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@ Continuous-time processes
@ Introduction

A stochastic process for which the index set T is an interval is called
a continuous time process. The index set T is defined as [0, o).

Counting process. Let N(-) = {N(t),t >0} a stochastic process
where N(t) represents the number of various outcomes in a system
over time. Here N(t) is integer, and if s<t then N(s)<N(t).
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Consider X(-) = {X(t),t > 0} a stochastic process . It is said that . .
X(-) has ()= {X(),£ =0} P o Continuous-time processes
a) independent increments if for any n > 1 and for Le
0<ty<t <. <t, the increments o Levy process

X(t1) — X(to), X(t2) — X(t1), ..., X (tn) — X(tn-1) (1)

are independent.
b) stationary increments if for any t >0 and h > 0 the probability
distribution of any increment X(t+ h)— X(t) depends only on

hie.,
X(t+h)—X(t) ~X(s+h)—X(s)Vs,t >0
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@ Continuous-time processes

A stochastic process X(-) = {X(t), t >0} is a Lévy process if
a) X(0)=0a.s. @ Poisson process

b) X(-) has independent and stationary increments, and
c) X(+) is a stochastic continuous process.

The most well known Lévy processes are the Poisson process and
the Wiener process.
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Poisson process

Define a continuous-time counting process N(-) = {N(t), t >0}
and a positive number A. The process N(-) is a Poisson process
with a rate parameter A if

a) N(-) has independent increments and

b) N(-) has stationary increments such that

N(t+h)— N(t) ~ Poi(Ah) ¥t >0,h>0
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@ Continuous-time processes

@ Brownian Motion
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A process W(-) = {W(t), t >0} is a Wiener process, or a
Brownian motion, if

a) W(0):=0,

b) has independent increments, and

c) has stationary increments with

W(t+ h)— W(t) ~ N(0,62h) ¥Vt >0,h >0

where o is a positive constant. If 62 =1, it is said that W(-) is a
standard Wiener process.

@ Stochastic differential equations
@ Introduction
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Stochastic differential equations

The irregularity of the sample paths of N makes the equation
intractable mathematically. A solution should be a solution of the
random integral equation

An ordinary differential equation % = f(t,x) can be replaced by a

random differential equation

t t
X Fex.y) X(6)=X(t0) + [ f(sX(s)ds+ [gls. X(S)N(s)ds  (2)
to to

where Y = Y(t) represents some stochastic input process. In ) ) . ] ) .
particular is not possible to interpret it as an ordinary differential smce.th.e last integral in (2) cannot be defined in any meaningful
equation along each path and the solution is a stochastic process. way, it is replaced by an integral of the form
This happens when the differential equation has the form ‘

dx [ (s x ()W (s)

g:f(t7X)+g(t7X)N }0
with N being a Gaussian white noise process. where W is the Wiener process.
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The impact here is that the integral inherits many of the
probabilistic properties of the Wiener process and the corresponding
calculus will differ from the Stieltjes case. The main instrument of
this calculus is Ito s formula, that will yield a stochastic equation
for any sufficiently smooth function of a solution.

Ito’s formula is the basis for any analysis of solutions of
stochastic equations along the lines of the qualitatives
approaches used in ordinary differential and integral @ Stochastic differential equations
equations.

. - @ Ito's formula
General assumption. Let (Q,F,P) be a complete probability

space equipped with a filtration {F;}; satisfying the usual
conditions, and assume that on this space a Brownian motion
{(Wi, Ft)} o) With respect to this filtration is defined.
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One-dimensional Ito formula

Definition

Let (W(t), Ft);efo.) be an m-dimensional Brownian motion,
meN.

1) (X(t), Fe)iejo) is called a real-valued Ito process if for all t >0
it admits the representation

X(t) :X(0)+/f(5)ds+/g(s)dW(s)
0 0
= X(0)+ fsds+m i(s)dW(s)a.s. P.
0) 0/() J_)::IO/gm (s)

2) An n-dimensional lto process X = (X1, .., X(") consists of a
vector with components being real-valued Ito processes.

Stochastic differential equations

Let W; be a one-dimensional Brownian motion, and X; a
real-valued lto process with

t t
X; :X0+/1’5ds+/gdes
0 0

Let f: R — R be twice continuously differentiable. Then, for all
t >0 we have

F(X0) = f(X0)+/f’(X5)dXS+%/f/’(xs)d<x>s
0 0

= f(Xo) + Jo (F/(Xs) - Ks+ 3 - F"(Xs) - HZ)ds
+ Je f'(Xs)HsdWs a.s. P.

All integrals appearing above are defined.

Stochastic differential equations

Multi-dimensional Ito formula

Remark: The Ito formula differs from the fundamental theorem of
calculus by the additional term J - [f f”(X;)d (X),, where the
quadratic variation (X), is an Ito process.

st

Differential notation. To state Ito’s formula it is convenient to
use the symbolic differential notation

df (Xe) = £'(Xe)dXe + % F(Xe)d (X),

Let X(t) = (X1(t),...,Xn(t)) be an n-dimensional Ito process with

Xi(t) :X,-(O)+/F,—(s)ds+ f“l /G,-j(s)dvvj(s), =1,
0 /=19

where W(t) = (Wi (t),.., Wmn(t)) is an m-dimensional Brownian
motion. Further let h:[0,00) x R" — R be a C12 — function i.e. h
is continuous, continuously differentiable with respect to the first
variable (time) and twice continuously differentiable with respect to
the last n variables (space). We then have

B(E, X0 (), s Xa(t) = h(0,x1.(0), ... X (0)
+[0t ht(S’Xl(S)v "'7X"(S))d5+21"1:1 .fot hXi(val(S)% ...,X,,(S))dX,'(S)
3 o1 Jo b (5, X1(5), -0 Xa(s))d (X3, Xj)
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The question investigated in this section is given by

dX; = —aXydt + odB; with Xy = xg 3)

where o and o are positive constants. This model became well
known after 1931, when it was used by the physicists Orsntein and

© Stochastic differential equations Uhlenbeck to study behavior of gasess. In finance this process was
used in one of the first stochastic models for interest rates. In that
context, X; was intended to capture the deviation of an interest

@ Ornstein-Uhlenbeck processes rate around a given fixed rate.

Even when this equation has a simple solution, this is not of the
form f(t,B), so the method based on Ito’s formula is useless.

Stochastic differential equations
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Solving O-U SDE For the coefficients of (4) to mach those of equation (3), we only

i i i i i need to satisfy the simple equations
It is possible to look for a solution to equation (3) in the larger

class of processes that can be written as a(t) —a and a(t)b(t) =
a(t) B
X, = a(t){xo-i-/b(s)st} the solution to equation (3) is given by
0
applying the product rule we find that ; ;
& Xe=e "{xg+o0 /eo‘sst} =xpe *+o /e’“(t’s)st (5)
0 0

Here we have that E(X;) = xoe~*' , and using the Ito isometry to
compute the variance of X;, we find

X, = 2 (£){x0 + /b(s)st}dtJra(t)b(t)dBt
o

If we assume that a(0) =1 and a(t) > 0 for all t >0, then the

process defined is a solution of the SDE: t o2

Var(X;) = 2 /e’za(t’s)ds = ﬁ{l —e720t)
0

o2

/
dX, = %x,dw a(t)b(t)dB; with Xo = xo (4) 2a
a
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Definition

Let (Q2,F,P) be a given probability space and T € R. Defining
{Xt,t € T} random variables on Q and {F;,t € T} a collection of
sub-o-fields of F. Then

a) {F:,t € T} s a filtration of F if the collection is not decreasing, If the last equality is replaced for > or <iie., forall s <t

ie.,
E(X¢ | Fs) > Xsor E(X¢ | Fs) < Xs
FsChVsteT, withs <t then we have that {X;,F;, t € T} is a submartingale or a
b) the collection {X;,t € T} is adapted to the filtration {F;,t € T} supermantigale respectively.

if is Fs-measurable forall t € T
c) {X;,t € T} is a martingale with respect to {F;,t € T} if
o {F;,t € T} is a filtration of F
@ {X;,t € T} is adapted to {F;,t € T}
e Xy CLLVVte T
@ E(X¢| Fs)=XVs,t € T, withs <t



Girsanov Theorem
General assumption for this section:

Let {(X (), F})};~( be an m-dimensional progressively measurable process where
{F;}is the Brownian filtration with

¢
/Xf(s)ds <ooa.s. P forallt>0,i=1,..,m.
0

Let further
m t 1 t
Z(t, X) = exp —Z/Xi(s)dwi(s)—§/\|X(s)||2ds
0 0

1=1
As the argument in Z(¢, X) is an Ito process, the Ito formula, this implies

m

2(6X) =1-% / Z(s, X)X (s)dWi(s)

i=1

Thus, Z(t,X) is a continuous local martingale with Z(0,X) = 1. As Z(¢, X)
is also positive, it is a super-martingale. If Z(¢,x) is even a martingale then
we have F(Z(t,X)) = 1 for all ¢ > 0. Then, for all T > 0 we can define a
probability measure Q1 for Fr via

Qr(A) == B(1s - Z(T, X)) for AeFy (1)

Hence, Z(T, X)is the Radon-Nikodym density of Qr with respect to P. The
so-defined family of probability measures has the following consistency property

Qr(A) = Q:(A)
for all AeFy, te[0,T] ,because we have
Qr(A) = E(la-Z(T, X)) = Q+(A)

In particular, for bounded stopping times 0 < 7 < T and AeF-the optional
sampling theorem yields



Qr(A) = E(la- Z(T, X)) = E(E(1a - Z(T, X) | Fr)) = Q-(4)

The following theorem now demonstrates the way a Qr — Brownian motion
W®7(t) can be constructed from a P-Brownian motion W(t) via a change of
measure from P to Q.

Theorem. Let the process Z(t,X) be a martingale and define the process
{(WQ(t)’ Ft)}tZO by

t
WE(t) == Wi(t) + /Xl-(s)ds, 1<i<m, t>0
0

Then, for each fized T€[0, 00) the process { (W< (t), Ft)}te[O )8 an m-dimensional
Brownian motion on (S, Fr, Q1 )where the probability measure Q is defined in

(1).



