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Choosing a suitable model structure is prerequisite before

estimation. The choice of model structure is based upon

understanding of the physical systems. In system identi�cation thee

three most common models are

Black-box models. This assumes that the system is unknown

and model parameters adjustable without considering the

physical background.

Grey-box models. Assumes that part of the information about

the dynamics or some physical parameters are known, and the

model parameters might have some constraints.

The user-de�ned models.
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General linear models

A system can be described generally using the following equation,

which is known as the general-linear polynomial model or the

general-linear model

y(n) = q−kG
(
q−1,θ

)
u (n)+H

(
q−1,θ

)
e (n) (1)

where u(n) and y(n) are the input and output, e(n) is zero mean

white noise, G
(
q−1,θ

)
is the transfer function of the deterministic

part of the system and H
(
q−1,θ

)
is the transfer function of the

stochastic part of the system.

Simpler models that are a subset of the general-linear model

structure are possible, such as AR, ARX, ARMAX, Box-Jenkins,

and output-error structures.
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AR model.Used in the generation of models where outputs

are only dependent on previous outputs. Strictly speaking this

model structure es the model for a signal, not a system.

ARX model. Is the simplest model incorporating stimulus

signal, the estimation of this model is the most e�cient of the

polynomial methods since the solution always satis�es the

global minimum of the loss function. This model is preferable

when the model order is high but disturbances are part of

system dynamics.

ARMAX model. This model structures includes disturbance

dynamics, and are useful when dominating disturbances that

enter early in the process are present. This model has more

�exibility in the handling of disturbances modeling than the

ARX model.
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Box-Jenkins model. This structure provides a complete

model with disturbance properties modeled separately from

system dynamics, it is useful when the disturbances enter late

on the process.

Output-Error Model. This model structure describes the

system dynamics separately. No parameters are used for

modeling the disturbance characteristics.
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Some other models...

EWMA model. The exponentially weighted moving average

(EWMA) model is a particular case of the equation

σ
2
n =

m

∑
i=1

αiu
2
n−i

where the weights decrease exponentially as we move back through

time. This approach has the attractive feature that relatively little

data need to be stored. Is designed to track changes in the

volatility.
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ARIMA model. The autoregressive integrated moving

average (ARIMA) model is a generalization of an ARMA

model. These models are �tted to time series data either to

better understand the data or to predict future points in the

series (forecasting). They are applied in some cases where

data show evidence of non-stationarity, where an initial

di�erencing step (corresponding to the "integrated" part of

the model) can be applied to remove the non-stationarity.
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ARCH model. AutoRegressive Conditional Heteroskedasticity

(ARCH) models are used to characterize and model observed

time series. They are used whenever there is reason to believe

that the terms will have a characteristic size, or variance. This

models assume the variance of the current error term or

innovation to be a function of the actual sizes of the previous

time periods error terms: often the variance is related to the

squares of the previous innovations. ARCH models are

employed commonly in modeling �nancial time series that

exhibit time-varying volatility clustering, i.e. periods of swings

followed by periods of relative calm.
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Prediction error

The essence of a model is its prediction aspect, and is also judged

its performance in this respect. Let the prediction error given by a

certain model M (θ?) given by

ε (t,θ?) = y (t)− ŷ (t | θ?) (2)

When a data set ZN is known, these errors can be computed for

t = 1,2, ...,N.

A good model is one that is good at predicting, that is, one that

produces small prediction errors when applied to the observed data.

A guided principle for parameter estimation is:

Based on ZN we can compute the prediction error ε (t,θ) using
(2). At time t = N, select θ̂N so that the prediction errors

ε

(
t, θ̂N

)
, t = 1,2, ...,N, become as small as possible.

Lecture 8



The models
The methods

Prediction error
Statistical framework
Instrumental Variables

Outline

1 The models

2 The methods

Prediction error

Statistical framework

Instrumental Variables

Lecture 8



The models
The methods

Prediction error
Statistical framework
Instrumental Variables

Minimizing prediction errors

The prediction-error in (2) can be seen as a vector in RN . The size

of this vector could be measured using any norm in RN . Let the

prediction-error sequence be �ltered through a stable linear �lter

εF (t,θ) = L(q)ε (t,θ) , 1≤ t ≤ N

Then use the following norm:

VN

(
θ ,ZN

)
=

1

N

N

∑
t=1

l (εF (t,θ)) (3)

where l (�) is a scalar-valued function. The functionVN
(
θ ,ZN

)
is,

for a given ZN , a well-de�ned scalar-valued function of the model

parameter. The estimate θ̂ is then de�ned by minimization of (3):

θ̂N = θ̂N

(
ZN
)
= arg min

θεDM

VN

(
θ ,ZN

)
(4)
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The term prediction-error identi�cation methods (PEM) is used for

the family of approaches that corresponds to (4). Particular

methods with speci�c names are obtained as special cases of

(4),depending on the choice of l (�), the choice of pre�lter, the

choice of model structure, and, in some cases, the choice of

method which the minimization is realized.
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Linear regressions

Linear regression model structures are very useful in describing

basic linear and nonlinear systems. The linear regression employs a

predictor

ŷ (t | θ) = ϕ
T (θ)+µ (t) (5)

that is linear in θ . Here ϕ is the vector of regressors, the regression

vector. In (5), µ(t) is a known data-dependent vector. For

notational simplicity µ(t) = 0.
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Least-squares criterion

With (5) the prediction error becomes

ε (t,θ) = y (t)−ϕ
T (t)θ (6)

and the criterion function is

VN

(
θ ,ZN

)
=

1

N

N

∑
t=1

1

2

[
y(t)−ϕ

T (t)θ

]2
(7)

This is the least-squares criterion for the linear regression (5), and

it can be minimized analytically, which gives, provided the indicated

inverse exists,

θ̂
LS
N = arg minVN

(
θ ,ZN

)
=

[
1

N

N

∑
t=1

ϕ (t)ϕ
T (t)

]−1
1

N

N

∑
t=1

ϕ (t)y (t)

(8)

the least-squares estimate (LSE).
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Maximum Likelihood

In the are of statistical inference and system identi�cation, we deal

with the problem of extracting information from observations that

could be unreliable, these are then described as realizations of

stochastic variables. Suppose that the observations are represented

by the random variable yN that takes values in RN . The probability

density function (PDE) is given by

P
(
yNεA

)
=
∫
xNεA

fy

(
θ ;xN

)
dxN (9)

Here θ is a d -dimensional parameter vector that describes

properties of the observed variable and are unknown. The purpose

of the observation is to estimate the vector θ using yN ,

accomplished by θ̂
(
yN
)
. If the observed value of yN is yN? , then

the resulting estimate is θ̂? = θ̂
(
yN?
)
.
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The probability that the observation indeed should take the value

yN? is thus proportional to fy
(
θ ;yN?

)
. This function is called the

likelihood function. A reasonable estimator of θ could then be to

select it so that the observed event becomes �as likely as possible�.

That is

θ̂ML(y
N
? ) = arg max

θ

fy

(
θ ;yN?

)
(10)

where the maximization is performed for �xed yN? . This function is

known as the maximum likelihood estimator (MLE).
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Maximum a posteriori

For the Bayesian approach the parameter itself is thought of as a

random variable, with this view we consider θ to be a random

vector with a certain prior distribution. The observations yN are

correlated with this θ .
After the observations have been obtained, we then ask for the

posterior PDF, from this, di�erent estimates of θ can be

determined. This is known as the maximum a posteriori estimate

(MAP). The posterior PDF as a function of θ is thus proportional

to the likelihood function multiplied by the prior PDF.

Often the prior PDF has an insigni�cant in�uence. The MAP

estimate

θ̂MAP(y
N) = argmax

θ

{
fy

(
θ ;yN

)
•gθ (θ)

}
is close to the MLE.
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Expectation Maximization

The expectation maximization (EM) algorithm computes

maximum likelihood (ML) estimates of unknown parameters θ

in probabilistic models involving latent variables Z 1.

The EM algorithm is an iterative method that alternates

between computing a conditional expectation and solving a

maximization problem, hence the name expectation

maximization.

The strategy of this algorithm is to separate the original ML

problem into two linked problems, each of which is hopefully

easier to solve than the original problem.
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The key idea is to consider the joint log-likelihood function of both

the observed variables Y and the latent variables Z

Lθ (Z ,Y ) = log pθ (Z ,Y ) (11)

and then assume that the latent variables Z were available to us.

This algorithm has 2 steps. The �rst one is the expectation (E)

step, that consists in computing the following

Q (θ ,θk), E {log pθ (X ,Y ) | Y }=
∫
log pθ (X ,Y )pθk

(X | Y )dX

(12)

and then the maximization (M) step that amounts to solving the

following problem

θk+1 = argmax
θ

a(θ ,θk) (13)
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Instrumental Variables

Consider again the linear regression model ŷ (t | θ) = ϕT (t)θ . The

LS estimate can also be expressed as

θ̂
LS
N = sol

{
1

N

N

∑
t=1

ϕ (t)
[
y (t)−ϕ

T (t)θ

]
= 0

}
(14)

Now suppose that the data actually can be described by

y (t) = ϕ
T (t)θ0+ν0 (t) (15)

The LSE θ̂N will not tend to θ0 in typical cases, because of the

correlation between ν0 (t) and ϕ (t). Let us try instead a general

correlation vector ζ (t) in (11).This is called an

instrumental-variable method (IV).
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The elements of are then called instruments or instrumental

variables. This gives

θ̂
IV
N = sol

{
1

N

N

∑
t=1

ζ (t)
[
y (t)−ϕ

T (t)θ

]
= 0

}
(16)

or

θ̂
IV
N =

[
1

N

N

∑
t=1

ζ (t)ϕ
T (t)

]−1
1

N

N

∑
t=1

ζ (t)y (t) (17)

provided the indicated inverse exists.

For this method we could say that the instruments must be

correlated with the regression variables but uncorrelated with the

noise.
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An example

Consider the problem of estimating the variance of a variable X

from m observations on X when the underlying distribution is

normal with zero mean. The observations are u1,u2, ...,um. The
variance is ν . The likelihood of ui being observed is de�ned as the

probability density function when X = ui

1√
2πv

exp

(
−u2i
2v

)
the likelihood of m observations occurring in the order in which

they are observed is

m

∏
i=1

[
1√
2πv

exp

(
−u2i
2v

)]
Using the MLE, the best estimate of ν is the value that maximizes

this expression.
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Taking logarithms of the previous expression and ignoring constant

multiplicative factors, we wish to maximize

m

∑
i=1

[
−ln (ν)−

u2i
ν

]
or

−mln (ν)−
m

∑
i=1

u2i
ν

di�erentiating this with respect to ν and setting the resulting

equation to zero, the MLE estimator of ν is

1

m

m

∑
i=1

umi
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Appendix For Further Reading

For Further Reading I

Ljung L.

System Identi�cation. Theory for the user.

Prentice Hall, 1987.

Schön T.

An Explanation of the Expectation Maximization Algorithm

Technical report from Automatic Control at LiU, 2009.
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