

Stochastic systems
Continuous-time processes, SDE,Martingales

ISY- Automatic control
Linköping University
November, 2012

(1) Continuous-time processes

- Introduction
- Lévy process
- Poisson process
- Brownian Motion
(2) Stochastic differential equations
- Introduction
- Ito's formula
- Ornstein-Uhlenbeck processes
(3) Martingales

Continuous-time processes Stochastic differential equations Martingales	Basic Problem Leyy process Poisson process Brownian Motion
Introduction	

(1) Continuous-time processes

- Introduction
- Lévy process
- Poisson process

A stochastic process for which the index set T is an interval is called a continuous time process. The index set T is defined as $[0, \infty)$.
Counting process. Let $N(\cdot)=\{N(t), t \geq 0\}$ a stochastic process where $N(t)$ represents the number of various outcomes in a system over time. Here $N(t)$ is integer, and if $s \leq t$ then $N(s) \leq N(t)$.

Definition

Consider $X(\cdot)=\{X(t), t \geq 0\}$ a stochastic process. It is said that $X(\cdot)$ has
a) independent increments if for any $n \geq 1$ and for $0 \leq t_{0}<t_{1}<. .<t_{n}$ the increments

$$
\begin{equation*}
X\left(t_{1}\right)-X\left(t_{0}\right), X\left(t_{2}\right)-X\left(t_{1}\right), \ldots, X\left(t_{n}\right)-X\left(t_{n-1}\right) \tag{1}
\end{equation*}
$$

are independent.
b) stationary increments if for any $t \geq 0$ and $h>0$ the probability distribution of any increment $X(t+h)-X(t)$ depends only on h,i.e.,

$$
X(t+h)-X(t) \sim X(s+h)-X(s) \forall s, t \geq 0
$$

	$\begin{array}{r} \text { Continuous-time processes } \\ \text { Stochastic differential equations } \\ \text { Martingales } \end{array}$	
Outline		

(1) Continuous-time processes

- Introduction
- Lévy process
- Poisson process
- Brownian Motion
(2) Stochastic differential equations
- Introduction
- Ito's formula
- Ornstein-Uhlenbeck processes
(3) Martingales

(1) Continuous-time processes
- Introduction
- Lévy process
- Poisson process
- Brownian Motion
(2) Stochastic differential equations
- Introduction
- Ito's formula
- Ornstein-Uhlenbeck processes

Define a continuous-time counting process $N(\cdot)=\{N(t), t \geq 0\}$ and a positive number λ. The process $N(\cdot)$ is a Poisson process with a rate parameter λ if
a) $N(\cdot)$ has independent increments and
b) $N(\cdot)$ has stationary increments such that

$$
N(t+h)-N(t) \sim \operatorname{Poi}(\lambda h) \forall t \geq 0, h>0
$$

Outline		

(1) Continuous-time processes

- Introduction
- Lévy process
- Poisson process
- Brownian Motion
(2) Stochastic differential equations
- Introduction
- Ito's formula
- Ornstein-Uhlenbeck processes
(3) Martingales

A process $W(\cdot)=\{W(t), t \geq 0\}$ is a Wiener process, or a
Brownian motion, if
a) $W(0):=0$,
b) has independent increments, and
c) has stationary increments with

$$
W(t+h)-W(t) \sim N\left(0, \sigma^{2} h\right) \forall t \geq 0, h>0
$$

where σ is a positive constant. If $\sigma^{2}=1$, it is said that $W(\cdot)$ is a standard Wiener process.

(1) Continuous-time processes

- Introduction
- Lévy process
- Poisson process
- Brownian Motion
(2) Stochastic differential equations
- Introduction
- Ito's formula
- Ornstein-Uhlenbeck processes
(5) Martingales

Continuous-time processe Stochastic differential equation
 Introduction
 Ornstein-Uhlenbeck processes
 Stochastic differential equations

An ordinary differential equation $\frac{d x}{d t}=f(t, x)$ can be replaced by a random differential equation

$$
\frac{d X}{d t}=F(t, X, Y)
$$

where $Y=Y(t)$ represents some stochastic input process. In particular is not possible to interpret it as an ordinary differential equation along each path and the solution is a stochastic process. This happens when the differential equation has the form

$$
\frac{d X}{d t}=f(t, X)+g(t, X) N
$$

with N being a Gaussian white noise process.

The irregularity of the sample paths of N makes the equation intractable mathematically. A solution should be a solution of the random integral equation

$$
\begin{equation*}
X(t)=X\left(t_{0}\right)+\int_{t_{0}}^{t} f(s, X(s)) d s+\int_{t_{0}}^{t} g(s, X(s)) N(s) d s \tag{2}
\end{equation*}
$$

since the last integral in (2) cannot be defined in any meaningful way, it is replaced by an integral of the form

$$
\int_{t_{0}}^{t} g(s, X(s)) d W(s)
$$

where W is the Wiener process.

Continuous-time processes Stochastic differential lequations

Introduction Ito's formula

Ornstein-Uhlenbeck processes

Outline

The impact here is that the integral inherits many of the probabilistic properties of the Wiener process and the corresponding calculus will differ from the Stieltjes case. The main instrument of this calculus is Ito's formula, that will yield a stochastic equation for any sufficiently smooth function of a solution.

Ito's formula is the basis for any analysis of solutions of stochastic equations along the lines of the qualitatives approaches used in ordinary differential and integral equations.

General assumption. Let (Ω, F, P) be a complete probability space equipped with a filtration $\left\{F_{t}\right\}_{t}$ satisfying the usual conditions, and assume that on this space a Brownian motion $\left\{\left(W_{t}, F_{t}\right)\right\}_{t \in[0, \infty)}$ with respect to this filtration is defined.

Introduction Ito's formula
 Ito's formula Ornstein-Uhlenbeck processes

chastic differential equation

Continuous-time processes Stochastic differential equations
 ntroduction to's formula
 Ornstein-Uhlenbeck processes
 Ito's formula

Definition

Let $\left(W(t), F_{t}\right)_{t \in[0, \infty)}$ be an m-dimensional Brownian motion, $m \in \mathbb{N}$.

1) $\left(X(t), F_{t}\right)_{t \in[0, \infty)}$ is called a real-valued Ito process if for all $t \geq 0$ it admits the representation

$$
\begin{aligned}
& X(t)=X(0)+\int_{0}^{t} f(s) d s+\int_{0}^{t} g(s) d W(s) \\
= & X(0)+\int_{0}^{t} f(s) d s+\sum_{j=1}^{m} \int_{0}^{t} g_{j}(s) d W_{j}(s) \text { a.s. } P .
\end{aligned}
$$

2) An n-dimensional Ito process $X=\left(X^{(1)}, . ., X^{(n)}\right)$ consists of a vector with components being real-valued Ito processes.

Continuous-time processes Stochastic differential equations
 Ornstein-Uhlenbeck processes
 One-dimensional Ito formula

Let W_{t} be a one-dimensional Brownian motion, and X_{t} a real-valued Ito process with

$$
X_{t}=X_{0}+\int_{0}^{t} f_{s} d s+\int_{0}^{t} g_{s} d W_{s}
$$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice continuously differentiable. Then, for all $t \geq 0$ we have

$$
\begin{gathered}
f\left(X_{t}\right)=f\left(X_{0}\right)+\int_{0}^{t} f^{\prime}\left(X_{s}\right) d X_{s}+\frac{1}{2} \int_{0}^{t} f^{\prime \prime}\left(X_{s}\right) d\langle x\rangle_{s} \\
=f\left(X_{0}\right)+\int_{0}^{t}\left(f^{\prime}\left(X_{s}\right) \cdot K_{s}+\frac{1}{2} \cdot f^{\prime \prime}\left(X_{s}\right) \cdot H_{s}^{2}\right) d s \\
+\int_{0}^{t} f^{\prime}\left(X_{s}\right) H_{s} d W_{s} \text { a.s. } P .
\end{gathered}
$$

All integrals appearing above are defined.

Continuous-time processes Stochastic differential equations
 Introduction Ito's formula
 Ornstein-Uhlenbeck processes
 Multi-dimensional Ito formula

Let $X(t)=\left(X_{1}(t), \ldots, X_{n}(t)\right)$ be an n-dimensional Ito process with

$$
X_{i}(t)=X_{i}(0)+\int_{0}^{t} F_{i}(s) d s+\sum_{j=1}^{m} \int_{0}^{t} G_{i j}(s) d W_{j}(s), i=1, . ., n
$$

where $W(t)=\left(W_{1}(t), . ., W_{m}(t)\right)$ is an m-dimensional Brownian motion. Further let $h:[0, \infty) \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a $C^{1,2}-$ function i.e. h is continuous, continuously differentiable with respect to the first variable (time) and twice continuously differentiable with respect to the last n variables (space). We then have

$$
h\left(t, X_{1}(t), . ., X_{n}(t)=h\left(0, x_{1}(0), \ldots, X_{n}(0)\right.\right.
$$

$+\int_{0}^{t} h_{t}\left(s, X_{1}(s), \ldots, X_{n}(s)\right) d s+\sum_{i=1}^{n} \int_{0}^{t} h_{X_{i}}\left(s, X_{1}(s), \ldots, X_{n}(s)\right) d X_{i}(s)$
$+\frac{1}{2} \cdot \sum_{i, j=1}^{n} \int_{0}^{t} h_{x_{i} X_{j}}\left(s, X_{1}(s), \ldots, X_{n}(s)\right) d\left\langle X_{i}, X_{j}\right\rangle_{s}$

(1) Continuous-time processes

- Introduction
- Lévy process
- Poisson process
- Brownian Motion

2 Stochastic differential equations

- Introduction
- Ito's formula
- Ornstein-Uhlenbeck processes
(3) Martingales

The question investigated in this section is given by

$$
\begin{equation*}
d X_{t}=-\alpha X_{t} d t+\sigma d B_{t} \text { with } X_{0}=x_{0} \tag{3}
\end{equation*}
$$

where α and σ are positive constants. This model became well known after 1931, when it was used by the physicists Orsntein and Uhlenbeck to study behavior of gasess. In finance this process was used in one of the first stochastic models for interest rates. In that context, X_{t} was intended to capture the deviation of an interest rate around a given fixed rate.
Even when this equation has a simple solution, this is not of the form $f\left(t, B_{t}\right)$, so the method based on Ito's formula is useless.

Continuous-time processes

Stochastic differential equation

Introduction Ito's formula

Ito's formula
Ornstein-Uhlenbeck processes

Solving O-U SDE

It is possible to look for a solution to equation (3) in the larger class of processes that can be written as

$$
X_{t}=a(t)\left\{x_{0}+\int_{0}^{t} b(s) d B_{s}\right\}
$$

applying the product rule we find that

$$
d X_{t}=a^{\prime}(t)\left\{x_{0}+\int_{0}^{t} b(s) d B_{s}\right\} d t+a(t) b(t) d B_{t}
$$

If we assume that $a(0)=1$ and $a(t)>0$ for all $t \geq 0$, then the process defined is a solution of the SDE:

$$
\begin{equation*}
d X_{t}=\frac{a^{\prime}(t)}{a(t)} X_{t} d t+a(t) b(t) d B_{t} \text { with } X_{0}=x_{0} \tag{4}
\end{equation*}
$$

Continuous-time processes Stochastic differential equations

Introduction ito's formula Ornstein-Uhlenbeck processes

For the coefficients of (4) to mach those of equation (3), we only need to satisfy the simple equations

$$
\frac{a^{\prime}(t)}{a(t)}=-\alpha \text { and } a(t) b(t)=\sigma
$$

the solution to equation (3) is given by

$$
\begin{equation*}
X_{t}=e^{-\alpha t}\left\{x_{0}+\sigma \int_{0}^{t} e^{\alpha s} d B_{s}\right\}=x_{0} e^{-\alpha t}+\sigma \int_{0}^{t} e^{-\alpha(t-s)} d B_{s} \tag{5}
\end{equation*}
$$

Here we have that $E\left(X_{t}\right)=x_{0} e^{-\alpha t}$, and using the lto isometry to compute the variance of X_{t}, we find

$$
\operatorname{Var}\left(X_{t}\right)=\sigma^{2} \int_{0}^{t} e^{-2 \alpha(t-s)} d s=\frac{\sigma^{2}}{2 \alpha}\left\{1-e^{-2 \alpha t}\right\} \rightarrow \frac{\sigma^{2}}{2 \alpha}
$$

Continuous-time processe Stochastic differential equation
 Martingales

Definition

Let (Ω, F, P) be a given probability space and $T \in \mathbb{R}$. Defining $\left\{X_{t}, t \in T\right\}$ random variables on Ω and $\left\{F_{t}, t \in T\right\}$ a collection of sub- σ-fields of F. Then
a) $\left\{F_{t}, t \in T\right\}$ is a filtration of F if the collection is not decreasing, i.e.,

$$
F_{s} \subset F_{t} \forall s, t \in T, \text { with } s<t
$$

b) the collection $\left\{X_{t}, t \in T\right\}$ is adapted to the filtration $\left\{F_{t}, t \in T\right\}$
if is F_{t}-measurable for all $t \in T$
c) $\left\{X_{t}, t \in T\right\}$ is a martingale with respect to $\left\{F_{t}, t \in T\right\}$ if

- $\left\{F_{t}, t \in T\right\}$ is a filtration of F
- $\left\{X_{t}, t \in T\right\}$ is adapted to $\left\{F_{t}, t \in T\right\}$
- $X_{t} \subset L_{1} \forall t \in T$
- $E\left(X_{t} \mid F_{s}\right)=X_{s} \forall s, t \in T$, with $s \leq t$

If the last equality is replaced for \geq or \leq i.e., for all $s \leq t$

$$
E\left(X_{t} \mid F_{s}\right) \geq X_{s} \text { or } E\left(X_{t} \mid F_{s}\right) \leq X_{s}
$$

then we have that $\left\{X_{t}, F_{t}, t \in T\right\}$ is a submartingale or a supermantigale respectively.

Girsanov Theorem

General assumption for this section:
Let $\left\{\left(X(t), F_{t}\right)\right\}_{t \geq 0}$ be an m-dimensional progressively measurable process where $\left\{F_{t}\right\}$ is the Brownian filtration with

$$
\int_{0}^{t} X_{i}^{2}(s) d s<\infty \text { a.s. } P \text { for all } t \geq 0, i=1, \ldots, m
$$

Let further

$$
Z(t, X):=\exp \left(-\sum_{i=1}^{m} \int_{0}^{t} X_{i}(s) d W_{i}(s)-\frac{1}{2} \int_{0}^{t}\|X(s)\|^{2} d s\right)
$$

As the argument in $Z(t, X)$ is an Ito process, the Ito formula, this implies

$$
Z(t, X)=1-\sum_{i=1}^{m} \int_{0}^{t} Z(s, X) X_{i}(s) d W_{i}(s)
$$

Thus, $Z(t, X)$ is a continuous local martingale with $Z(0, X)=1$. As $Z(t, X)$ is also positive, it is a super-martingale. If $Z(t, x)$ is even a martingale then we have $E(Z(t, X))=1$ for all $t \geq 0$. Then, for all $T \geq 0$ we can define a probability measure Q_{T} for F_{T} via

$$
\begin{equation*}
Q_{T}(A):=E\left(1_{A} \cdot Z(T, X)\right) \text { for } A \epsilon F_{T} \tag{1}
\end{equation*}
$$

Hence, $Z(T, X)$ is the Radon-Nikodym density of Q_{T} with respect to P. The so-defined family of probability measures has the following consistency property

$$
Q_{T}(A)=Q_{t}(A)
$$

for all $A \epsilon F_{t}, t \epsilon[0, T]$, because we have

$$
Q_{T}(A)=E\left(1_{A} \cdot Z(T, X)\right)=Q_{t}(A)
$$

In particular, for bounded stopping times $0 \leq \tau \leq T$ and $A \epsilon F_{\tau}$ the optional sampling theorem yields

$$
Q_{T}(A)=E\left(1_{A} \cdot Z(T, X)\right)=E\left(E\left(1_{A} \cdot Z(T, X) \mid F_{\tau}\right)\right)=Q_{\tau}(A)
$$

The following theorem now demonstrates the way a $Q_{T}-$ Brownian motion $W^{Q_{T}}(t)$ can be constructed from a P-Brownian motion $W(t)$ via a change of measure from P to Q_{T}.

Theorem. Let the process $Z(t, X)$ be a martingale and define the process $\left\{\left(W^{Q}(t), F_{t}\right)\right\}_{t \geq 0} b y$

$$
W_{i}^{Q}(t):=W_{i}(t)+\int_{0}^{t} X_{i}(s) d s, 1 \leq i \leq m, t \geq 0
$$

Then, for each fixed $T \epsilon[0, \infty)$ the process $\left\{\left(W^{Q}(t), F_{t}\right)\right\}_{t \in[0, T]}$ is an m-dimensional Brownian motion on $\left(\Omega, F_{T}, Q_{T}\right)$ where the probability measure Q_{T} is defined in (1).

