g_0(x_t) + e(t)$ Weighted Least Squares: (Regularized) Least squares:  $\hat{\theta}_N = \arg\min_{\theta} V_N(\theta)$  $\hat{\theta}_N = \arg\min_{\theta} V_N(\theta) + \delta |\theta|^2$  $V_N(\theta) = \frac{1}{N} \sum_{t=1}^{N} |y(t) - g(x_t, \theta)|^2$  $V_N(\theta) = \frac{1}{N} \sum_{t=1}^N \frac{L(x_t)}{|y(t) - g(x_t, \theta)|^2} / \lambda_t$  $\lambda_t$  Proportional to 'reliability' of t:th measurement  $\sim Ee^2(t)$ 

Berkeley, 2005 AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

A extra weighting  $L(x_t)$  could also reflect the 'relevance' of the point  $x_t$ .

#### ('Focus in fit')

| System Identification: Curve Fitting<br>Lennart Ljung | Berkeley, 2005 | AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNIVERSITET | System Identification: Curve Fitting<br>Lennart Ljung | Berkeley, 2005 | AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNIVERSITET |
|-------------------------------------------------------|----------------|----------------------------------------------------------------------|-------------------------------------------------------|----------------|----------------------------------------------------------------------|
| Why the Least Squares Criterion?                      |                |                                                                      | Linear Least squares                                  |                |                                                                      |

- Gauss!
- Maximum Likelihood:

$$\hat{\theta}_N = \arg\min_{\theta} \frac{1}{N} \sum_{t=1}^N \ell(y(t) - g(x_t, \theta), t)$$

- $\ell(z,t) = -\log p(z,t), \quad p(z,t)$  is the probability density function (pdf) of e(t)
- Gaussian distribution  $p(z,t) \sim e^{-z^2/2\lambda_t}$  gives a quadratic criterion!
- Other choices
  - $\min_{\theta} \max_{t} |y(t) g(x_t, \theta)|$  ("unknown-but-bounded")
  - $\min \sum |y(t) g(x_t, \theta)|_{\epsilon}$  ( $\epsilon$ -insensitive  $\ell_1$  norm, "Support vector machines")

Note that if the parameterization  $g(x, \theta)$  is linear in  $\theta$ , the basic criterion becomes quadratic in  $\boldsymbol{\theta},$  and the minimum can be found analytically:  $( T_{0})$ 

 $\delta |\theta|^2$  penalizes excessive model flexibility. Could come in various forms.

$$\begin{split} g(x,\theta) &= \varphi(x)^{T} \theta \\ V_{N}(\theta) &= \sum (y(t) - \varphi(x_{t})^{T} \theta)^{2} = \|Y - \Phi\theta\|^{2} \\ Y &= \operatorname{col} y(t), \Phi = \operatorname{col} \varphi(x_{t})^{T} \\ \hat{\theta}_{N} &= (\Phi^{T} \Phi)^{-1} \Phi^{T} Y \end{split}$$

26

- Corrupted observations of function values
- Model function parameterizations
- Least squares fit and variants
- Example of fit depending on model size
- Statistical asymptotic analysis of parametric methods
- Bias Variance trade off
- Nonparametric methods

So, the choice of parameters within a parameterized model is not that difficult: Fit to the observed data, by one criterion or another. The choice of model size and model parameterization is a more interesting issue.

 

 System Identification: Curve Fitting Lennart Ljung
 Berkeley, 2005
 Autowatic contract Communications strates Lennart Ljung
 System Identification: Curve Fitting Lennart Ljung
 Berkeley, 2005
 Autowatic contract Communications strates Lennart Ljung

 Choice of Model Size: Example
 27
 Choice of Model Size: Example
 28





Fit polynomials of different orders.

System Identification: Curve Fitting Berkeley, 2005 AutOMATIC CONTROL Lennart Ljung System Identification: Curve Fitting Berkeley, 2005 AutOMATIC CONTROL Lennart Ljung Lennart Ljung System Identification: Curve Fitting Berkeley, 2005 Automatic Control Communication systems I unkdowes unversiter I unversiter I unkdowes unversiter I unkdowes unversiter I unkdowes unversiter I unvers

#### The value of the criterion as a function of polynomial order.



# Blue: True curve. Green: 2nd order. Red: 4th order. Cyan: 10th order.



31 The Model Fit

\*

System Identification: Curve Fitting Lennart Ljung

The value of the criterion as a function of polynomial order. The fit between the true curve and the model curve. The value of the criterion evaluated on a fresh data set.



The value of the criterion as a function of polynomial order. The fit between the true curve and the model curve.



System Identification: Curve Fitting Lennart Ljung

The Model Fit

System Identification: Curve Fitting Lennart Ljung Berkelev, 2005



| This is a more difficult choice, and we need to underror $\hat{g}_N(x) - g_0(x)$ depends on our choices.<br>Players:<br>The fit for a certain data set $Z: V_N(\theta, Z) = \frac{1}{N}$<br>Estimation (training) data $Z_e$ . Validation (generic estimation) (training) data $Z_e$ . Validation ( $Q_e$ estimates the empirical fit: $V_N(\hat{\theta}_N, Z_e) = \min_{\theta} V_N(\theta, Z_e)$<br>The validation fit $V_N(\hat{\theta}_N, Z_v)$ (black curve)<br>The curve fit $H(x, \theta) =  g_0(x) - g(x, \theta) ^2$<br>• For given $x_t$ -sequence $H_N(\theta) = \frac{1}{N} \sum H(x)$ curve.<br>The expected (typical) value of $H_N(\hat{\theta}_N)$ would measure for the chosen parameterization. | lerstand how the model<br>$\sum (y(t) - g(x_t, \theta))^2$ eralization) data $Z_v$ .<br>) (blue curve)<br>$x_t, \theta$ ). $H_N(\hat{\theta}_N)$ was the red<br>d be a suitable goodness | <ul> <li>Test by simulation: Monte-Carlo.</li> <li>Do not get fooled by the empirical fit V<sub>N</sub>(\(\heta\)<sub>N</sub>, Z<sub>e</sub>)</li> <li>Need to understand how the empirical fit relates to H<sub>N</sub>(\(\heta\)<sub>N</sub>)</li> <li>Compute by calculations: Analysis <ul> <li>"Analytical Monte-Carlo": Assume certain properties of x<sub>k</sub> and e(k), the compute (if possible) the error.</li> </ul> </li> </ul>                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iystem Identification: Curve Fitting<br>ennart Ljung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Berkeley, 2005 AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNIVERSITET                                                                                                      | System Identification: Curve Fitting Berkeley, 2005 COMMACT CONTROL<br>Lennart Ljung Derkeley, 2005 Lundows Juwe Sater                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Curve Fitting - Outline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35                                                                                                                                                                                       | Basic Tools for Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <ul> <li>Corrupted observations of function values</li> <li>Model function parameterizations</li> <li>Least squares fit and variants</li> <li>Example of fit depending on model size</li> <li>Statistical asymptotic analysis of parametric r</li> <li>Bias - Variance trade off</li> <li>Nonparametric methods</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nethods                                                                                                                                                                                  | For a stationary stochastic process $e(\cdot)$ under mild conditions<br>• Law of large numbers (LLN)<br>• $\lim_{N\to\infty} \frac{1}{N} \sum_{t=1}^{N} e(t) = Ee(t)$<br>• Central limit theorem (CLT)<br>If $e(t)$ has zero mean:<br>• $\frac{1}{\sqrt{N}} \sum_{t=1}^{N} e(t)$ converges in distribution to the normal (Gaussian)<br>distribution with zero mean and variance $\overline{\lambda} = \lim_{n \to \infty} \frac{1}{N} \sum_{t,s=1}^{N} Ee(t)e(s)$ .<br>" $\frac{1}{\sqrt{N}} \sum_{t=1}^{N} e(t) \to N(0, \overline{\lambda})$ " |
| iystem Identification: Curve Fitting<br>ennart Ljung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Berkeley, 2005 AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNIVERSITE                                                                                                       | System Identification: Curve Fitting Berkeley, 2005 Automatic control.<br>Lennart Ljung Lennart Ljung                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Asymptotic Analysis: Probabilisti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | c Setup <sub>37</sub>                                                                                                                                                                    | Asymptotic Analysis: Basic Facts – BIAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| "Analytical Monte-Carlo Experiment": For a given $g_{t}$ collect the data $y(t) = g_0(x_t) + e(t),  Ee(t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $g_0(\cdot)$ and a given sequence<br>$\lambda^2 = \lambda$                                                                                                                               | Except for very simple parameterizations $g(x, \theta)$ , the distribution of $\hat{\theta}_N$ cannot be calculated (mainly due to "arg min").<br>However its asymptotic distribution as $N \to \infty$ can be established:<br>$\overline{E}$ = averaging over $x_k$ : $\overline{E}f(x) = \lim_{N \to \infty} \frac{1}{N} \sum_{k=1}^N f(x_k)$                                                                                                                                                                                                  |
| where the stochastic process $e(\cdot)$ obeys the LLN a $\lambda$ . Use a parameterization $g(x, \theta)$ . Form the estima $\hat{\theta}_N = \arg\min\frac{1}{N}\sum_{t=1}^N (y(t) - g_t)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and CLT and has variance $a_{t}(x_{t},\theta))^{2}$                                                                                                                                      | <ul> <li>H(θ) = lim<sub>N→∞</sub> H<sub>N</sub>(θ) = E g<sub>0</sub>(x<sub>t</sub>) - g(x<sub>t</sub>, θ) <sup>2</sup></li> <li>Best possible model in parameterization: θ* = arg min H(θ)</li> <li>If H(θ*) = 0 we have a perfect curve fit, otherwise there be some bias in the curve fit.</li> </ul>                                                                                                                                                                                                                                          |
| $\hat{g}_N(x) = g(x, \hat{\theta}_N)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          | ■ Main Result: $\lim_{N 	o \infty} \hat{	heta}_N = 	heta^*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Then $\hat{\theta}_N$ and $\hat{g}_N(x)$ are random variables with prop<br>What can be said about their distributions?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | perties inherited from $e$ .                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| iystem Identification: Curve Fitting<br>ennart Ljung                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Berkeley, 2005 AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNIVERSITET                                                                                                      | System Identification: Curve Fitting Berkeley, 2005 Aurountic control,<br>Lennart Ljung Berkeley, 2005 Luxdowssuversatel                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Proof: Formal Calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39                                                                                                                                                                                       | Asymptotic Analysis: Basic Facts – VARIANCE 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\begin{split} V_N(\theta) &= \frac{1}{N} \sum \left( g_0(x_t) + e(t) - g(x_t, \theta) \right)^2 \\ &= \frac{1}{N} \sum \left( g_0(x_t) - g(x_t, \theta) \right)^2 + \frac{1}{N} \sum e^2(t) + \frac{2}{N} \\ \\ LLN: \ \frac{1}{N} \sum \left( g_0(x_t) - g(x_t, \theta) \right) e(t) \to 0  \text{(uniformly in the set of $V_N(\theta)$)} \\ &\text{so } V_N(\theta) \to H(\theta) \text{ as } N \to \infty \end{split}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\frac{2}{\sqrt{t}} \sum \left( g_0(x_t) - g(x_t, \theta) \right) e(t)$                                                                                                                  | Suppose the limit model is correct: $g(x, \theta^*) \approx g_0(x)$ and $e$ white noise with variance $\lambda$ :<br>• The asymptotic distribution of $\sqrt{N}(\hat{\theta}_N - \theta^*)$ is normal with zero mean and covariance matrix $P = \lambda [\overline{E}\psi(t)\psi^T(t)]^{-1}$ , $\psi(t) = \frac{d}{d\theta}g(x_t, \theta^*)$<br>• "Cov $\hat{\theta}_N \sim \frac{\lambda}{M} [\overline{E}\psi(t)\psi^T(t)]^{-1}$ "                                                                                                             |

 $0 = V_N'(\hat{\theta}_N) = V_N'(\theta^*) + V_N''(\theta^*)(\hat{\theta}_N - \theta^*)$ 

 $\mathsf{LLN:} \, V_N''(\theta^*) = \frac{2}{N} \sum \psi(t) \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(x_t, \theta^*) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(t) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(t) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) g''(t) \to 2\overline{E} \psi \psi^T(t) + \frac{2}{N} \sum e(t) \psi^T(t) + \frac{2}{N} \sum e(t) \psi \psi^T(t)$ 

 $(\hat{\theta}_N - \theta^*) = -[V_N^{\prime\prime}(\theta^*)]^{-1}V_N^{\prime}(\theta^*)$ 

 $V_N'(\theta^*) = \frac{2}{N} \sum e(t)\psi(t)$ 

 $V_N'(\theta) = \frac{2}{N} \sum (y(t) - g(x_t, \theta))g'(x_t, \theta)$ 

CLT:  $\frac{1}{\sqrt{N}} \sum e(t)\psi(t) \to N(0, \lambda \overline{E}\psi\psi^T)$ 

Recall the curve fit  $H(x,\theta) = |g_0(x) - g(x,\theta)|^2$ ,  $H(\theta) = \lim_{N \to \infty} \frac{1}{N} \sum H(x_t,\theta)$ (For the x-sequence of the estimation data.)

 $H(\hat{\theta}_N)$  is a random variable, since the estimate depends on the *e*-sequence, and

$$EH(\hat{\theta}_N) = H(\theta^*) + \lambda \frac{d}{N}$$

where d is the number of estimated parameters independently of the parameterization! (Proof: .... )

 $\sqrt{N}(\hat{\theta}_N - \theta^*) \to N(0, \lambda [\overline{E}\psi\psi^T]^{-1})$ AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET System Identification: Curve Fitting Lennart Ljung Berkelev, 2005 Berkeley, 2005 System Identification: Curve Fitting Lennart Ljung The Regularized Case **Proof: Formal Calculations**  $g_0(x) = g(x, \theta^*)$  (assumption)  $H(\hat{\theta}_N) = H(\theta^*) + H'(\theta^*)(\hat{\theta}_N - \theta^*) + \frac{1}{2}(\hat{\theta}_N - \theta^*)^T H''(\theta^*)(\hat{\theta}_N - \theta^*)$  $H'(\theta^*) = 0 \quad (\theta^* \text{ minimizes } H(\theta))$ The variance is reduced by regularization, at the price of some bias.  $H'(\theta) = \frac{2}{N} \sum \left( g_0(x_t) - g(x_t, \theta) \right) g'(x_t, \theta)^T$ In the previous result, the number of parameters d is replaced by  $d_{eff}$ : Effective dimension of  $\theta \approx$  Number of eigenvalues of the Hessian of  $\bar{V}$  that  $H''(\theta^*) = \frac{2}{N} \sum g'(x_t, \theta^*) g'(x_t, \theta^*)^T = 2\overline{E}\psi(t)\psi^T(t)$ are larger than  $\delta$  (the regularization parameter). Note:  $d_{eff} \leq d = \dim \theta$  $EH(\hat{\theta}_N) = H(\theta^*) + E\frac{1}{2}(\hat{\theta}_N - \theta^*)^T H''(\theta^*)(\hat{\theta}_N - \theta^*)$  $\operatorname{Etr} \left[\frac{1}{2}(\hat{\theta}_N - \theta^*)^T H^{\prime\prime}(\theta^*)(\hat{\theta}_N - \theta^*)\right] = \operatorname{Etr} \left[\frac{1}{2}H^{\prime\prime}(\theta^*)(\hat{\theta}_N - \theta^*)(\hat{\theta}_N - \theta^*)^T\right]$  $= \operatorname{tr} \frac{1}{2} H^{\prime\prime}(\theta^*) \operatorname{Cov} \hat{\theta}_N = \frac{\lambda}{N} \operatorname{tr} \left[ (\overline{E} \psi \psi^T) (\overline{E} \psi \psi^T)^{-1} \right] = d \frac{\lambda}{N}$ AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET System Identification: Curve Fitting Lennart Ljung Berkeley, 2005 System Identification: Curve Fitting Lennart Ljung Berkeley, 2005 **Curve Fitting - Outline** Choice of Size: Basic Trade-off Corrupted observations of function values  $= H(\theta) = \lim \frac{1}{N} \sum_{t} |g_0(x_t) - g(x_t, \theta)|^2,$  Model function parameterizations  $EH(\hat{\theta}_N) \approx H(\theta^*) + \frac{\lambda}{N}d$  Least squares fit and variants A good model size is one that minimizes this expression Example of fit depending on model size •  $H(\theta^*)$  is the best possible fit that can be achieved within the parameterization. A smaller value of this means less bias. Thus, more Statistical asymptotic analysis of parametric methods parameters gives a more flexible model parameterization and hence less Bias - Variance trade off bias. Nonparametric methods More parameters lead however to higher variance. The model size is thus a bias – variance trade-off. Note that this balance is usually reached with a non-zero  $H(\theta^*)$ , that is, it is normal to accept bias. Also a larger size model can be used when more data are available (larger N). If a regularized criterion is used, the size of the regularization parameter  $\delta$  can also be used to control the flexibility of the parametrization. System Identification: Curve Fitting Lennart Ljung System Identification: Curve Fitting Lennart Ljung Berkelev, 2005 Berkelev, 2005 **Curve Fitting - Outline** Choice of Type (basis functions) Generally speaking, the parameterization should be such that useful flexibility Corrupted observations of function values

is achieved with as few parameters as possible:

## Grey box models

Tunable or Non-tunable Basis functions:

- $g(x,\theta) = \sum_{k=1}^{n} \alpha_k f_k(x,\theta)$
- + More flexible structure = Less parameters
- More work to minimize (non-tunable = Linear Least Squares)
- Use (number of parameters) d or (regularization parameter)  $\delta$  as a size-tuning knob
  - When no natural ordering of structures: Easier to use  $\delta$ .

- Model function parameterizations
- Least squares fit and variants
- Example of fit depending on model size
- Statistical asymptotic analysis of parametric methods
- Bias Variance trade off
- Nonparametric methods

#### A simple idea is to locally smooth the noisy observations of the function values:

$$\hat{g}_N(x) = \sum_{k=1}^N C(x, x_k) y(k)$$
$$\sum_{k=1}^N C(x, x_k) = 1 \,\forall x$$

Often  $C(x, x_k) = \tilde{c}(x - x_k)/\lambda_k$  and  $\tilde{c}(r) = 0$  for  $|r| > \beta$ ,  $\beta$  = the "bandwidth"

These are known as "kernel methods" in statistics. If  $C(x, x_t)$  is chosen so that it is non-zero (= 1/k) only for k observed values  $x_t$  around x, this is the k-nearest neighbor method.

| System Identification: Curve Fitting<br>Lennart Ljung | Berkeley, 2005 | AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNVERSITET | System Identification: Curve Fitting<br>Lennart Ljung | Berkeley, 2005 | AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNIVERSITET |
|-------------------------------------------------------|----------------|---------------------------------------------------------------------|-------------------------------------------------------|----------------|----------------------------------------------------------------------|
| Analysis of Non-parametric Meth                       | ods            |                                                                     | The Trade-off                                         |                |                                                                      |

## Analysis of Non-parametric Methods

$$\begin{split} \varepsilon_N(x) &= \hat{g}_N(x) - g_0(x) = \sum_{k=1}^N C(x, x_k) y(k) - g_0(x) = \\ &\sum_{k=1}^N C(x, x_k) (e(k) + [g_0(x_k) - g_0(x)]) \\ &E \varepsilon_N(x) = \sum_{k=1}^N C(x, x_k) [g_0(x_k) - g_0(x)] \\ &\text{Var } \varepsilon_N(x) = \sum_{k=1}^N C^2(x, x_k) \lambda \quad \text{(for white } e \text{ with variance } \lambda) \end{split}$$

Think of  $C(x, x_k) = U((x - x_k)/\beta)$  where U is the unit pulse:

$$\begin{split} C(x,x_k) &= \left\{ \begin{array}{c} \frac{1}{N_k} \text{ if } |x-x_k| \leq \beta \\ 0 \quad \text{else} \\ N_k &= \text{number of } x_k \text{ in the bin } |x-x_k| \leq \beta \\ \end{array} \right. \end{split}$$

$$\begin{split} \text{MSE:} \quad H(x) &= \sum_{k=1}^{N} C^2(x, x_k) \lambda + \left[ \sum_{k=1}^{N} C(x, x_k) [g_0(x_k) - g_0(x)] \right]^2 \approx \\ & \frac{1}{N_{\text{b}}} \lambda + \text{variation of } g_0(x) \text{ over } |x - x_k| \leq \beta \end{split}$$

Want  $\beta$  to be small for small bias. Want  $\beta$  to be large for small variance. The best choice depends on the nature of  $g_0$ 

|                                                       |                |                                                                      |                                                       | <b>1 1 1 1 1 1 1 1 1 1</b> |                                                                      |
|-------------------------------------------------------|----------------|----------------------------------------------------------------------|-------------------------------------------------------|----------------------------|----------------------------------------------------------------------|
| System Identification: Curve Fitting<br>Lennart Ljung | Berkeley, 2005 | AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNIVERSITET | System Identification: Curve Fitting<br>Lennart Ljung | Berkeley, 2005             | AUTOMATIC CONTROL<br>COMMUNICATION SYSTEMS<br>LINKÖPINGS UNIVERSITET |
|                                                       |                |                                                                      |                                                       |                            |                                                                      |

## **Parametric and Nonparametric Methods**

Consider the parametric method using unit pulses U(x):

$$\begin{split} g(x,\theta) &= \sum_{k=1}^{n} \theta_k U((x-\gamma_k)/\beta) \quad \beta \text{ and } \gamma_k \text{ given } \gamma_k - \gamma_{k-1} = \beta \\ &\sum_{t=1}^{N} (y(t) - g(x_t,\theta))^2 = \sum_{k=1}^{n} \sum_{t:|x_t - \gamma_k| < \beta} (y(t) - g(x_t,\theta))^2 = \\ &\sum_{k=1}^{n} \sum_{t:|x_t - \gamma_k| < \beta} (y(t) - \theta_k)^2 \Rightarrow \hat{\theta}_k = \frac{1}{N_k} \sum_{t:|x_t - \gamma_k| < \beta} y(t) \end{split}$$

This means that  $\hat{g}(\gamma_k) = \hat{\theta}_k$ .

If we use a nonparametric method to estimate g at  $x = \gamma_k$  with  $C(x,x_k) = \frac{1}{N_k} U((x-x_k)/\beta)$  we obtain the same estimate.

System Identification: Curve Fitting Lennart Ljung

Berkelev, 2005

We have used the simple case of curve-fitting to illustrate basic issues, frameworks and techniques for linear and nonlinear system identification

- Parametric Nonparametric methods
- Choice of model parametrization, model size and parameter values.
- Parameter values easy: Some version of least squares fit.
- Basic asymptotic properties:  $\hat{\theta}_N \rightarrow \theta^*$ , best possible approximation available in the parameterization (for the used  $x_t$ -sequence)
- $\sqrt{N}(\hat{\theta}_N \theta^*) \sim N(0, P), P = \lambda [E\psi(t)\psi^T(t)]^{-1}$  (Normal distribution)
- Choice of parametric model structure guided by bias-variance trade off (number of parameters)
- Choice of nonparametric method guided by bias-variance trade off (band-with of the kernel)

System Identification: Curve Fitting Lennart Ljung

Berkeley, 2005



**Summary Theme 1** 

Example