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Data from Gripen Questions

= How do the control surface angles affect the pitch rate?
= Aerodynamical derivatives?

= How to use the information in flight data?
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Pitch rate, Canard,
Elevator, Leading Edge Flap
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Aircraft Dynamics: From input 1 Using all inputs

y(t) pitch rate at time t. u, (t) canard angle at time ¢. Try

uy canard angle; w» Elevator angle; ug Leading edge flap;

y(t) = —ary(t — T') — agy(t — 2T") — asy(t — 3T) — asy(t — 4T)
+ by (t — T) + byus (t — 2T) + buy (t — 3T) + byuy (t —4T) T = 1/60s. y(t) = —ary(t = T) — agy(t — 2T) — agy(t — 3T) — asy(t — 4T) + bjuy (¢t = T) + ...
+bjuy(t —AT) + ...+ bug(t —T) + ...+ bius(t —4T) T =1/60s.
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Dashed line: Actual Pitch rate. Solid line: 10 step ahead predicted pitch rate, 400100 120 1010180
based on the fourth order model from canard angle only.
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System ldentification: Issues Course Outline: Themes

= Select a class of candidate models 1. The basic questions and (statistical) tools illustrated for a simple curve
m Select a member in this class using the observed data fitting problem.
= Evaluate the quality of the obtained model 2. Linear models: The model structures, Special techniques for linear

models. Time and frequency domain data.
3. Software session with hands-on experience
4. Nonlinear models: Parameterizations, problems and techniques.

= Design the experiment so that the model will be “good”.

5. Some practical issues in system identification: Experiment design and
data quality.
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Curve Fitting - Outline Background Terms

= Corrupted observations of function values = Random (stochastic) variable, Expectation, Variance
= Model function parameterizations = Independent random variables, random processes
= Least squares fit and variants = Law of Large Numbers, Central Limit Theorem

= Example of fit depending on model size
= Statistical asymptotic analysis of parametric methods

= Bias - Variance trade off
= Nonparametric methods
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Curve Fitting Curve Fitting II: Several Regressors

Most basic ideas from system identification, choice of model structures and
model sizes are brought out by considering the basic curve fitting problem “Surface fitting”:
from elementary statistics.

Unknown function g (z). For a sequence of z-values (regressors)
{z1,22,...,zn} (that may or may not be chosen by the user) observe the
corresponding function values with some noise:

y(k) = go(wr) + e(k) _ , ,
» The floor is formed by the regressors x, and the upright wall is the

Construct an estimate gy (z) from {y(1), z1,%(2),z2,...,y(N),zx} function value y = go(z).
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The Curve-fitting problem Curve Fitting - Outline

y(k) = go(zx) + e(k) = Corrupted observations of function values

. Model function parameterizations
Construct an estimate gy (z) from {y(1), z1,y(2),z2,...,y(N),zn} " unction p tzal

The error gy (z) — go(z) should be “as small as possible” = Least squares fit and variants
Approaches: = Example of fit depending on model size
= Parametric: Construct g (x) by searching over a parameterized set of = Statistical asymptotic analysis of parametric methods

candidate functions.

= Non-parametric: Construct gy (z) by smoothing over (carefully chosen
subsets of) y(k)

= Bias - Variance trade off
= Nonparametric methods
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Parametric Approach The Choices in the Parametric case

Search for the function g, in a parameterized family of functions:
9(2,0) = > anfi(x,0k), 0={on, 0k k=1,...,n}
k=1

= Grey box/Black box
= Local/Global basis functions
Examples:  g(z,0) = 61 + 0oz + ... + Oz

014 O+ ...+ Ozt
1+ 9n+1x +...+ 9n+m_1xm’1

Type of function family (Basis functions f(z,0))
Size of model (n or dim 6)
The parameter values

g(z,0) =

g(z,0) =0y + Z Oak—1 cos(kmx) + O, sin(kmx)
k=1

9(x,0) = aU((x —w)/Bx), Ulx) unit pulse
=1
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The Choices in the Parametric case Curve Fitting - Outline

= Corrupted observations of function values

= Model function parameterizations

= Least squares fit and variants

= Example of fit depending on model size

= Statistical asymptotic analysis of parametric methods

= Bias - Variance trade off
= Nonparametric methods

3 Type of function family (Basis functions fi(z,0))
2 Size of model (n or dim 6)
1 The parameter values
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Parametric Curve Fitting: Choice of parameters Parametric Curve Fitting: Choice of parameters

y(t) = go(we) + e(t) y(t) = golwe) + e(t)
Least Squares: Weighted Least Squares:
éN = arg mein Vn(6) éN = arg mein Vn(0)
1 1
WO =5 ) - g o) WO = 5> )~ glenO)F /A
t=1 t=1

A+ Proportional to 'reliability’ of ¢:th measurement ~ Ee?(t)
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Parametric Curve Fitting: Choice of parameters Parametric Curve Fitting: Choice of parameters

y(t) = go(ze) + e(t) y(t) = go(xe) + e(t)
Weighted Least Squares: (Regularized) Least squares:
Oy = argmeinVN(Q) Oy = argmgnVN(€)+5|9\2
1< 1<
_ . 2 _ 2
V() =« t; L(zx)|y(t) — g(ae, 0)17/ M V() =+ ; y(t) — g(z+,0)]

\: Proportional to 'reliability’ of ¢:th measurement ~ Ee?(t)

A extra weighting L(z;) could also reflect the ‘relevance’ of the point . 0]0|* penalizes excessive model flexibility. Could come in various forms.

('Focus in fit’)
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Why the Least Squares Criterion? Linear Least squares

= Gauss! Note that if the parameterization g(z, 6) is linear in 6, the basic criterion
= Maximum Likelihood: becomes quadratic in #, and the minimum can be found analytically:

g(x,0) = ()"0

Vi (0) = Y (y(t) — o()70)* = |[Y — 6>
¥ =col y(1). = col ()"

N
P 1
Oy = argmin ;Z(y(t) —g(z4,0),1)
£(z,t) = —logp(z,t), p(z,t)is the probability density function (pdf) of e(¢)

Gaussian distribution p(z,t) ~ e=*"/2* gives a quadratic criterion! Oy = (@T®) 0Ty

= Other choices
e ming max; [y(t) — g(z¢, 0)| (“unknown-but-bounded”)

e miny. |y(t) — g(x¢,0)|c (e-insensitive ¢, norm, “Support vector
machines”)
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Fitting - Outline

= Corrupted observations of function values
= Model function parameterizations
= Least squares fit and variants

. o . . = Example of fit depending on model size
So, the choice of parameters within a parameterized model is not that
difficult: Fit to the observed data, by one criterion or another.
The choice of model size and model parameterization is a more interesting "
issue. -

= Statistical asymptotic analysis of parametric methods

Bias - Variance trade off
Nonparametric methods

AUTOMATIC CONTROL.
‘COMMUNICATION SYSTEMS
LINKOPINGS UNIVERSITET

Berkeley, 2005 System Identification: Curve Fitting

Lennart Ljung

System Identification: Curve Fitting Berkeley, 2005

Lennart Ljung

e

AUTOMATIC CONTROL
‘COMMUNICATION SYSTEMS
LINKOPINGS UNIVERSITET

Choice of Model Size: Choice of Model Size: Example

Example

Example: Observed data with true curve

Observed data

Fit polynomials of different orders. Fit polynomials of different orders.

System Identification: Curve Fitting Berkeley, 2005 System Identification: Curve Fitting Berkeley, 2005 AT ETEET TR

Lennart Ljung

The Model Fit

AUTOMATIC CONTROL
COMMUNICATION SYSTEMS
LINKOPINGS UNIVERSITET

Lennart Ljung

Model Curves

COMMUNICATION SYSTEMS
LINKOPINGS UNIVERSITET

A

The value of the criterion as a function of polynomial order. Blue: True curve. Green: 2nd order. Red: 4th order. Cyan: 10th order.

o 2 4 6 8 10 12 14 16 18 20
Polynomial order
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The Model Fit The Model Fit

The value of the criterion as a function of polynomial order. The fit between

the true curve and the model curve. The value of the criterion evaluated on a
fresh data set.

The value of the criterion as a function of polynomial order. The fit between
the true curve and the model curve.

7 s
6 6
5 sk
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3 3k
2 1 2r
1 = 1r
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8
Polynomial order Polynomial order
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Choice of Size and Structure Testing the Model Parameterizations

This is a more difficult choice, and we need to understand how the model = Test by simulation: Monte-Carlo.
error gn(x) — go(z) depends on our choices.
Players:

= The fit for a certain data set Z: Vi (6, Z) = & S (y(t) — g(=¢,0))?

e Do not get fooled by the empirical fit VN(éN, Ze)
o Need to understand how the empirical fit relates to Hy (6)

= Compute by calculations: Analysis
o “Analytical Monte-Carlo”: Assume certain properties of z; and e(k),
= The empirical fit: Vx(0y, Z.) = ming Vi (0, Z.) (blue curve) the compute (if possible) the error.

= Estimation (training) data Z.. Validation (generalization) data Z,.

= The validation fit VN(éN, Z,) (black curve)
» The curve fit H(z,0) = |go(z) — g(x,0)|?

e For given z;-sequence Hy (0) = & " H(z:,9). Hy () was the red
curve.

= The expected (typical) value of H, N(éN) would be a suitable goodness
measure for the chosen parameterization.

System Identification: Curve Fitting Berkeley, 2005 N BEE L System Identification: Curve Fitting Berkeley, 2005 LB L
Ry COMMUNICATION SYSTEMS Ny COMMUNICATION SYSTEMS.
eonariuing LINKOPINGS UNIVERSITET Snnaiiung LINKOPINGS UNNERSITET

Curve Fitting - Outline Basic Tools for Analysis

= Corrupted observations of function values For a stationary stochastic process e(-) under mild conditions
= Model function parameterizations = Law of large numbers (LLN)
» Least squares fit and variants o limy_oo Zﬁl e(t) = Ee(t)

= Example of fit depending on model size
= Statistical asymptotic analysis of parametric methods

= Bias - Variance trade off = Central limit theorem (CLT)
= Nonparametric methods If e(t) has zero mean:

. ﬁ ZL e(t) converges in distribution to the normal (Gaussian)

distribution with zero mean and variance X = lim £ .| Ee(t)e(s).
e S e(t) = N(03)”
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Asymptotic Analysis: Probabilistic Setup Asymptotic Analysis: Basic Facts — BIAS
“Analytical Monte-Carlo Experiment”: For a given go(-) and a given sequence Except for very simple parameterizations g(z, §), the distribution of 65 cannot
x; collect the data be calculated (mainly due to “arg min”).

However its asymptotic distribution as N — oo can be established:
y(t) = golw:) +e(t),  Ee(t)* = A
= E = averaging over z;: Ef(x) = limy_oo & Sh; f(2k)
where the stochastic process e(-) obeys the LLN and CLT and has variance . _
\. Use a parameterization g(x,#). Form the estimate s H(0) = limy—oo Hn(0) = Elgo(w:) — g(as, 0)]?
= Best possible model in parameterization: §* = arg min H ()

N
§ 1 If H(6*) = 0 we have a perfect curve fit, otherwise there be some bias in
Oy = = t) — g(z4,0))* " '
N = Ay ;(y( )= 9(w0.0) the curve fit.
gn(x) = g(@,0n) = Main Result: th—>oo 9]\[ = 0"

Then 6y and gy () are random variables with properties inherited from e.
What can be said about their distributions?
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Proof: Formal Calculations Asymptotic Analysis: Basic Facts — VARIANCE

V() = 5 X (g0(e) + e(0) — g(a1,0))°
Suppose the limit model is correct: g(x, 6*) = go(x) and e white noise with

= 5 Y 0(en) = 90,07 + 1 30 0 + 2= 3 (g0(an) — glar, el variance \:
LLN: %Z(go(xt) — g(x¢,0))e(t) — 0 (uniformly in 1) = The asymptotic distribution of \/N(éN — 0*) is normal with zero mean
0 Vi (0) — H(0) as N — oo and covariance matrix P = A[Ey ()97 ()], ¢(t) = $59(x,67)

. “Cov Oy ~ %[Ew(t)wT(t)]_l”
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Proof: Formal Calculations

A Remarkable Observation

0= Vi(On) = Vi (6°) + V(") (O — 0°)
(On = 07) = =[Vy(07) 7 Vi (07)
Vi0) = % Y00 ~ (0, 0))g'(20,6)
V(o) = 2 3 eltu)
LLNS V(8) = 2 37 (0" () + = 3 et (w0,6) — 280"
CLT: % S e@p(t) = N0, xEyyT)

VN(@ly — 0%) — N(0,\EyyT] ™)

System Identification: Curve Fitting Berkeley, 2005 AUTOMATIC CONTROL.
L t L COMMUNICATION SYSTEMS
S LINKOPINGS UNIVERSITET

Proof: Formal Calculations

Recall the curve fit H(xz,0) = |go(z) — g(x, 0)[?, H(0) = limy_cc & > H(x4,0)
(For the z-sequence of the estimation data.)

H(éN) is a random variable, since the estimate depends on the e-sequence,
and

d

EH(Ox) = H(0") + Ay

where d is the number of estimated parameters independently of the
parameterization!

(Proof: ....)
System Identification: Curve Fitting Berkeley, 2005 LIE L EERNIEEL
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The Regularized Case

g0(x) = g(,6%) (assumption )
H(On) = H(0%) + H'(6")(6n — 0%) + %(éN —0")TH"(0")(6n — 07)
H'(0")=0 (6% minimizes H(0))
H'(0) = 23 (go(0) — 9(a0,0))9 (20,0)"
HY(07) = 237 g/ (w0,07)g' (00,67 = 2B(07 (1)
EH(Oy) = HO) + E%(éN — 0T (0%) (O — 0%)
BU (50 — 0% H(0)(Ox — 0] = Bt [SH"(07) (O — 07) (O — 7))

L N O s I
=t JH(9")Cov Oy = Ltr [(BuT)(EppT) ] =
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Curve Fitting - Outline

The variance is reduced by regularization, at the price of some bias.

In the previous result, the number of parameters d is replaced by d. :
Effective dimension of § ~ Number of eigenvalues of the Hessian of V' that
are larger than ¢ (the regularization parameter). Note: d.;s < d = dimf
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Choice of Size: Basic Trade-off

= Corrupted observations of function values

= Model function parameterizations

= Least squares fit and variants

= Example of fit depending on model size

= Statistical asymptotic analysis of parametric methods

= Bias - Variance trade off
= Nonparametric methods
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Choice of Type (basis functions)

w H(0) = lim 5 3, lgo(e) — g(ze, ),
EH(0y) ~ H(0%) + Xd

= A good model size is one that minimizes this expression

m H(#*) is the best possible fit that can be achieved within the
parameterization. A smaller value of this means less bias. Thus, more

parameters gives a more flexible model parameterization and hence less
bias.

= More parameters lead however to higher variance.

= The model size is thus a bias — variance trade-off.

= Note that this balance is usually reached with a non-zero H(6*), that is,
it is normal to accept bias. Also a larger size model can be used when
more data are available (larger N).

= [f a regularized criterion is used, the size of the regularization parameter
§ can also be used to control the flexibility of the parametrization.
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Curve Fitting - Outline

Generally speaking, the parameterization should be such that useful flexibility
is achieved with as few parameters as possible:

=

Grey box models

= Tunable or Non-tunable Basis functions:
g(x, 0) = 22:1 akfk (z7 9)
e -+ More flexible structure = Less parameters
e — More work to minimize (non-tunable = Linear Least Squares)
= Use (number of parameters) d or (regularization parameter) ¢ as a
size-tuning knob
e When no natural ordering of structures: Easier to use 4.
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= Corrupted observations of function values

= Model function parameterizations

= Least squares fit and variants

= Example of fit depending on model size

= Statistical asymptotic analysis of parametric methods

= Bias - Variance trade off
= Nonparametric methods

. ‘COMMUNICATION SYSTEMS
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Non-Parametric Methods

Example

A simple idea is to locally smooth the noisy observations of the function
values:

N
gn(x) =Y Cla,zp)y(k)
k=1

M=

C(z,zp) =1V

bl
I

1

Often C(z,zx) = é(x — x) /A and &(r) = 0 for |r| > S,

These are known as “kernel methods” in statistics.
If C(z, z,) is chosen so that it is non-zero (= 1/k) only for k observed values
x; around z, this is the k-nearest neighbor method.
'AUTOMATIC CONTROL
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Analysis of Non-parametric Methods

N
(@) = go(x) = Y_ Cla,z)y(k) — go() =

k=1
N
> Cla, ) (e(k) + [go(zx) — go()])

k=1

N

Een(z) =Y Cla,xi)[g0(xk) — go()]
k=
N
Var ey (x) = Z C?(z, k) (for white e with variance \)
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Parametric and Nonparametric Methods

3 = the “bandwidth”

2 -15 -1 -05 0 05 1 15 2

C(z,z) = U((z — z1)/B); U(-) the unit pulse. 3 = 0.25.

Cyan dots: Computed for z = —1.75: 0.5 : 1.75

System Identification: Curve Fitting
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The Trade-off

Think of C(z, zx) = U((z — zx)/8) where U is the unit pulse:

N%c if o —ak| <
0 else

Clan = {

Ny, = number of zy, in the bin |z — 2| < 3

N N 2
MSE: H(z) = ZCQ(z,zk)A + [Z C(z, zk)[go(zrk) — go(z)]:| ~

k=1 k=1
1 .
F)‘ -+ variation of g (x) over |z — x| < 8
k
Trade-off: Want 3 to be small for small bias. Want 3 to be large for small
variance. The best choice depends on the nature of gg.
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Summary Theme 1

Consider the parametric method using unit pulses U (z):
9(x,0) =Y 0U((w —)/B) Band vy givenyx — 1 =8
k=1

DM —g@ 0P =3 Y (1) g(w.0) =
t=1 k=1 t:]z,—ve|<B

n

A 1
(y(t) = 6x)* = b), = ~ Z y(t)
k=1t:|x,—k|<B L —Y ]
This means that §(yx) = 0.
If we use a nonparametric method to estimate g at z = ~;, with
Clz,xy) = N%U((z — x,)//3) we obtain the same estimate.
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= We have used the simple case of curve-fitting to illustrate basic issues,
frameworks and techniques for linear and nonlinear system identification

= Parametric — Nonparametric methods
= Choice of model parametrization, model size and parameter values.
= Parameter values easy: Some version of least squares fit.

= Basic asymptotic properties: 6 — 6*, best possible approximation
available in the parameterization (for the used z;-sequence)

» VN(Oy —0%) ~ N(0, P), P = A[Ep(t)y7 ()]~ (Normal distribution)

= Choice of parametric model structure guided by bias-variance trade off
(number of parameters)

= Choice of nonparametric method guided by bias-variance trade off
(band-with of the kernel)
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