Sysid Course VT1 2016 Experiment Design.

Lennart Ljung

Automatic Control, ISY, Linköpings Universitet

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

Experiment Design

3(40)

To make sure that the experimental data are (maximally) informative with respect to the model we want to build.

- What to measure?
- When to measure?
- What to manipulate?
- How to manipulate?

Outline 2(40)

- Introduction
- Informative experiments
- Identification of closed loop systems
- Good designs
- The input waveform
- Sampling interval and practical aspects
- Pretreatment of measured data

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

Think about this:

4(40)

Process: Ball and Beam

Estimated model:

$$y(t) - 1.8y(t-1) + 0.91y(t-2) = 0.5(1.1u(t-1) + 0.9u(t-2))$$

Theoretically a double integrator:

$$y(t) - 2y(t-1) + y(t-2) = 0.5(u(t-1) + u(t-2))$$

Actually worse at low frequencies than one would expect for a long experiment with low noise level. Why?

- Introduction
- Informative experiments
- Identification of closed loop systems
- Good designs
- The input waveform
- Sampling interval and practical aspects
- Pretreatment of measured data

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

Basic Idea For Informative Experiments (Linear Models)

7(40)

Model 1:
$$\hat{y}_1(t|t-1) = H_1^{-1}(q)[G_1(q)u(t) + (1-H_1^{-1}(q))y(t)]$$

Model 2: $\hat{y}_2(t|t-1) = H_2^{-1}(q)[G_2(q)u(t) + (1-H_2^{-1}(q))y(t)]$

Experiment not informative

(\$)
$$M(q)u(t) \equiv L(q)y(t)$$

(orders of M & L \approx 2*model orders and not both zero) Hence if (\$) holds (BUT ONLY THEN!) we are in trouble.

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Informative Experiments

An experiment is **INFORMATIVE** if it allows you to distinguish between two different models (in the sets that you might consider).

Example 1: $u(t) = \sin \omega t$

For models of higher order than 1, two models can give the same response if their bode plots coincide for frequency ω . Not informative in models sets of order > 1!

Example 2: u(t) = -f * y(t)

Try simple model structure y(t) + ay(t-1) = bu(t-1) + e(t). Inserting the feedback we get y(t) + (a+bf)y(t-1) = e(t). So all models with the same value on a+bf give identically the same y and hence u. So unless either a or b is fixed the experiment is not informative even in this simple model class.

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

Basic Criteria for Informative Experiments

8(40)

Open Loop: $\rightarrow L = 0$

Require

$$M(q)u(t) \equiv 0 \Rightarrow u(t) \equiv 0$$

If M(q) is of order n, we the say that u(t) is Persistently Exciting of order n, p.e.(n) This is the same as requiring more than n/2 different sinusoids in the input

Closed Loop:

If there is no linear, time-invariant, noise/reference signal -free feedback from y to u we are OK.

.

True system (or second order LTI invariant) G_0 : Then

$$\begin{split} \varepsilon(t,\theta) &= H_{\theta}^{-1}(y(t) - G_{\theta}u(t)) = H_{\theta}^{-1}[(G_0 - G_{\theta})u(t) + H_0e(t)] \\ &= H_{\theta}^{-1}[\Delta G_{\theta}u(t) + \Delta H_{\theta}e(t)] + e(t) \end{split}$$

$$\begin{split} & (\hat{G}, \hat{H}) \rightarrow \arg\min \int_{-\pi}^{\pi} |H_{\theta}|^{-2} \begin{bmatrix} \Delta G_{\theta} & \Delta H_{\theta} \end{bmatrix} \Phi_{\zeta} \begin{bmatrix} \Delta G_{\theta}^{*} \\ \Delta H_{\theta}^{*} \end{bmatrix} d\omega \\ & \Phi_{\zeta}(\omega) = \begin{bmatrix} \Phi_{u}(\omega) & \Phi_{ue}(\omega) \\ \Phi_{eu}(\omega) & \Lambda_{0} \end{bmatrix} \end{split}$$

No assumption about feedback etc, just that the spectrum exists.

Note also that any pre-filter L, $\varepsilon_F(t)=L(q)\varepsilon(t)$ can be included in the noise model, $\tilde{H}_{\theta}=H_{\theta}/L$.

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

*

Formal Calculations 3/3

11(40)

Basic Idea For Informative Experiments

$$\int_{-\pi}^{\pi} \left[\Delta G_{\theta} \quad \Delta H_{\theta} \right] \Phi_{\zeta} \begin{bmatrix} \Delta G_{\theta}^{*} \\ \Delta H_{\theta}^{*} \end{bmatrix} d\omega = 0 \Rightarrow \Delta H_{\theta} = 0, \ \Delta G_{\theta} = 0$$

Recall

$$\Phi_{\zeta} = \begin{bmatrix} \Phi_{u} & \Phi_{ue} \\ \Phi_{eu} & \Lambda_{0} \end{bmatrix} = \begin{bmatrix} I & \Phi_{ue} \Lambda_{0}^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} \Phi_{u}^{r} & 0 \\ 0 & \Lambda_{0} \end{bmatrix} \begin{bmatrix} I & 0 \\ \Lambda_{0}^{-1} \Phi_{eu} & I \end{bmatrix}$$

So the question is

$$\int |\Delta G_{\theta}(e^{i\omega})|^2 \Phi_u^r(\omega) d\omega = 0 \Rightarrow \Delta G_{\theta} = 0?$$

The signal u^r should be persistently exciting of the same order as the model/system.

Factorize!

$$\begin{bmatrix} \Phi_u & \Phi_{ue} \\ \Phi_{eu} & \Lambda_0 \end{bmatrix} = \begin{bmatrix} I & \Phi_{ue} \Lambda_0^{-1} \\ 0 & I \end{bmatrix} \begin{bmatrix} \Phi_u^r & 0 \\ 0 & \Lambda_0 \end{bmatrix} \begin{bmatrix} I & 0 \\ \Lambda_0^{-1} \Phi_{eu} & I \end{bmatrix}$$

$$\Phi_u^r = \Phi_u - \Phi_{ue} \Lambda_0^{-1} \Phi_{eu}, \quad \Phi_u = \Phi_u^r + \Phi_u^e$$

$$\Phi_e^r = \Lambda_0 - \Phi_{eu} \Phi_u^{-1} \Phi_{ue}$$

 Φ_u^r ="That part of u that cannot be estimated from e by a LTI filter"

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

Outline

- Introduction
- Informative experiments
- Identification of closed loop systems
- Good designs
- The input waveform
- Sampling interval and practical aspects
- Pretreatment of measured data

- Direct Approach:
 - Forget about feedback! Just apply the estimation procedure as usual.
 - OK if experiment informative nda PEM is used with a correct noise model
- Any Problems?
 - Typically less information in data
 - Be careful with spectral and correlation analysis
 - Be careful with IV- and subspace-methods
 - Be careful with Output-Error methods. The noise needs to be modeled
- Other approaches?
 - Yes, there are many ...

Lennart Ljung Sysid Course VT1 2016 - Experiment Design

Good Designs – Basic Principles

15(40)

Recall slide I-22.

 \mathcal{X} : The design variables

$$\hat{\theta}_N \to \theta^*(\mathcal{X}) \qquad \text{Cov } \hat{\theta}_N \approx \frac{\lambda}{N} P_{\theta}(\mathcal{X})$$

- The model $\mathcal{M}(\theta^*(\mathcal{X}))$ is the best approximation of the system under \mathcal{X}

$$P_{\theta}(\mathcal{X}) pprox rac{1}{N} [\mathrm{E}\psi(t)\psi^{T}(t)]^{-1} \qquad \psi(t) = rac{d}{d\theta} \hat{y}(t|\theta)$$

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Outline

- Informative experiments
- Identification of closed loop systems
- Good designs
- The input waveform
- Sampling interval and practical aspects
- Pretreatment of measured data

Lennart Liung Sysid Course VT1 2016 - Experiment Design

Consequences

16(40)

■ Let the experimental conditions resemble those under which the model is to be used.

Recall (slide I-25)

$$\theta^* \approx \arg\min \int_{-\pi}^{\pi} |G_0(e^{i\omega}) - G(e^{i\omega}, \theta)|^2 \cdot \frac{\Phi_u(\omega) \cdot |L(e^{i\omega})|^2}{|H(e^{i\omega}, \theta^*)|^2} d\omega$$

 Choose experimental conditions and inputs, so that the predictor $\hat{y}(t|\theta)$ becomes sensitive to interesting and important parameters.

Recall (slide I-25)

$$\operatorname{Cov} \hat{\mathsf{G}}_N(e^{i\omega}) pprox rac{n}{N} \cdot rac{\Phi_v(\omega)}{\Phi_u(\omega)}$$

Typical problem formulation:

$$\min_{\mathcal{X}\in X}\alpha(P_{\theta}(\mathcal{X}))$$

X: Constrained input variance

Model properties depend only on the input spectrum $\Phi_u(\omega)$, the "color" of the input. It does not depend on the actual wave-form of the input.

.

Lennart Ljung

Sysid Course VT1 2016 - Experiment Design

Formal Calculations:

19(40)

Choose all design variables so that the criterion

$$J(\mathcal{D}) = \int \text{Var}|\hat{G}(e^{i\omega})|^2 C(\omega) d\omega$$

is minimized. Suppose that the design variables are:

- Reference signal spectrum
- Output feedback law
- Pre-filter L

under the constraints

•

$$\alpha E u^2 + \beta E y^2 \le 1$$

Use your input energy in frequency bands where you need a good model and/or where the disturbances are significant.

$$^{\prime\prime}\Phi_{u}^{\mathrm{opt}}(\omega) = \alpha \sqrt{C(\omega)\Phi_{v}(\omega)}^{\prime\prime}$$

$$\min_{\mathcal{X}} E \int_{-\pi}^{\pi} |\hat{G}(e^{i\omega}) - G_{0}(e^{i\omega})|^{2} C(\omega) d\omega$$

Lennart Ljung

Sysid Course VT1 2016 - Experiment Design

General Bottom Line

Formal Calculations 2/4

20(40)

Then the solution is

regulator $u(t) = -F_y(q)y(t)$ that solves the standard LQG problem

$$F_y^{\text{opt}} = \arg\min_{F_y} [\alpha E u^2 + \beta E y^2], \quad y = G_0 u + H_0 e$$

Reference signal spectrum

$$\Phi_r^{\mathsf{opt}}(\omega) = \mu \sqrt{\Phi_v(\omega) C(\omega)} \frac{|1 + G_0(e^{i\omega}) F_y^{\mathsf{opt}}(e^{i\omega})|^2}{\sqrt{\alpha + \beta |G_0(e^{i\omega})|^2}}$$

Note the special case $\beta=0$ and stable system $\Rightarrow F_{\nu}=0$

21(40)

Formal Calculations 4/4

22(40)

MSE minimization

Choose all design variables so that the criterion

$$J(\mathcal{D}) = \int \mathbf{E} |\hat{G}(e^{i\omega}) - G_0(e^{i\omega})|^2 C(\omega) d\omega$$

 $Eu^2 \leq 1/\alpha$

is minimized Suppose that the design variables are:

- Reference signal spectrum
- Output feedback law
- Pre-filter L

under the constraints

Lennart Ljung

Sysid Course VT1 2016 - Experiment Design

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

- Introduction
- Informative experiments
- Identification of closed loop systems
- Good designs
- The input waveform
- Sampling interval and practical aspects
- Pretreatment of measured data

Then the solution is

- Open loop
- Input spectrum $\sim \sqrt{C \cdot \Phi_v}$
- Pre-filter $\sim \sqrt{\frac{\Phi_{\overline{v}}}{C}}$

Sysid Course VT1 2016 - Experiment Design

The Input Waveform

24(40)

We want to

- Control the input spectrum
- Have small maximum amplitude for given power (crest factor)
- Utilize periodicity

Choices:

- Random Gaussian Noise
- (Pseudo) Random Binary Noise
- Sum of sinusoids, including swept sinusoids.

shifting in a certain fashion, giving a certain spectrum $\Phi_u(\omega)$

Time domain thinking: Occasionally, let a step response almost settle. No use to let the input shift so quickly that the system's response is hardly visible.

Lennart Ljung Sysid Course VT1 2016 - Experiment Design

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Some Typical Periodic Inputs

27(40)

- PRBS (Pseudo Random Binary Signal)
- Sum of sinusoids with tailored phases
- Swept sinusoid, (chirp signal)

Periodic Inputs

When allowed, periodic inputs have certain advantages:

- Independent noise estimation (Compare the responses to the same input over different periods)
- Reduction of data sets, by averaging over the periods
- No leakage if frequency domain methods are applied

Sysid Course VT1 2016 - Experiment Design

Outline

- Introduction
- Informative experiments
- Identification of closed loop systems
- Good designs
- The input waveform
- Sampling interval and practical aspects
- Pretreatment of measured data

- Variance increases rapidly when sampling slower than dominating time constants
- Poor return for extra work with fast sampling
- Sample \approx 10 20 times the system bandwidth.
- Check step response: Put 3–5 measurements during the rise time.

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

Outline

01(10

- Introduction
- Informative experiments
- Identification of closed loop systems
- Good designs
- The input waveform
- Sampling interval and practical aspects
- Pretreatment of measured data

Always use Anti-alias filters!

They provide noise reduction and avoid confusion with alias.

■ With cheap data acquisition, sample fast at source.

Postpone decision about T to software phase.

[Digital anti alias filtering + decimation]

SPTB command resample

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

Pretreatment of Data

32(40)

ALWAYS FIRST PLOT THE DATA! Possible problems with measured data:

- Drift, offset, low frequency disturbances
- Occasional bursts and outliers
- High frequency disturbances
- Select good/interesting frequency range for model fit

SELECT "NICE" PORTIONS OF DATA FOR ESTIMATION AND VALIDATION!

The measured y(t) and u(t) may not have zero mean.

Dynamics: A(q)y(t) = B(q)u(t) + e(t)

Static: A(1)y(t) = B(1)u(t)

May be conflicting

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Outliers and Bad Data

35(40)

Always plot and check data for "bad points"! Best visible in residuals!

This data set contains one bad value. Can you find it?

Residuals for a 4th order ARX model.

■ Let y and u be deviations from physical equilibrium.

- Subtract means (possibly time-varying) from data. (*)
- Use ARIMAX-models.
- Increase order
- Estimate off-set level
- Difference data
- Use High-pass filtering.(*)

(*): Best

Lennart Ljung

Sysid Course VT1 2016 - Experiment Design

Measures for outliers

- Cut out data pieces without outliers
- Use "robustified" criteria (increasing slower than quadratically). This is done by the option ErrorThreshold in SITB.
- Replace outlier by smoothed value

High frequency disturbances above the frequency range of interest to the dynamics show that the choices of sampling interval and pre-sampling filters were not thoughtful enough. Can be removed by low-pass filtering or decimation.

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

VUB Course on System Identification. Summary

Lennart Ljung

Automatic Control, ISY, Linköpings Universitet

- Let the system be excited!
- Open loop inputs: Periodic signals with full control of spectral properties. Binary inputs good for linear systems!
- It is possible to identify systems in closed loop, but it requires some caution
- Let the predictor be sensitive to important parameters! "Cov $\hat{G}_N(e^{i\omega}) \approx \frac{n}{N} \cdot \frac{\Phi_v(\omega)}{\Phi_u(\omega)}$ "
- Sample 10-20 times bandwidth!
- Look at measured data before you start the estimation. Typically remove trends.

Lennart Ljung
Sysid Course VT1 2016 – Experiment Design

The SI Flow

