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Frequency Domain Data: Parametric and Nonparametric Fitting

The Instrumental Variable Method

Subspace Techniques

Regularization
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Goal 3(53)

Goal: Estimate a linear model in discrete or continuous time with or
without an additive noise model.

y(t) = G(σ)u(t) + v(t)

σ is differentiation operator p or shift operator q.
The corresponding frequency response function (FRF) is G(iω) or
G(eiω). Estimating a linear system is the same as estimating its
FRF-curve.
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Recall: The Frequency Response Function, FRF

→ 170 4(53)

A linear system is characterized by its transfer function G(s) (the
Laplace transform of its impulse response).
Evaluated on the imaginary axis, this gives the FRF G(iω), which
describes the response to sinusoidal inputs:

u(t) = A cos(ωt), y(t) = A1 cos(ωt + φ)

A1 = |G(iω)|A, φ = arg G(iω)

This could be a way of determining G (frequency analysis).
Discrete time: G(z), z-transform, unit circle, G(eiω)
All Frequencies at the same time:

Y(iω) = G(iω)U(iω)+transient

Y and U are the Fourier transforms of the output and input.
.
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The Bode Plot → 28 5(53)

|G(iω)| and arg G(iω) vs ω
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Data from Dynamic Systems: Input-Output Data

→ 228 6(53)

Discrete time
• Time-domain: {u(1), y(1), u(2), y(2), . . . , u(N), y(N)}
• Frequency-domain
{UN(eiω1), YN(eiω1), . . . , UN(eiωN ), YN(eiωN )} DFT-grid:
ωk = 2πk/N

UN(z) =
1√
N

N

∑
k=1

u(k)z−k

Continuous time
• Frequency-domain
{UN(iω1), YN(iω1), . . . , UN(iωN), YN(iωN)}

UN(s) =
1√
N

∫ N

0
u(t)e−stdt

(Band limited, periodic data)
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Frequency Response Data (FRD) → 173 7(53)

From frequency analyzers or computed/estimated using FFT
techniques

• ˆ̂G(iωk) or ˆ̂G(eiωk), k = 1, 2, . . . , N
• Possibly with uncertainty measures W(iωk)
• Simple estimate, ETFE:

ˆ̂GN(iω) =
YN(iω)

UN(iω)
Variance: W(iω) =

Φv(ω)

|UN(iω)|2

where Φv(ω) is the spectrum of the output disturbance
• Other estimates (spectral analysis): smoothed versions of ETFE

(more later)
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ETFE: Empirical Transfer Function Estimate → 173
8(53)
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Recall: Linear Parametric Models 9(53)

From Introductory notes: Any linear model. Take the Fourier
Transforms of the signals:

y(t) = G(q, θ)u(t) + H(q, θ)e(t)

FT : Y(eiω) = G(eiω, θ)U(eiω) + H(eiω, θ)E(eiω)

Exampels of parametrizations of G(q, θ), . . .

G(q, θ) =
B(q)
F(q)

; H(q, θ) =
C(q)
D(q)

y(t) =
B(q)
A(q)

u(t) +
1

A(q)
e(t) or

G(q, θ) = C(θ)(qI−A(θ))−1B(θ).

H(q, θ) = C(θ)(qI−A(θ))−1K(θ) + I
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Prediction Error Fit to Parametric Models → 230
10(53)

With a linear model, and a quadratic prediction error loss
(`(ε)) = ε2) we can apply Parseval’s relation to the criterion
function ∑ ε2(t), and with YN and UN being the DFTs:

VN(θ) =
M

∑
k=1
|Y(eiωk)−G(eiωk , θ)UN(eiωk)|2/|H(eiωk , θ)|2 or

VN(θ) =
M

∑
k=1

∣∣∣∣YN(eiωk)

UN(eiωk)
−G(eiωk , θ)

∣∣∣∣2 · ∣∣∣∣ UN(eiωk)

H(eiωk , θ)

∣∣∣∣2
Formal and intuitive interpretation ...

ε =
1
H
(y−Gu)
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Non-Parametric Methods: Smoothing the ETFE

→ 178 11(53)

Intuitively, think of sliding a window of width BW along the ETFE and
average what you see in the window:

10-1 100 101 102

M
ag

ni
tu

de
 (d

B)

-30

-20

-10

0

10

20

30 From: u1  To: y1
Bode Diagram

Frequency  (rad/s)

The width BW will affect the variance of the smoothed estimate
[Large BW ⇒ many values to average⇒ small variance.]
and the bias and frequency resolution [small BW ⇒ small bias and
near-by peaks are distinguishable.]
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Spectral Analysis: Blackman-Tukey → 181 12(53)

The smoothing of the EFTE can also be done on time domain data.

1. Form the covariance functions R̂u(τ) =
1
N ∑N

t=1 u(t)u(t− τ)

(and similar for R̂yu(τ))

2. Form the weighted Fourier transforms
Φ̂u(ω) = ∑∞

τ=−∞ wγ(τ)R̂u(τ) Same for Φ̂yu(ω)

3. Form the estimate Ĝ(eiω) =
Φ̂yu(ω)

Φ̂u(ω)

4. the (time window) wγ(τ) is the inverse FT of the frequency
window that was slided along the ETFE on the previous slide.
Often wγ(τ) = 0 for |τ| > γ. Due to the time/frequency links
γ ∼ 1/BW.

5. So large γ (small BW) means good frequency resolution and
large variance and v.v.
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Example → 186 13(53)
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Black: True
Blue: γ = 30
Red: γ = 100
Yellow: γ =
10
BW ∼ 2π/γ
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Outline 14(53)

Frequency Domain Data: Parametric and Nonparametric Fitting
The Instrumental Variable Method
• The problem with LS
• The idea behind IV
• Choice of instruments
• Optimal choice of instruments
• IV4

Subspace Techniques

Regularization
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The Problem with LS 15(53)

Consider the ARX-model

A(q)y(t) = B(q)u(t) + w(t)

or y(t) = ϕT(t)θ0 + w(t)

ϕT(t) =
[
−y(t− 1) . . . −y(t− n) u(t− 1) . . . u(t− n)

]
θ0 =

[
a1 . . . an b1 . . . bn

]T

θ̂ = [∑ ϕ(t)ϕT(t)]−1 ∑ ϕ(t)y(t)

θ̂ = θ0 + [∑ ϕ(t)ϕT(t)]−1 ∑ ϕ(t)w(t)

If w is not white, ϕ(t) and w(t) are correlated and θ will be biased!
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The Idea Behind IV → 224 16(53)

Consider the linear regression ŷ(t|θ) = ϕT(t)θ (This could be an
ARX-model, but could also be something else)
Suppose that the data is generated by

y(t) = ϕT(t)θ0 + w(t)

for some noise sequence w(t).
Choose a sequence of vectors – the instruments – ζ(t) (of the same
dimension as ϕ). Multiply it with the equation above and sum over t:

1
N ∑ ζ(t)y(t) =

1
N ∑ ζ(t)ϕT(t)θ +

1
N ∑ ζ(t)w(t)

which suggests the estimate

θ̂N = [
1
N

N

∑
t=1

ζ(t)ϕT(t)]−1 1
N

N

∑
t=1

ζ(t)y(t)

(Note that ζ(t) = ϕ(t) gives the least squares method!)
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Choice of Instruments → 225 17(53)

Note that

θ̂N = θ0 + [
1
N

N

∑
t=1

ζ(t)ϕT(t)]−1 1
N

N

∑
t=1

ζ(t)w(t)

ζ(t) are the instruments. The requirements on them are

1. ζ(t) and w(t) be uncorrelated

2. ζ(t) and ϕ(t) be correlated so that the indicated inverse in θ̂N
exists.

Under these assumptions θ̂N will converge to the true value of the
parameters as the number of data tends to infinity.
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How to achieve this for ARX models? 18(53)

Basic choice: Choose ζ(t) as the "noise free" counterpart of ϕ(t)
More specifically: Let N(q) and M(q) be two filters and define x(t)
from the input sequence as

N(q)x(t) = M(q)u(t)

and take

ζ(t) =
[
−x(t− 1) · · · −x(t− na) u(t− 1) · · · u(t− nb)

]T

It can be shown that for "almost all" choices of filters M and N (of
orders at least as large as the model) this will satisfy the two
requirements on the previous slide

Lennart Ljung

Sysid Course VT1 2016: Linear Models – Special Issues

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Optimal Choices of Instruments 19(53)

What are the "best choices" of filters N and M?
To answer that we must consider a variant of IV that allows
prefiltering:

θ̂N = [
1
N

N

∑
t=1

ζ(t)ϕT
F(t)]

−1 1
N

N

∑
t=1

ζ(t)yF(t)

ϕF(t) = L(q)ϕ(t)

yF(t) = L(q)y(t)

A general, but somewhat complicated, expression for how the
variance of θ̂N depends on L, M and N can be given. The choices
that minimize this covariance matrix depend on the true system.
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Optimal Choices of Instruments, cnt’d 20(53)

Suppose that the true system is given by

y(t) = G0(q)u(t) + H0(q)e(t)

G0(q) =
B0(q)
A0(q)

where H0 is known and G to be estimated. The optimal choices of
instruments – in the sense that the variance of the estimates is
minimized – is then obtained for

N(q) = A0(q)
M(q) = B0(q)
L(q) = 1

A0(q)H0(q)
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The IV4 Algorithm 21(53)

In practice, G0 and H0 are not known. A feasible way of choosing
almost optimal instruments is then the following 4-step method (iv4):

1. Estimate Â1 and B̂1 using LS

2. Use IV with L = 1, N = Â1 and M = B̂1. This gives Â2 and B̂2.

3. Calculate the residuals w(t) = Â2(q)y(t)− B̂2(q)u(t) and fit a
filter L to the AR-model L(q)w(t) = e(t) using LS. This gives
L̂(q)

4. Use IV with L = L̂, N = Â2 and M = B̂2. This gives the final
estimates.
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Summary: The IV Method 22(53)

Good method to quickly get the dynamics of a system

Be careful when data have been collected in closed loop

Does not provide a noise model

Good alternative to OE-structures.
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Outline 23(53)

Frequency Domain Data: Parametric and Nonparametric Fitting

The Instrumental Variable Method

Subspace Techniques

Regularization
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Subspace Methods → 208 24(53)

x(t + 1) = Ax(t) + Bu(t) + w(t)
y(t) = Cx(t) + Du(t) + v(t)

Estimate the matrices A, B, C, D.
Suppose, for a second, that the states x(t) were known. Then the
above expression is a linear regression: Let

Y(t) =
[

x(t + 1)
y(t)

]
Φ(t) =

[
x(t)
u(t)

]
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The Linear Regression 25(53)

Then
Y(t) = ΘΦ + ν(t)

with

Θ =

[
A B
C D

]
ν =

[
w(t)
v(t)

]
All matrices of interest, including the covariance matrix of ν could
then be estimated using the Least Squares method. With the
covariance matrix of ν, the optimal Kalman gain could then be
computed.
.
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How to Find the States and Conceptual Algorithm

→ 210 26(53)

Fact: All (interesting) states can be found as linear combinations of
the k-step ahead predictors ŷ(t + k|t), k = 1, . . . , n (the predicted
value of y(t + k) based on input-output data up to time t. No
prediction of the effect of inputs after time t.)

So estimate these k-step ahead predictors using ARX-models, and
determine from these the good linear combinations to form the states
x.

Use these x to form the linear regression to estimate A, B, C, D.
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Subspace Algorithms: Essential Features 27(53)

State space basis selected automatically

Form sample covariances of y and u: One SVD and one
QR-step

No iterations

Need to select auxiliary variables: (essentially the ARX orders
for which the predictors – state candidates – are estimated)

Quality properties not fully understood
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More Formal Calculations, 1/5 28(53)

y(t + k) =
t+k
∑

j=−∞
hu

t+k−ju(j) + he
t+k−je(j)

ŷ(t + k|t) =
t

∑
j=−∞

hu
t+k−ju(j) + he

t+k−je(j)

Let

Yx(t) =


ŷ(t + 1|t)

.

.

.
ŷ(t + n|t)


.
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More Formal Calculations, 2/5 29(53)

So, all (Kalman) states x(t), in any state-space representation can be written as linear combinations of Yx(t):

x(t) = LYx(t)

for some L. The (minimal) order of the state-space representation is the rank of Yx(t), t = 1, . . . ,.
So, with Yx(t), t = 1, . . . , N given, pick L, so that x(t) becomes well conditioned. This includes the choice of dimension of x.
Typically, apply SVD to

YN =
[
Yx(1) Yx(2) Yx(N)

]
Once x(t), t = 1, . . . , N have been determined, proceed as above to find the state-space matrices.
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More Formal Calculations, 3/5 30(53)

How to estimate the predictors:

y(t + k) =
t+k
∑

j=−∞
hu

t+k−ju(j) + he
t+k−je(j)(∗)

ŷ(t + k|t) =
t

∑
j=−∞

hu
t+k−ju(j) + he

t+k−je(j)

e(t) and y(t) have an invertible relationship.

y(t + k) =
t+k−1

∑
j=−∞

h̃u
t+k−ju(j) + h̃e

t+k−jy(j) + e(t + k) + h̃u
0 u(t + k)(∗∗)

so replace e(j) in (*) by y and u from (**): . . .
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More Formal Calculations, 4/5 31(53)

y(t + k) =
t+k
∑

j=−∞
h̃u

t+k−ju(j) +
t

∑
j=−∞

h̃e
t+k−jy(j) +

t+k
∑

j=t+1
he

t+k−je(j)

ŷ(t + k|t) =
t

∑
j=−∞

h̃u
t+k−ju(j) + h̃e

t+k−jy(j)

Now, truncate the first equation at j = t− n1 rather than at j = −∞, and estimate h̃ using the least squares method. Use
these estimates in the second equation to estimate ŷ. The value n1 corresponds to the "auxiliary order". All of this can be
done numerically efficient by projections.

.
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The Subspace Method Algorithm, 5/5 32(53)

The essence of the subspace methods is as follows

1. Select n and n1 and estimate Yx(t), t = 1, . . . , N.
2. Determine a good choice of L in x(t) = LYx(t) (including

dimension) using SVD or similar decomposition
3. Possibly determine n by visual inspection of the singular values

in the above expression.
4. Estimate A, B, C and D by least squares in the state-space

model, treating x(t) as a measured sequence.
5. Use the covariance matrix of ν to compute the Kalman Filter

gain K.
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Outline 33(53)

Frequency Domain Data: Parametric and Nonparametric Fitting

The Instrumental Variable Method

Subspace Techniques

Regularization ( → 221 , New stuff!)

Lennart Ljung

Sysid Course VT1 2016: Linear Models – Special Issues

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Recall: Bias – Variance Trade Off → 492 34(53)

Any estimated model is incorrect. The errors have two sources:

Bias: The model structure is not flexible enough to contain a
correct description of the system.

Variance: The disturbances on the measurements affect the
model estimate, and cause variations when the experiment is
repeated, even with the same input.

Mean Square Error (MSE) = |Bias|2 + Variance.
When model flexibility ↑,Bias ↓ and Variance ↑.
To minimize MSE is a good trade-off in flexibility.
In state-of-the-art Identification, this flexibility trade-off is governed
primarily by model order. May need a more powerful tuning
instrument for bias–variance trade-off.
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An Example 35(53)

Equipped with the tools from the previous lecture, let us now test
some data z (selected but not untypical). The example uses complex
dynamics and few (210) data, so this is a case where asymptotic
properties are not prevalent. Find the Impulse Response (IR)!
plot(z)
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Estimate a Model: State-of-the-Art → 221 36(53)

We will try the state-of-the art approach: Estimate SS models of
different orders. Determine the order by the AIC criterion.

for k=1:30
m{k}= ssest(z,k);

end
(dum,n) = min(aic(m{:}));
mss = m{n};
impulse(mss)
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Is this a good model? Preview: This IR has a fit of 79.42%
But, we can do better! Another choice of model order gives a fit of
82.95 % . I will also show an estimate with a 83.55% fit.
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Linear Black-Box Models: Fundamental Role of ARX
→ 336 37(53)

Recall: ARX: A(q)y(t) = B(q)u(t) + e(t)
ARX can Approximate Any Linear System

Arbitrary Linear System: y(t) = G0(q)u(t) + H0(q)e(t)

ARX model order n, m : An(q)y(t) = Bm(q)u(t) + e(t)

ŷ = (1−A(q))y(t) + B(q)u(t) – General linear predictor!

as N >> n, m→ ∞

[Ân(q)]−1B̂m(q)→ G0(q), [Ân(q)]−1 → H0(q)

The ARX-model Is a Linear Regression

Note that the ARX-model is estimated as a linear regression
Y = Φθ + E, (Φ containing lagged y, u and θ containing a, b)
A convex estimation problem.
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Test on Our Data 38(53)

Estimate ARX-model of order 10 and 30: Bode plots of models
together with true system:
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Order 10. Order 30. True. The high order model picks up the true
curves better, but seem more ”shaky”. Look at Uncertainty regions!
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How to Curb Variance? 39(53)

The ARX approximation property is valuable, but high orders come
with high variance.
Can we curb the flexibility that causes high variance other than by
lower order? Regularization
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Model Structures and Regularization → 221 40(53)

Curb the Model’s Flexibility!

VN(θ) =
N

∑
t=1
|ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗)
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Bayesian View → 230 41(53)

The regularized criterion

VN(θ) = ∑N
t=1 |ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗)

Bayesian interpretation

θ is a random vector which a prior (Gaussian) distribution with mean
θ∗ and covariance matrix (λR)−1

That means that with the regularized estimate θ̂N = arg min VN(θ)
is the Maximum A Posteriori (MAP) Estimate.
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Linear Regression – Regularization 42(53)

The regularized criterion

VN(θ) = ∑N
t=1 |ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗), λR = Π−1

Regularization for a linear regression (θ∗ = 0) (Recall that ARX is a
linear regression.)

Y = Φθ + E

θ̂N = arg min |Y−Φθ|2+θTΠ−1θ

Π is the Regularization Matrix ( = the prior covariance matrix). Still
quadratic in θ: The estimate will be

θ̂R = (RN + Π−1)−1RN θ̂LS RN = ΦΦT

How to choose Π? How good is it? : Classical (frequentist) analysis
next slide
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Frequentist analysis of Regularized LSE 43(53)

Assume true parameter θ0 Y = Φθ0 + E : EEET = I.
BIAS:

E θ̂R − θ0 = (RN + Π−1)−1Π−1θ0

MSE:

E [(θ̂R − θ0)(θ̂
R − θ0)

T] = (RN + Π−1)−1×
(RN + Π−1θ0θT

0 Π−1)(RN + Π−1)−1;

No regularization (Π−1 = 0): Unbiased and MSE = R−1
N

(Cramér-Rao bound)
Best MSE?: Minimized by Π = θ0θT

0 : MSE = (RN + Π−1)−1

How to select Π?
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Marginal Likelihood for Regularized Linear Regression
44(53)

Y = Φθ + E, assume E ∈ N(0, I)
Parameterize prior covariance matrix.

θ ∈ N(0, Π(α))

That means

Y ∈ N(0, ΦΠ(α)ΦT + I)

⇒
The Maximum likelihood (ML) estimate of α based on Y, Φ is
Estimate of Regularization Matrix

α̂ = arg min YTZ(α)−1Y + log det Z(α)

Z(α) = ΦΠ(α)ΦT + I
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ARX Model Priors 45(53)

When estimating an ARX-model, we can think of the predictor

ŷ(t|θ) = (1−A(q))y(t) + B(q)u(t)

as made up of two impulse responses, A and B. The vector θ should
thus mimic two impulse responses, both typically exponentially
decaying and smooth.We can thus have a reasonable prior for θ:

P(α1, α2) =

[
PA(α1) 0

0 PB(α2)

]
Block Diagonal A&B

where the hyperparameters α describe decay and smoothness of the
impulse responses.
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Typical Kernels 46(53)

”Kernel”: Parameterization of P.
Several kernels exist: DC,TC,SS,... Recall: impulse response
smooth and exponentially decaying
DC kernel

E|bk|2 = Cλk, corr(bk, bk+1) = ρ
PB

k,` = Cλ(k+`)/2ρ|k−`|; α = [C, λ, ρ]

TC kernel

E|bk|2 = Cλk, corr(bk, bk+1) =
√

λ
PB

k,` = C min(λk, λ`); α = [C, λ]
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Software Issues 47(53)

The MATLAB system Identification Toolbox, ver R2013b (released
August 2013) now supports quadratic regularization for all linear and
non-linear model estimation.
The regularized criterion

VN(θ) = ∑N
t=1 |ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗),

is supported by a field Regularization in all the
estimationOptions (arxOptions, ssestOptions,
procestOptions) etc.:

opt.Regularization.Lambda
opt.Regularization.R
opt.Regularization.Nominal (θ∗)

ARX-regularization tuning:
[L,R]=arxRegul(data,[na,nb,nk],Kernel)
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Our Test Data: State-of-the-Art 48(53)

Recall: The state-of-the art approach: Estimate SS models of
different orders. Determine the order by the AIC criterion.

for k=1:30
m{k}= ssest(z,k);

end
(dum,n) = min(aic{:});
mss = m{n};
impulse(mss)
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Estimate a Model: Regularized ARX 49(53)

Now, let us try an ARX model with na=5, nb=60. Estimate a
regularization matrix with the ’TC’ kernel (2 parameters, C, λ each for
the A and B parts):

aopt = arxOptions;
(L,R) = arxRegul(z,[5 60 0],’TC’);
aopt.Regularization.R = R;
aopt.Regularization.Lambda = L;
mr = arx(z,[5 60 0],aopt);
impulse(mr)
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The Oracle 50(53)

The examined data were ob-
tained from a randomly gener-
ated model of order 30:

y(t) = G0(q)u(t) + H0(q)e(t)

The input is Gaussian white noise
with variance 1, and e is white
noise with variance 0.1. The im-
pulse responses of G and H are
shown at the right.
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How Well Did Our Models mss And mr Do? 51(53)
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G : fit: mss: 79.42% mr: 83.55% H: fit mss: 77.05%, mr: 81.59%
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Surprise ? 52(53)

ML beaten by an ”outsider algorithm”!: That is a surprise!
There is a certain randomness in these data, but Monte-Carlo
simulations substantiate the observed conclusion.

Even though ML is known to have the quoted optimal properties for
best bias and variance, the observation is still not a contradiction.

Recall: Mean Square Error (MSE) = |Bias|2 + Variance.

ML: Bias ≈ 0⇒: MSE = Variance = CR Lower bound for unbiased
estimators

But with some bias, Variance could be clearly smaller then CRB

Recall for Lin Reg: CRB = (ΦΦT)−1 > (ΦΦT + Π−1)−1 = MSE for
best regularized estimated. More pronounced for short data
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Summary 53(53)

Frequency Domain Data and Spectral Analysis
• Parametric models can be estimate just as well from FD data.
• Non-parametric Spectral Analysis: Tune the window size for

bias/variance trade-off

IV methods
• Good robust alternatives that do not require (or produce) a noise

model

Subspace Methods
• Interesting alternative for MV linear systems. No iterative search

for model. Theoretical properties worse. Several auxiliary
variables to select

Regularization
• Useful complement to PEM methods, especially for short data

records.
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