Outline

Stochastic systems Market price of risk, Feynman-Kac

ISY- Automatic control Linköping University

November, 2012

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 9

The market price of risk

Lecture 4
Basic Problem
The self-financing check

Outline

- 1 The market price of risk
 - The portfolio weights
 - The self-financing check
- 2 Feynman-Kad
 - The Feynman-Kac connection for Brownian motion

Lecture 4

• Feynman-Kac and the Black-Scholes

- 1 The market price of risk
 - The portfolio weights
 - The self-financing check
- Peynman-Kac
 - The Feynman-Kac connection for Brownian motion
 - Feynman-Kac and the Black-Scholes

↓□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

The market price of risk Feynman-Kac Lecture 4

Basic Problem

The self-financing check

The martingale theory of arbitrage pricing is one of the greatest triumphs of probability theory since it has direct bearing on financial transactions. Here a simple calculation has some claim to being the most important in this topic. Let's simply begin with the pricing formula $V_t = \beta_t U_t$ and work our way toward an equation

$$dV_t = d(\beta_t U_t) = \beta_t dU_t + U_t d\beta_t$$

= $\frac{u(\omega, t)}{d(\omega, t)} dS_t + \left\{ U_t - \frac{u(\omega, t)}{d(\omega, t)} D_t \right\} d\beta_t$

This calculations gives us the required candidates for the portfolio weights:

$$a_t = rac{u(\omega,t)}{d(\omega,t)}$$
 and $b_t = U_t - rac{u(\omega,t)}{d(\omega,t)}D_t$

These formulas are very important for the martingale theory of pricing.

- 1 The market price of risk
 - The portfolio weights
 - The self-financing check
- 2 Feynman-Kac
 - The Feynman-Kac connection for Brownian motion
 - Feynman-Kac and the Black-Scholes

The market price of risk Feynman-Kac Lecture 4
Basic Problem
The self-financing check

Before going much further, at minimum we must be sure that we really do have a probability measure Q that makes the discounted stock price $D_t = S_t/\beta_t$ into a Q-martingale. From Girsanov theory, the first step toward the determination of such a measure is to work out the SDE for D_t . An easy way is simply to apply Ito's formula to D_t and turn the crank:

$$dD_t = d(S_t/\beta_t) = D_t \{ (\mu_t - r_t) dt + \sigma_t dB_t \}$$
 (1)

From this D_t would be a local martingale if we could remove the drift term $\mu_t - r_t$. If we define the measure Q by taking $Q(A) = E_P(1_A M_T)$, where M_t is the exponential process

$$M_{t} = exp(-\int_{0}^{t} m_{t}dB_{t} - \frac{1}{2}\int_{0}^{t} m_{t}^{2}dt) \text{ with } m_{t} = \{\mu_{t} - r_{t}\}/\sigma_{t}$$
 (2)

Self-financing check

By construction of the portfolio weights a_t and b_t we have

$$dV_t = a_t dS_t + b_t d\beta_t$$
 for $t \in [0, T]$

if we want to show that the portfolio determined by (a_t, b_t) is self-financing we only need to show that we also have

$$V_t = a_t S_t + b_t \beta_t$$

Evaluating the right-hand side

$$a_t S_t + b_t \beta_t = U_t \beta_t + \frac{u(\omega, t)}{d(\omega, t)} S_t - \frac{u(\omega, t)}{d(\omega, t)} D_t \beta_t$$

and since $\beta_t U_t = V_t$ and $D_t \beta_t = S_t$ the preceding formula simplifies to just i.e., does represent the value of a self-financing portfolio.

The market price of risk Feynman-Kac Lecture 4

Basic Problem

The self-financing check

If $m_t = \{\mu_t - r_t\}/\sigma_t$ is bounded, then M_t is a martingale, and the process defined by

$$d\tilde{B}_t = dB_t + m_t dt$$

is a Q-Brownian motion. Finally, the SDE for D_t given by equation (1) can be written in terms of B_t as

$$dD_t = D_t \sigma_t d\tilde{B}_t = S_t \sigma_t / \beta_t d\tilde{B}_t$$

where D_t is a Q-local martingale.

Market price of risk

The quantity $m_t = \{\mu_t - r_t\}/\sigma_t$ has an economic interpretation. The ratio $\{\mu_t - r_t\}/\sigma_t$ measures, in units of σ_t , the excess of the rate of return of the risky security S_t over the riskless security β_t . For this reason, m_t is often called the *market price of risk*. Models for which $m_t = 0$ are called *risk neutral models*, and by the form of the Girsanov transform (2) we see that such models have the property that P = Q.

The market price of risk

Lecture 4

The Feynman-Kac connection for Brownian motion Feynman-Kac and the Black-Scholes

Outline

- 1 The market price of risk
 - The portfolio weights
 - The self-financing check
- 2 Feynman-Kac
 - The Feynman-Kac connection for Brownian motion
 - Feynman-Kac and the Black-Scholes

The Feynman-Kac connection

The basic Feynman-Kac representation theorem tells us that for any pair of bounded functions $q: \mathbb{R} \to \mathbb{R}$ and $f: \mathbb{R} \to \mathbb{R}$ and for any bounded solution u(t,x) of the individual problem

$$u_t(t,x) = \frac{1}{2}u_{xx}(t,x) + q(x)u(t,x)\ u(0,x) = f(x)$$
 (3)

we can represent u(t,x) by the Feynman-Kac formula:

$$u(t,x) = E\left[f(x+B_t)\exp\left(\int_0^t q(x+B_s)ds\right)\right] \tag{4}$$

The most immediate benefit of the Feynman-Kac formula (4) is that it gives us a way to get information on the global behavior of a sample path of Brownian motion.

The market price of risk Feynman-Kac Lecture 4

The Feynman-Kac connection for Brownian motion Feynman-Kac and the Black-Scholes

Feynman-Kac representation theorem for Brownian motion

Suppose that the function $q:\mathbb{R}\to\mathbb{R}$ is bounded, and consider the initial-value problem

$$u_t(t,x) = \frac{1}{2}u_{xx}(t,x) + q(x)u(t,x)\ u(0,x) = f(x)$$
 (5)

where $f: R \to \mathbb{R}$ is also bounded. If u(t,x) is the unique bounded solution of initial-value problem (5), then u(t,x) has the representation

$$u(t,x) = E\left[f(x+B_t)exp\left(\int\limits_0^t q(x+B_s)ds\right)\right]$$

Feynman-Kac

Feynman-Kac and the Black-Scholes

Outline

- - The portfolio weights
 - The self-financing check
- 2 Feynman-Kac
 - The Feynman-Kac connection for Brownian motion
 - Feynman-Kac and the Black-Scholes

Lecture 4

Feynman-Kac and the Black-Scholes

The traditional hunting ground for financial applications of the Feynman-Kac method is the class of stock and bond models that may be written as

$$dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dB_t$$
 and $d\beta_t = r(t, S_t)\beta_t dt$

where the model coefficients $\mu(t, S_t)$, $\sigma(t, S_t)$ and $r(t, S_t)$ are given by explicit functions of the current time and current stock price. This models contains at the barest minimum, the classic Black-Scholes model where the coefficients take the specific forms

$$\mu(t, S_t) \equiv \mu S_t, \sigma(t, S_t) \equiv \sigma S_t$$
, and $r(t, S_t) \equiv r$

for constants μ, σ , and r.

Lecture 4