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• Options

• Payoff diagram

• Trading strategies with options

• Put-call parity

• Rational pricing of options – some insights

3Options

Forward/Futures

No cost (except margin requirements)
Holder obliged to trade underlying at maturity

Can one takes away the obligation?

Options : a piece of paper (financial instrument) 

gives the holder the right (but not obligation) to buy or sell a risky asset at an 
agreed price within a specified period
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Strike price (K) (for each unit of underlying)
Maturity/ expiry date (T)
holding requires an upfront payment ( premium)
Options available for different  strike prices and expiry periods

Options types
Exchange traded : basic (or vanilla) options

A call is an option to buy
A put is an option to sell
An European option can be exercised only at maturity
An American option can be exercised at any time until maturity
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Option positions
Long : holder of the option
Short : seller/writer of the option 

Moneyness :
At-the-money option
In-the-money option
Out-of-the-money option

6Payoff diagram

The Payoff Function
Example: European long call option

K = Strike price, 
ST = Price of underlying at expiry

When ST ≤ K
Payoff  = 0        ( option worthless)

When ST > K
Payoff  = ST - K ( option exercised)

Note : Transaction costs ignored

STK

Payoff

Payoff = max {ST - K, 0}

right but no obligation to buy at 
price K at maturity
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Payoffs from European Options
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Profit diagram :                                           European long call

Initial upfront payment

Time value of money

ST

K

P



9Trading strategies

Trading strategies with Options

Spreads (Two or more options of the same type )
• Bull Spreads
• Bear Spreads
• Butterfly Spreads
• ………..

Combinations (Two or more options of different types )
• Straddle
• Strangles

• ……….

10Spreads

Bull Spreads using Calls                             Bull Spreads using Puts

K1 K2

Profit

ST

K2

Profit

ST
K1
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Bear Spreads using Calls                        Bear Spreads using Puts

K1

Profit

K2 STK1 K2

Profit

ST
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Butterfly Spreads using Calls

Profit

K1 K3 STK2



13Combinations

Straddle                                                     Strangle

Profit

ST
K

K1 K2

Profit

ST
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Asymmetric risk (leverage)

Seller: risking a large loss to make a 
probable small profit !

- writing option very risky!

Risk of default 

Margin account with clearing house

Option Upside Downside

Buying
Unlimited 
potential 
gain

Initial 
premium

Selling Limited gain
Huge 
potential 
obligation
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Market Makers

Exchanges use market makers to promote options markets liquidity

A market maker quotes bid and ask prices if requested

The market maker does not know whether the individual wants to buy 
or sell
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Option price before expiry ?

No idea of future movement of the underlying 

Option worth is known at expiry

Option has certain market price

c European call option price

p European put option price

C American call option price

P American put option price

r Risk free interest rate (r >0)



17Option price

A priori Bounds

An American option is worth at least  as the corresponding European option
C ≥ c   and P≥ p

Upper Bounds

Call option:                     C ≤ S0 and     c ≤ S0

Put option:                     P ≤ K    and     p ≤ Ke-rT

18Put-Call parity

Put – Call Parity

At t = 0

Portfolio 1: 
long one European call and short one European put with same K and T

Worth = (c – p)

Portfolio 2: 
long one stock  and short cash worth Ke-rT in a risk free bank account with 
interest rate r ( or a zero coupon bond worth Ke-rT)

Worth = (S0 - Ke-rT)
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At t = T ,              worth of portfolio1 = (ST – K) (see the diagrams below)
worth of portfolio2 = (ST – K)
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Payoff = {ST - K}
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t = 0                                          t = T

portfolio 1

?                                                   =

portfolio 2

No arbitrage =>  

c - p ST - K

ST - KS0 – Ke-rT

c  - p = S0 – Ke-rT
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Early exercise for American Option

American Call option :     never optimal to exercise early !

Reason:  c ≥ S0 – Ke-rT (P-C parity)   and  C ≥ c
leads to    C ≥ S0 – Ke-rT

Now with r > 0 and T > 0,     C > S0 – K

Better to sell the option than to exercise 
Possibility that stock price falls below K

S0K

C

22Option price?

• Asymmetric risk between writer & holder of the options (!!!) 

• Some a priori bounds  (independent of the model for underlying)

• Market decides on the value of an option

‘Fair value’ of an option before expiry ??

- requires mathematical model for  the underlying
(subject  for next  lecture)

Simple scenario & insights  …….

23Fair price of option 

No arbitrage ⇒ Pricing is linear operation !

if payoffs are equal, P(z) = P(X) + 2P(Y)

Option & underlying driven by same source of randomness !

Can we replicate the option payoff ?

Y

X Y

Z

24Single Period Binomial Option Model

Finite state model with 120 104
only 2 states       S 100 B 100

90              104                         

Stock can become 90 or 120    with probabilities p, 1-p
Cash in Bank  A/c  with risk free interest rate 4%

Price of Call Option with strike K = 100  with 1 year to maturity ?

Payoff at maturity

90     100     120

20
⎩
⎨
⎧ ≥−

otherwise
KSKS

0



25Replication of option payoff

120 104                              20 
S 100 B 100 C ? 

90                                    104                              0

Replicate call using stock and cash in bank a/c  

Solution:

No arbitrage then implies:
value option (C)   =   value replicating portfolio  = 
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The probability of stock going up/down (p and 1-p) never entered in calculations !

26Single period replication: general model

More generally:
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So

price = discounted version of expected  payoff under new probability q
instead of p

[ ]

)1,0(

)1(

)(

1

∈
−
−

=

−+=

⎥
⎦

⎤
⎢
⎣

⎡
−
−

+
−
−

=

−
−

+
−
−

=

+=

Δ

Δ−

ΔΔ
Δ−

Δ−

du
deqwhere

CqqCe

C
du

euC
du
dee

du
edCuC

du
CC

Sp

tr

du
tr

d

tr

u

tr
tr

tr
uddu

c ψφ

cp

dC

uC

q
p

−

−

1

1

p
q

28

[ ] )1,0(,)1( ∈
−
−

=−+=
Δ

Δ−

du
deqCqqCep

tr

du
tr

c

• Option price depends on u, d, and r

- but not on p (risk preference) 

- hence not on mean growth rate of stock
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Stock can attain more than 2 terminal values

- divide the single time period into many 
small time periods

Example:  consider symmetric tree

- replication can be made dynamic
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If perfect replication possible:

- selling option, while buying replicating portfolio is entirely risk free !

- holding  portfolio of only options is very risky  

- re-assess the risk asymmetry !!

Pricing possible due to dynamic replications

Perfect replication may not be always possible !!

More rigorous treatments of pricing – next few lectures


