Dynamic programming and optimal control

- Course program
- Seven chapters, seven lectures
- Seven problem solving sessions
- Examination

_

Chapter 1 Mikael N

Model for general finite horizon optimal control

1. Discrete time dynamic system

$$x_{k+1} = f_k(x_k, u_k, w_k), \qquad k = 0, 1, \dots, N-1$$

Cost function

$$J = E \Big\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k, w_k) \Big\}$$

ယ

Chapter 1 Mikael N

Schedule

- 1. The dynamic programming algorithm (MN)
- 2. Deterministic systems and the shortest path problem (FT)
- 3. Deterministic continuous-time optimal control
- 4. Problems with perfect state information
- 5. Problems with imperfect state information
- 6. Suboptimal and adaptive control
- 7. Introduction to infinite horizon problems

Mikael N

Chapter 1

Example (Ticket salesman)

- ullet x_k tickets available
- u_k tickets ordered (and delivered) $(u_k \geq 0)$
- ullet w_k demand for tickets

 w_0,\dots,w_{N-1} independent random variables The state equation

$$x_{k+1} = x_k + u_k - w_k$$

Chapter 1 Mikael N

example, cont'd

The cost consists of

- 1. cost $r(x_k)$ for ticket stock
- 2. purchase of tickets, cu_k
- 3 terminal cost $R(x_N)$

This leads to the over-all cost

$$E\Big\{R(x_N) + \sum_{k=0}^{N-1} \Big(r(x_k) + cu_k\Big)\Big\}$$

Chapter 1 Mikael N

System description

$$x_{k+1} = f_k(x_k, u_k, w_k), \qquad k = 0, 1, \dots, N-1$$

 x_k can be real or discrete as in the ticket example.

Other systems has a more natural representation as states with probabilities for transitions between the states.

$$p_{ij}(u,k) = P\{x_{k+1} = j | x_k = i, u_k = u\}$$

which can be expressed as

$$x_{k+1} = w_k$$

with the probability distribution for w_k given as

$$P\{w_k = j | x_k = i, u_k = u\} = p_{ij}(u, k)$$

Conclusion: A system can be represented as either a difference equation or states with transition probabilities.

Chapter 1 Mikael N

Optimization strategy

- \bullet Open-loop. Decide the control, u_0, \ldots, u_{N-1} , immediately at time zero.
- ullet Closed-loop. Use all information available, delay decision of u_k until time k.

Note: The goal in closed loop becomes to find an optimal rule for selecting u_k regardless of the value of x_k not only a numerical value (strategy vs. action).

6

Chapter 1 Mikael N

Example, a machine

A machine can be in n states, $1 \le x_k \le n$, where a lower state is "better" than a higher state. $x_k = 1 \Rightarrow$ perfect machine. The operating cost is $g(x_k)$ and

$$g(1) \leq g(2) \leq \ldots \leq g(n)$$

The transition probability is p_{ij} and $p_{ij} = 0$ if j < i.

At each stage in the process, the problem is to decide if to

- 1. let the machine operate one more period
- 2. repair the machine and bring it to $x_{k+1} = 1$ at a cost R

The basic DP problem

$$x_{k+1} = f_k(x_k, u_k, w_x), \qquad k = 0, 1, \dots, N-1$$
 $\in S$, w , $\in II(w)$, $\in C$, and w , $\in D$. The

with $x_k\in S_k$, $u_k\in U(x_k)\subset C_k$, and $w_k\in D_k$. The random disturbance is characterized by the probability distribution, $P_k(\cdot|x_k,u_k)$.

2. A class of policies (control laws) is a sequence of functions

$$\pi = \{\mu_0, \dots, \mu_{N-1}\}$$

where $u_k=\mu_k(x_k)$. If $\mu_k(x_k)\in U(x_k)$ for all $x_k\in S_k$ the policy is called *admissible*.

Chapter 1 Mikael N

The dynamic programming algorithm

Principle of optimality

a positive probability. Let $\pi^*=\{\mu_0^*,\mu_1^*,\dots,\mu_{N-1}^*\}$ be an optimal policy. Assume that when using π^* , a given state x_i occurs with

the "cost-to-go" from time i to time NConsider the subproblem, starting in x_i and minimizing

$$E\left\{g_N(x_N) + \sum_{k=i}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

is optimal! For this subproblem the truncated policy $\{\mu_i^*, \mu_{i+1}^*, \cdots, \mu_{N-1}^*\}$

Chapter 1 Mikael N

Given x_0 and $\pi = \{\mu_0, \dots, \mu_{N-1}\}$ the system equation becomes

$$x_{k+1} = f_k(x_k, \mu_k(x_k), w_k), \qquad k = 0, 1, \dots, N-1$$

Expected cost

$$J_{\pi}(x_0) = \mathop{E}_{\substack{u_k \\ k=0,1,\dots,N-1}} \left\{ g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k) \right\}$$

An optimal policy π*

$$J_{\pi^*}(x_0) = \min_{\pi \in \Pi} J_{\pi}(x_0)$$

Often π^* optimal for all initial conditions, therefore

$$J^*(x_0) = \min_{\pi \in \Pi} J_{\pi}(x_0)$$

with $J^*(x_0)$ the optimal cost function or the optimal value function.

10

Chapter 1 Mikael N

the DP algorithm, cont'd

For every initial state x_0 , the optimal cost $J^*(x_0)$ of the basic problem is equal to $J_0(x_0)$. $J_0(x_0)$ is given by

- 1. $J_N(x_N) = g_N(x_N)$
- 2. For k = 0, 1, ..., N-1,

$$J_k(x_k) = \min_{u_k \in U(x_k)} \mathop{w_k}_{w_k} \{g_k(x_k, u_k, w_k) + J_{k+1}(f_k(x_k, u_k, w_k))\}$$

and k, then the policy $\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$ is optimal. If $u_k^* = \mu_k^*(x_k)$ minimizes the right side of 2 for each x_k Proof by induction.

Chapter 1 Mikael N

Example, finite state system

The system description

$$x_{k+1} = w_k$$

and the prob. distribution for w_k

$$P\{w_k = j | x_k = i, u_k = u\} = p_{ij}(u)$$

The DP algorithm becomes

$$J_k(i) = \min_{u \in U(i)} [g(i, u) + E\{J_{k+1}(w_k)\}]$$

In the machine example:

$$J_N(i) = 0$$

$$J_k(i) = \min \left[R + g(i) + J_{k+1}(1), g(i) + \sum_{j=i}^n p_{ij} J_{k+1}(j) \right]$$

3

Chapter 1 Mikael N

State augmentation

Time lags

$$x_{k+1} = f_k(x_k, x_{k-1}, u_k, u_{k-1}, w_k), \qquad k = 1, 2, \dots, N-1$$

Correlated disturbances, linear systems representation

$$w_k = C_k y_{k+1}, y_{k+1} = A_k y_k + \zeta_k, k = 0, 1, \dots, N-1$$

Forecasts

Example: The controller receives an accurate prediction that the next disturbance w_k will be selected according to a particular probability distribution (from a given collection of distributions).

15

Chapter 1 Mikael N

Some notes on the DP algorithm

- A large number of models give analytical optimal solutions.
- The solutions to simple examples may give a basis for suboptimal control schemes in more complex cases.
- The analytically solvable models provides guidelines for modeling.
- In many practical cases analytical solutions is not possible to find. Numerical solution is approximate and time-consuming. (Ref Chapter 6).

14