Excercises

1. Find the price of a european long call option on a stock (current value S_{t}) with infinite maturity. The strike price for the option is K and the risk free interest rate is r. Mention explicitly any other assumption.
2. (a) Earlier, in the lectures, we have assumed that the stock pays no dividend. A dividend is a cash payment made to the owner of the stock. If a dividend is declared on the stock, the date on which the dividend is paid, the stock price is reduced by the amount of the dividend. Establish a putcall parity relation when the underlying stock pays a dividend. (Hint: use principle of no arbitrage.)
(b) Consider a stock ' X ' which pays a dividend of $\$ 5.5$ in 5 months. The spot price of the stock is $\$ 52$. A 1 year european call has price $\$ 6$ and a 1 year european put has price $\$ 4$ respectively. Both options have strike price of $\$ 50$. Find the amount of cash that must be lent at the risk free rate of return in order to replicate the stock.
3. Find the solution for the second-order Langevin equation

$$
\ddot{X}(t)=K(t, X(t), \dot{X}(t))+\sigma N(t)
$$

interpreting it as a vector stochastic equation.
4. From equation

$$
m V^{\prime}(t)+f V(t)=W^{\prime}(t), t \geq 0, V(0)=v_{0} \epsilon \mathbf{R}
$$

describe the SDE of Ito and find the solution. (Hint: Solution is an Ornstein-Uhlenbeck process).
5. Show for $U(t)=X_{1}(t) X_{2}(t)$ with

$$
\begin{aligned}
& d X_{1}(t)=f_{1}\left(t, X_{1}\right) d t+g_{1}\left(t, X_{1}\right) d W(t) \\
& d X_{2}(t)=f_{2}\left(t, X_{2}\right) d t+g_{2}\left(t, X_{2}\right) d W(t)
\end{aligned}
$$

that the following formula is valid

$$
d U(t)=d X_{1}(t) X_{2}(t)+X_{1}(t) d X_{2}(t)+g_{1}\left(t, X_{1}\right) g_{2}\left(t, X_{2}\right) d t
$$

6. a) Use the Ito rule to prove that $d[f(t) W(t)]=f^{\prime}(t) W(t) d t+f(t) d W(t)$ with $f \in C^{\prime}$ deterministic.
b)Verify that for any $n \geq 2: d\left[W^{n}(t)\right]=n W^{n-1}(t) d W(t)+\frac{1}{2} n(n-$ 1) $W^{n-2}(t) d t$
7. Consider a continuous-time market model with a bond and one stock, where the stock price is only influenced by a one dimension Brownian motion, i.e., $d=m=1$. Given the price of the stock at a time t

$$
P(t)=p \cdot \exp \left(\left(b-\frac{1}{2} \sigma^{2}\right) t+\sigma W_{t}\right)
$$

model the Stock Price Equation.
The deadline for this exercises is the 22nd of November at 23.00, you can send it by email.

