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Girsanov Theorem

General assumption for this section:

Let {(X(t),Ft)}t≥0 be anm-dimensional progressively measurable process where
{Ft}is the Brownian �ltration with

t∫
0

X2
i (s)ds <∞ a.s. P for all t ≥ 0, i = 1, ...,m.

Let further

Z(t,X) := exp

− m∑
i=1

t∫
0

Xi(s)dWi(s)−
1

2

t∫
0

‖X(s)‖2 ds


As the argument in Z(t,X) is an Ito process, the Ito formula, this implies

Z(t,X) = 1−
m∑
i=1

t∫
0

Z(s,X)Xi(s)dWi(s)

Thus, Z(t,X) is a continuous local martingale with Z(0, X) = 1. As Z(t,X)
is also positive, it is a super-martingale. If Z(t, x) is even a martingale then
we have E(Z(t,X)) = 1 for all t ≥ 0. Then, for all T ≥ 0 we can de�ne a
probability measure QT for FT via

QT (A) := E(1A · Z(T,X)) for AεFT (1)

Hence, Z(T,X)is the Radon-Nikodym density of QT with respect to P . The
so-de�ned family of probability measures has the following consistency property

QT (A) = Qt(A)

for all AεFt, tε [0, T ] ,because we have

QT (A) = E(1A · Z(T,X)) = Qt(A)

In particular, for bounded stopping times 0 ≤ τ ≤ T and AεFτ the optional
sampling theorem yields
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QT (A) = E(1A · Z(T,X)) = E(E(1A · Z(T,X) | Fτ )) = Qτ (A)

The following theorem now demonstrates the way a QT − Brownian motion
WQT (t) can be constructed from a P -Brownian motion W (t) via a change of
measure from P to QT .

Theorem. Let the process Z(t,X) be a martingale and de�ne the process{
(WQ(t),Ft)

}
t≥0

by

WQ
i (t) := Wi(t) +

t∫
0

Xi(s)ds, 1 ≤ i ≤ m, t ≥ 0

Then, for each �xed Tε[0,∞) the process
{

(WQ(t),Ft)
}
tε[0,T ]

is an m-dimensional

Brownian motion on (Ω,FT , QT )where the probability measure QT is de�ned in
(1).
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