Sysid Course VT1 2016 Linear Models – Special Issues

Chapters 6 and 7 in Text Book

Lennart Ljung

Automatic Control, ISY, Linköpings Universitet

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

Goal

Goal: Estimate a linear model in discrete or continuous time with or without an additive noise model.

$y(t) = G(\sigma)u(t) + v(t)$

 σ is differentiation operator p or shift operator q. The corresponding frequency response function (FRF) is $G(i\omega)$ or $G(e^{i\omega})$. Estimating a linear system is the same as estimating its FRF-curve.

Outline

- Frequency Domain Data: Parametric and Nonparametric Fitting
- The Instrumental Variable Method
- Subspace Techniques
- Regularization

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

4(53)

encv	Response	Function.	FRF

Recall: Th	e Frequency	Response	Function, FRF	
ightarrow 170				

A linear system is characterized by its transfer function G(s) (the Laplace transform of its impulse response).

Evaluated on the imaginary axis, this gives the FRF $G(i\omega)$, which describes the response to sinusoidal inputs:

 $u(t) = A\cos(\omega t), \quad y(t) = A_1\cos(\omega t + \phi)$ $A_1 = |G(i\omega)|A, \quad \phi = \arg G(i\omega)$

This could be a way of determining *G* (frequency analysis). Discrete time: G(z), *z*-transform, unit circle, $G(e^{i\omega})$ All Frequencies at the same time:

$Y(i\omega) = G(i\omega)U(i\omega) + \text{transient}$

 \boldsymbol{Y} and \boldsymbol{U} are the Fourier transforms of the output and input.

The Bode Plot

ightarrow 28

5(53

 $|G(i\omega)|$ and arg $G(i\omega)$ vs ω

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

Frequency Response Data (FRD)

- From frequency analyzers or computed/estimated using FFT techniques
 - $\hat{\hat{G}}(i\omega_k)$ or $\hat{\hat{G}}(e^{i\omega_k}), k = 1, 2, \dots, N$
 - Possibly with uncertainty measures $W(i\omega_k)$
 - Simple estimate, ETFE:

$$\hat{G}_N(i\omega) = rac{Y_N(i\omega)}{U_N(i\omega)}$$
 Variance: $W(i\omega) = rac{\Phi_v(\omega)}{|U_N(i\omega)|^2}$

where $\Phi_v(\omega)$ is the spectrum of the output disturbance

• Other estimates (spectral analysis): smoothed versions of ETFE (more later)

Data from Dynamic Systems: Input-Output Data \rightarrow 228

- Discrete time
 - Time-domain: $\{u(1), y(1), u(2), y(2), \dots, u(N), y(N)\}$
 - Frequency-domain { $U_N(e^{i\omega_1}), Y_N(e^{i\omega_1}), \dots, U_N(e^{i\omega_N}), Y_N(e^{i\omega_N})$ } DFT-grid: $\omega_k = 2\pi k/N$

$$U_N(z) = \frac{1}{\sqrt{N}} \sum_{k=1}^N u(k) z^{-k}$$

Continuous time

• Frequency-domain $\{U_N(i\omega_1), Y_N(i\omega_1), \dots, U_N(i\omega_N), Y_N(i\omega_N)\}$

$$U_N(s) = rac{1}{\sqrt{N}}\int_0^N u(t)e^{-st}dt$$

(Band limited, periodic data)

Lennart Ljung	AUTOMATIC CONTROL REGI ERTEKNIK	$ $
Sysid Course VT1 2016: Linear Models - Special Issues	LINKÖPINGS UNIVERSITET	

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

ightarrow 173

REGLERTEKNIK

From Introductory notes: Any linear model. Take the Fourier Transforms of the signals:

$$\begin{split} y(t) &= G(q,\theta)u(t) + H(q,\theta)e(t) \\ FT: Y(e^{i\omega}) &= G(e^{i\omega},\theta)U(e^{i\omega}) + H(e^{i\omega},\theta)E(e^{i\omega}) \end{split}$$

Examples of parametrizations of $G(q, \theta), \ldots$

$$G(q, \theta) = \frac{B(q)}{F(q)}; \quad H(q, \theta) = \frac{C(q)}{D(q)}$$
$$y(t) = \frac{B(q)}{A(q)}u(t) + \frac{1}{A(q)}e(t) \text{ or }$$
$$G(q, \theta) = C(\theta)(qI - A(\theta))^{-1}B(\theta).$$
$$H(q, \theta) = C(\theta)(qI - A(\theta))^{-1}K(\theta) + I$$

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

Non-Parametric Methods: Smoothing the ETFE ightarrow 178

Intuitively, think of sliding a window of width BW along the ETFE and average what you see in the window:

The width *BW* will affect the variance of the smoothed estimate [Large $BW \Rightarrow$ many values to average \Rightarrow small variance.] and the bias and frequency resolution [small $BW \Rightarrow$ small bias and near-by peaks are distinguishable.]

Prediction Error Fit to Parametric Models

With a linear model, and a quadratic prediction error loss (ℓ(ε)) = ε²) we can apply Parseval's relation to the criterion function Σε²(t), and with Y_N and U_N being the DFTs:

$$V_{N}(\theta) = \sum_{k=1}^{M} |Y(e^{i\omega_{k}}) - G(e^{i\omega_{k}}, \theta)U_{N}(e^{i\omega_{k}})|^{2} / |H(e^{i\omega_{k}}, \theta)|^{2} \text{ or}$$
$$V_{N}(\theta) = \sum_{k=1}^{M} \left| \frac{Y_{N}(e^{i\omega_{k}})}{U_{N}(e^{i\omega_{k}})} - G(e^{i\omega_{k}}, \theta) \right|^{2} \cdot \left| \frac{U_{N}(e^{i\omega_{k}})}{H(e^{i\omega_{k}}, \theta)} \right|^{2}$$

Formal and intuitive interpretation ...

$$\varepsilon = \frac{1}{H}(y - Gu)$$

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

Spectral Analysis: Blackman-Tukey ightarrow 181

The smoothing of the EFTE can also be done on time domain data.

- 1. Form the covariance functions $\hat{R}_u(\tau) = \frac{1}{N} \sum_{t=1}^N u(t) u(t-\tau)$ (and similar for $\hat{R}_{yu}(\tau)$)
- 2. Form the weighted Fourier transforms $\hat{\Phi}_u(\omega) = \sum_{\tau=-\infty}^{\infty} w_{\gamma}(\tau) \hat{R}_u(\tau)$ Same for $\hat{\Phi}_{yu}(\omega)$
- **3.** Form the estimate $\hat{G}(e^{i\omega}) = \frac{\Phi_{yu}(\omega)}{\Phi_{u}(\omega)}$
- 4. the (time window) $w_{\gamma}(\tau)$ is the inverse FT of the frequency window that was slided along the ETFE on the previous slide. Often $w_{\gamma}(\tau) = 0$ for $|\tau| > \gamma$. Due to the time/frequency links $\gamma \sim 1/BW$.
- 5. So large γ (small *BW*) means good frequency resolution and large variance and v.v.

The Problem with LS

Consider the ARX-model

$$A(q)y(t) = B(q)u(t) + w(t)$$

or $y(t) = \varphi^{T}(t)\theta_{0} + w(t)$
 $\varphi^{T}(t) = \begin{bmatrix} -y(t-1) & \dots & -y(t-n) & u(t-1) & \dots & u(t-n) \end{bmatrix}$
 $\theta_{0} = \begin{bmatrix} a_{1} & \dots & a_{n} & b_{1} & \dots & b_{n} \end{bmatrix}^{T}$

$$\begin{aligned} \hat{\theta} &= [\sum \varphi(t)\varphi^{T}(t)]^{-1}\sum \varphi(t)y(t) \\ \hat{\theta} &= \theta_{0} + [\sum \varphi(t)\varphi^{T}(t)]^{-1}\sum \varphi(t)w(t) \end{aligned}$$

If w is not white, $\varphi(t)$ and w(t) are correlated and θ will be biased!

Frequency Domain Data: Parametric and Nonparametric Fitting

The Idea Behind IV

Consider the linear regression $\hat{y}(t|\theta) = \varphi^T(t)\theta$ (This could be an ARX-model, but could also be something else) Suppose that the data is generated by

ightarrow 224

 $y(t) = \varphi^T(t)\theta_0 + w(t)$

for some noise sequence w(t).

Choose a sequence of vectors – the instruments – $\zeta(t)$ (of the same dimension as φ). Multiply it with the equation above and sum over *t*:

$$\frac{1}{N}\sum \zeta(t)y(t) = \frac{1}{N}\sum \zeta(t)\varphi^{T}(t)\theta + \frac{1}{N}\sum \zeta(t)w(t)$$

which suggests the estimate

 $\hat{\theta}_{N} = [\frac{1}{N} \sum_{t=1}^{N} \zeta(t) \varphi^{T}(t)]^{-1} \frac{1}{N} \sum_{t=1}^{N} \zeta(t) y(t)$

(Note that $\zeta(t) = \varphi(t)$ gives the least squares method!)

Note that

$$\hat{ heta}_N = heta_0 + [rac{1}{N}\sum_{t=1}^N \zeta(t) arphi^T(t)]^{-1} rac{1}{N}\sum_{t=1}^N \zeta(t) w(t)$$

ightarrow 225

- $\zeta(t)$ are the *instruments*. The requirements on them are
- 1. $\zeta(t)$ and w(t) be *uncorrelated*
- 2. $\zeta(t)$ and $\varphi(t)$ be *correlated* so that the indicated inverse in $\hat{\theta}_N$ exists.

Under these assumptions $\hat{\theta}_N$ will converge to the true value of the parameters as the number of data tends to infinity.

Optimal Choices of Instruments

19(53)

What are the "best choices" of filters N and M? To answer that we must consider a variant of IV that allows prefiltering:

$$\hat{\theta}_N = [\frac{1}{N} \sum_{t=1}^N \zeta(t) \varphi_F^T(t)]^{-1} \frac{1}{N} \sum_{t=1}^N \zeta(t) y_F(t)$$
$$\varphi_F(t) = L(q) \varphi(t)$$
$$y_F(t) = L(q) y(t)$$

A general, but somewhat complicated, expression for how the variance of $\hat{\theta}_N$ depends on L, M and N can be given. The choices that minimize this covariance matrix depend on the true system.

Basic choice: Choose $\zeta(t)$ as the "noise free" counterpart of $\varphi(t)$ More specifically: Let N(q) and M(q) be two filters and define x(t)from the input sequence as

$$N(q)x(t) = M(q)u(t)$$

and take

$$\zeta(t) = \begin{bmatrix} -x(t-1) & \cdots & -x(t-na) & u(t-1) & \cdots & u(t-nb) \end{bmatrix}^T$$

It can be shown that for "almost all" choices of filters M and N (of orders at least as large as the model) this will satisfy the two requirements on the previous slide

Lennart Ljung Svsid Course VT1 2016: Linear Models – Special Issues AUTOMATIC CONTROL REGLERTEKNIK LINKÕPINGS UNIVERSITET

Optimal Choices of Instruments, cnt'd

20(53)

Suppose that the true system is given by

$$y(t) = G_0(q)u(t) + H_0(q)e(t)$$

 $G_0(q) = \frac{B_0(q)}{A_0(q)}$

where H_0 is known and G to be estimated. The optimal choices of instruments – in the sense that the variance of the estimates is minimized – is then obtained for

- $\blacksquare N(q) = A_0(q)$
- $\bullet M(q) = B_0(q)$
- $\blacksquare L(q) = \frac{1}{A_0(q)H_0(q)}$

In practice, G_0 and H_0 are not known. A feasible way of choosing almost optimal instruments is then the following 4-step method (*iv4*):

- 1. Estimate \hat{A}_1 and \hat{B}_1 using LS
- 2. Use IV with $L = 1, N = \hat{A}_1$ and $M = \hat{B}_1$. This gives \hat{A}_2 and \hat{B}_2 .
- 3. Calculate the residuals $w(t) = \hat{A}_2(q)y(t) \hat{B}_2(q)u(t)$ and fit a filter *L* to the AR-model L(q)w(t) = e(t) using LS. This gives $\hat{L}(q)$
- 4. Use IV with $L = \hat{L}$, $N = \hat{A}_2$ and $M = \hat{B}_2$. This gives the final estimates.

- Good method to quickly get the dynamics of a system
- Be careful when data have been collected in closed loop
- Does not provide a noise model
- Good alternative to OE-structures.

 Lenart Ljung
 <t

- Frequency Domain Data: Parametric and Nonparametric Fitting
- The Instrumental Variable Method
- Subspace Techniques
- Regularization

in Data: Parametric and Nonparametric Fitting

Estimate the matrices A, B, C, D.

Suppose, for a second, that the states x(t) were known. Then the above expression is a linear regression: Let

x(t+1) = Ax(t) + Bu(t) + w(t)y(t) = Cx(t) + Du(t) + v(t)

$$Y(t) = \begin{bmatrix} x(t+1) \\ y(t) \end{bmatrix}$$
$$\Phi(t) = \begin{bmatrix} x(t) \\ u(t) \end{bmatrix}$$

25(53)

Then

$$Y(t) = \Theta \Phi + \nu(t)$$

with

.

$$\Theta = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
$$\nu = \begin{bmatrix} w(t) \\ v(t) \end{bmatrix}$$

All matrices of interest, including the covariance matrix of ν could then be estimated using the Least Squares method. With the covariance matrix of ν , the optimal Kalman gain could then be computed.

- QR-step
- No iterations
- Need to select auxiliary variables: (essentially the ARX orders) for which the predictors - state candidates - are estimated)
- Quality properties not fully understood

Fact: All (interesting) states can be found as linear combinations of the *k*-step ahead predictors $\hat{y}(t+k|t), k=1,\ldots,n$ (the predicted value of y(t + k) based on input-output data up to time t. No prediction of the effect of inputs after time t.)

So estimate these *k*-step ahead predictors using ARX-models, and determine from these the good linear combinations to form the states х.

 $\Gamma \hat{v}(t+1|t)$

 $Y^{x}(t) =$

Use these *x* to form the linear regression to estimate *A*, *B*, *C*, *D*.

Sysid Course VT1 2016: Linear Models - Special Issues

Let

Lennart Liung

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

REGLERTEKNIK

28(53)

So, all (Kalman) states x(t), in any state-space representation can be written as linear combinations of $Y^{x}(t)$:

for some L. The (minimal) order of the state-space representation is the rank of $Y^{x}(t), t = 1, \ldots,$

Once x(t), t = 1, ..., N have been determined, proceed as above to find the state-space matrices.

 $x(t) = LY^{x}(t)$

So, with $Y^{x}(t), t = 1, ..., N$ given, pick L, so that x(t) becomes well conditioned. This includes the choice of dimension of x.

 $Y^N = \begin{bmatrix} Y^x(1) & Y^x(2) & Y^x(N) \end{bmatrix}$

How to estimate the predictors:

$$y(t+k) = \sum_{j=-\infty}^{t+k} h_{t+k-j}^{u}u(j) + h_{t+k-j}^{e}e(j)(*)$$
$$\hat{y}(t+k|t) = \sum_{j=-\infty}^{t} h_{t+k-j}^{u}u(j) + h_{t+k-j}^{e}e(j)$$

e(t) and y(t) have an invertible relationship.

 $y(t+k) = \sum_{j=-\infty}^{t+k-1} \tilde{h}^{u}_{t+k-j}u(j) + \tilde{h}^{e}_{t+k-j}y(j) + e(t+k) + \tilde{h}^{u}_{0}u(t+k)(**)$

so replace e(j) in (*) by y and u from (**): ...

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

Typically, apply SVD to

More Formal Calculations, 4/5

31(53)

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

REGLERTEKNIK

$$\begin{split} y(t+k) &= \sum_{j=-\infty}^{t+k} \tilde{h}_{t+k-j}^{u} u(j) + \sum_{j=-\infty}^{t} \tilde{h}_{t+k-j}^{e} y(j) + \sum_{j=t+1}^{t+k} h_{t+k-j}^{e} e(j) \\ \hat{y}(t+k|t) &= \sum_{j=-\infty}^{t} \tilde{h}_{t+k-j}^{u} u(j) + \tilde{h}_{t+k-j}^{e} y(j) \end{split}$$

Now, truncate the first equation at $j = t - n_1$ rather than at $j = -\infty$, and estimate \tilde{h} using the least squares method. Use these estimates in the second equation to estimate \hat{y} . The value n_1 corresponds to the "auxiliary order". All of this can be done numerically efficient by projections.

The Subspace Method Algorithm, 5/5

The essence of the subspace methods is as follows

- 1. Select *n* and n_1 and estimate $Y^x(t)$, t = 1, ..., N.
- 2. Determine a good choice of L in $x(t) = LY^{x}(t)$ (including dimension) using SVD or similar decomposition
- 3. Possibly determine n by visual inspection of the singular values in the above expression.
- 4. Estimate *A*, *B*, *C* and *D* by least squares in the state-space model, treating *x*(*t*) as a measured sequence.
- 5. Use the covariance matrix of ν to compute the Kalman Filter gain *K*.

33(53)

Any estimated model is incorrect. The errors have two sources:

- Bias: The model structure is not flexible enough to contain a correct description of the system.
- Variance: The disturbances on the measurements affect the model estimate, and cause variations when the experiment is repeated, even with the same input.

Mean Square Error (MSE) = $|Bias|^2$ + Variance. When model flexibility \uparrow , Bias \downarrow and Variance \uparrow . To minimize MSE is a good trade-off in flexibility. In state-of-the-art Identification, this flexibility trade-off is governed primarily by model order. May need a more powerful tuning instrument for bias-variance trade-off.

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues	AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET	\$
--	---	----

Estimate a Model: State-of-the-Art

We will try the state-of-the art approach: Estimate SS models of different orders. Determine the order by the AIC criterion.

```
for k=1:30
    m{k} = ssest(z,k);
end
(dum,n) = min(aic(m{:}));
mss = m{n};
impulse(mss)
```


ightarrow 221

36(53)

Is this a good model? Preview: This IR has a fit of **79.42%** But, we can do better! Another choice of model order gives a fit of **82.95 %**. I will also show an estimate with **a 83.55%** fit.

Frequency Domain Data: Parametric and Nonparametric Fitting

- The Instrumental Variable Method
- Subspace Techniques
- Regularization (

AUTOMATIC CONTROL

REGLERTEKNIK LINKÖPINGS UNIVERSITET

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

An Example

35(53

Equipped with the tools from the previous lecture, let us now test some data z (selected but not untypical). The example uses complex dynamics and few (210) data, so this is a case where asymptotic properties are not prevalent. Find the Impulse Response (IR)! plot (z)

Linear Black-Box Models: Fundamental Role of ARX \rightarrow 336 37(53)

Recall: ARX: A(q)y(t) = B(q)u(t) + e(t)ARX can Approximate Any Linear System Arbitrary Linear System: $y(t) = G_0(q)u(t) + H_0(q)e(t)$ ARX model order $n, m : A_n(q)y(t) = B_m(q)u(t) + e(t)$ $\hat{y} = (1 - A(q))y(t) + B(q)u(t)$ – General linear predictor! as $N >> n, m \to \infty$ $[\hat{A}_n(q)]^{-1}\hat{B}_m(q) \to G_0(q), \ [\hat{A}_n(q)]^{-1} \to H_0(q)$ The ARX-model Is a Linear Regression Note that the ARX-model is estimated as a linear regression $Y = \Phi \theta + E$, (Φ containing lagged y, u and θ containing a, b) A convex estimation problem. AUTOMATIC CONTROL Lennart Ljung REGLERTEKNIK LINKÖPINGS UNIVERSITET Sysid Course VT1 2016: Linear Models - Special Issues

How to Curb Variance?

39(53)

Estimate ARX-model of order 10 and 30: Bode plots of models together with true system:

Order 10. Order 30. True. The high order model picks up the true curves better, but seem more "shaky". Look at Uncertainty regions!

ennart Ljung	AUTOMATIC CONTROL REGLERTEKNIK	\mathbf{A}	
Sysid Course VT1 2016: Linear Models – Special Issues	LINKÖPINGS UNIVERSITET		

Model Structures and Regularization
$$\rightarrow$$
 221 40(53)

The ARX approximation property is valuable, but high orders come with high variance.

Can we curb the flexibility that causes high variance other than by lower order? Regularization

Curb the Model's Flexibility!

$$V_N(heta) = \sum_{t=1}^N |arepsilon(t, heta)|^2 + \lambda (heta - heta^*)^T R(heta - heta^*)$$

41(5

The regularized criterion

 $V_N(\theta) = \sum_{t=1}^N |\varepsilon(t,\theta)|^2 + \lambda(\theta - \theta^*)^T R(\theta - \theta^*)$

Bayesian interpretation

 θ is a random vector which *a prior* (Gaussian) distribution with mean θ^* and covariance matrix $(\lambda R)^{-1}$

That means that with the regularized estimate $\hat{\theta}_N = \arg \min V_N(\theta)$ is the *Maximum A Posteriori* (MAP) Estimate.

Frequentist analysis of Regularized LSE

Assume true parameter θ_0 $Y = \Phi \theta_0 + E$: $\mathcal{E} E E^T = I$.

$$\mathcal{E}\hat{\theta}^R - \theta_0 = (R_N + \Pi^{-1})^{-1}\Pi^{-1}\theta_0$$

MSE:

$$\mathcal{E}[(\hat{\theta}^{R} - \theta_{0})(\hat{\theta}^{R} - \theta_{0})^{T}] = (R_{N} + \Pi^{-1})^{-1} \times (R_{N} + \Pi^{-1}\theta_{0}\theta_{0}^{T}\Pi^{-1})(R_{N} + \Pi^{-1})^{-1};$$

No regularization ($\Pi^{-1} = 0$): Unbiased and MSE = R_N^{-1} (Cramér-Rao bound) Best MSE?: Minimized by $\Pi = \theta_0 \theta_0^T$: MSE = $(R_N + \Pi^{-1})^{-1}$ How to select Π ?

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

REGLERTEKNIK

43(53)

Linear Regression – Regularization

The regularized criterion

$$V_N(\theta) = \sum_{t=1}^N |\varepsilon(t,\theta)|^2 + \lambda(\theta - \theta^*)^T R(\theta - \theta^*), \quad \lambda R = \Pi^{-1}$$

Regularization for a linear regression ($\theta^* = 0$) (Recall that ARX is a linear regression.)

$$Y = \Phi\theta + E$$
$$\hat{\theta}_N = \arg\min|Y - \Phi\theta|^2 + \theta^T \Pi^{-1}\theta$$

 Π is the Regularization Matrix (= the prior covariance matrix). Still quadratic in θ : The estimate will be

$$\hat{\theta}^R = (R_N + \Pi^{-1})^{-1} R_N \hat{\theta}^{LS} \quad R_N = \Phi \Phi^T$$

How to choose $\Pi ?$ How good is it? : Classical (frequentist) analysis next slide

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Marginal Likelihood for Regularized Linear Regression 44(53)

$$Y = \Phi \theta + E$$
, assume $E \in N(0, I)$
Parameterize prior covariance matrix.
 $\theta \in N(0, \Pi(\alpha))$
That means
 $Y \in N(0, \Phi \Pi(\alpha) \Phi^T + I)$

 \Rightarrow

The Maximum likelihood (ML) estimate of α based on Y, Φ is Estimate of Regularization Matrix

$$\hat{\alpha} = \arg\min Y^T Z(\alpha)^{-1} Y + \log \det Z(\alpha)$$
$$Z(\alpha) = \Phi \Pi(\alpha) \Phi^T + I$$

When estimating an ARX-model, we can think of the predictor

 $\hat{y}(t|\theta) = (1 - A(q))y(t) + B(q)u(t)$

as made up of two impulse responses, *A* and *B*. The vector θ should thus mimic two impulse responses, both typically exponentially decaying and smooth. We can thus have a reasonable prior for θ :

$$P(\alpha_1, \alpha_2) = \begin{bmatrix} P^A(\alpha_1) & 0\\ 0 & P^B(\alpha_2) \end{bmatrix} \qquad \text{Block Diagonal } A\&B$$

where the hyperparameters α describe decay and smoothness of the impulse responses.

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues

Software Issues

47(53)

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

REGLERTEKNIK

The MATLAB system Identification Toolbox, ver R2013b (released August 2013) now supports quadratic regularization for all linear and non-linear model estimation.

The regularized criterion

 $V_N(\theta) = \sum_{t=1}^N |\varepsilon(t,\theta)|^2 + \lambda(\theta - \theta^*)^T R(\theta - \theta^*),$

is supported by a field Regularization in all the
estimationOptions (arxOptions, ssestOptions,
procestOptions) etc.:

opt.Regularization.Lambda opt.Regularization.R opt.Regularization.Nominal (θ^*)

ARX-regularization tuning:

[L,R]=arxRegul(data,[na,nb,nk],Kernel)

Typical Kernels

"Kernel": Parameterization of *P*. Several kernels exist: DC.TC.SS.... Recall: impulse response

smooth and exponentially decaying

Lennart Ljung Sysid Course VT1 2016: Linear Models – Special Issues AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

48(53)

Our Test Data: State-of-the-Art

Recall: The state-of-the art approach: Estimate SS models of different orders. Determine the order by the AIC criterion.

Now, let us try an ARX model with na=5, nb=60. Estimate a regularization matrix with the 'TC' kernel (2 parameters, C, λ each for the A and B parts):

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

REGLERTEKNIK

Lennart Ljung Sysid Course VT1 2016: Linear Models - Special Issues

How Well Did Our Models mss And mr Do?

49(53)

The examined data were obtained from a randomly generated model of order 30:

 $y(t) = G_0(q)u(t) + H_0(q)e(t)$

The input is Gaussian white noise with variance 1, and e is white noise with variance 0.1. The impulse responses of G and H are shown at the right.

25

20

10 15

Lennart Liung Sysid Course VT1 2016: Linear Models - Special Issues

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Surprise ?

Lennart Liung

Sysid Course VT1 2016: Linear Models - Special Issues

ML beaten by an "outsider algorithm"!: That is a surprise!

There is a certain randomness in these data, but Monte-Carlo simulations substantiate the observed conclusion.

Even though ML is known to have the quoted optimal properties for best bias and variance, the observation is still not a contradiction.

Mean Square Error (MSE) = $|Bias|^2$ + Variance. Recall:

ML: Bias $\approx 0 \Rightarrow$: MSE = Variance = CR Lower bound for unbiased estimators

But with some bias, Variance could be clearly smaller then CRB

Recall for Lin Reg: CRB = $(\Phi\Phi^T)^{-1} > (\Phi\Phi^T + \Pi^{-1})^{-1}$ = MSE for best regularized estimated. More pronounced for short data

- Frequency Domain Data and Spectral Analysis
 - Parametric models can be estimate just as well from FD data.
 - Non-parametric Spectral Analysis: Tune the window size for bias/variance trade-off
- IV methods
 - Good robust alternatives that do not require (or produce) a noise
 model
- Subspace Methods
 - Interesting alternative for MV linear systems. No iterative search for model. Theoretical properties worse. Several auxiliary variables to select
- Regularization
 - Useful complement to PEM methods, especially for short data records.

