Homework 2 Networked Control and Multi-Agent Systems

Magnus Egerstedt

Due: August 30, 2013

1.

Consider a directed cycle graph of planar agents, where agent 1 can see agent 2 , agent 2 can see agent 3 , and so forth. Instead of the agents "aiming" at each other, let them have a certain degree of offset in their aim, i.e.,

$$
\dot{x}_{i}=R(\theta)\left(x_{i+1}-x_{i}\right), i=1, \ldots, N-1, \quad \dot{x}_{N}=R(\theta)\left(x_{1}-x_{N}\right),
$$

where $R(\theta)$ is the rotation matrix

$$
R(\theta)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

as shown below.

a
Show that if the offset angle θ is given by

$$
\theta=\frac{\pi}{N}
$$

and the agents are initially placed evenly spaced on a circle, then they execute a circular motion (so-called cyclic pursuit).
b
What do you think would happen if $\theta>\pi / N$? What if $\theta<\pi / N$?

2.

Given an undirected graph $G=(V, E)$. An edge tension function is in general given by

$$
\mathcal{E}(x)=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathcal{E}_{i j}\left(x_{i}, x_{j}\right)
$$

with $\mathcal{E}_{i j}\left(x_{i}, x_{j}\right) \neq 0$ only when $(i, j) \in E$.

The control law one would obtain from this is

$$
\dot{x}=-\frac{\partial \mathcal{E}^{T}}{\partial x} \Rightarrow \dot{x}_{i}=-\sum_{j \in N_{i}} \frac{\partial \mathcal{E}_{i j}^{T}}{\partial x_{i}} .
$$

a

Let (where we assume that $(i, j) \in E-$ otherwise $\mathcal{E}_{i j}=0$)

$$
\mathcal{E}_{i j}=\left(\left\|x_{i}-x_{j}\right\|-d_{i j}\right)^{2},
$$

where $d_{i j}$ is the desired distance between agents i and j.
What is \dot{x}_{i} ? What will the system do under this choice of control law?
b

Same question as in 3a but with

$$
\mathcal{E}_{i j}=\left\|x_{i}-x_{j}\right\|^{2}-d_{i j}^{2}
$$

3.

One way of achieving translationally-invariant formations is to let the desired position for agent i be y_{i}, and to run the control protocol

$$
\dot{x}_{i}=-\sum_{j \in N_{i}}\left(\left(x_{i}-x_{j}\right)-\left(y_{i}-y_{j}\right)\right) .
$$

Now, consider two connected agents on the line. Assume that there is some confusion about where the target positions really are. In particular, let agent 1 run the above protocol with $y_{1}=-1$ and $y_{2}=1$. At the same time, agent 2 runs the protocol with $y_{1}=0$ and $y_{2}=-3$.

What happens to $x_{1}(t), x_{2}(t)$, and $x_{1}(t)-x_{2}(t)$ as $t \rightarrow \infty$?

4.

In a leader-follower network, we typically let the followers be attracted to the leaders. But, if they are repelled by the leaders instead, we would get

$$
\dot{x}_{i}=\sum_{j \in N_{i}} s_{j}\left(x_{j}-x_{i}\right)
$$

where $s_{j}=1$ is agent j is a follower and $s_{j}=-1$ if j is a leader.
For the graph K_{3} with two followers and one repelling leader, is it possible for the leader to move in such a way that it prevents the two followers from meeting?

5.

We have seen examples of proximity graphs, i.e. graphs whose edges are geometrically defined. For example, a Δ-disk graph is a proximity graph $V \times E$ such that $\left(v_{i}, v_{j}\right) \in E \Leftrightarrow\left\|x_{i}-x_{j}\right\| \leq \Delta$, where $x_{i} \in \mathbb{R}^{d}, i=1, \ldots, N$ is the state of robot i. In this question, we will be exploring another type of proximity graph, namely the wedge graph.

Assume that instead of single integrator dynamics, the agents' dynamics are defined as unicycle robots, i.e.

$$
\begin{aligned}
\dot{x}_{i} & =v_{i} \cos \phi_{i} \\
\dot{y}_{i} & =v_{i} \sin \phi_{i} \\
\dot{\phi}_{i} & =\omega_{i} .
\end{aligned}
$$

Here $\left(x_{i}, y_{i}\right)$ is the position of robot i, while ϕ_{i} is its orientation. Moreover, v_{i} and ω_{i} are the translational and rotational velocities, which are the controlled inputs.

Now, assume that such a robot is equipped with a rigidly mounted camera, facing in the forward direction. This gives rise to a directed wedge-graph, as seen in the figure below. For such a setup, if robot j is visible from robot i, the avialable information is $d_{i j}=\left\|\left(x_{i}, y_{j}\right)^{T}-\left(x_{j}, y_{j}\right)^{T}\right\|$ (distance between agents) and $\delta \phi_{i j}$ (relative inter-agent angle) as per the figure below. (In fact, use the notation given in the figure.)

Explain how you whould try and solve the rendezvous problem for such a system. (Note: I don't need proofs, but I do need a discussion about the choices that you make.)

6.

Given a scale-invariant triangular formation

$$
\dot{x}_{i}=-\sum_{j=1}^{3}\left(\left\|x_{i}-x_{j}\right\|-\alpha_{i} K\right)\left(x_{i}-x_{j}\right)+v, i=1,2,3,
$$

where K is the nominal, desired inter-agent distance, v is the general direction in which the formation is moving, and α_{i} is the scale parameter applied by agent i.

Now consider the situation below in which the three agents are to squeeze through a narrow opening (the gray areas correspond to obstacles). Discuss how you would go about selecting appropriate α_{i} 's in a decentralized manner; both when communications are possible and when they are not. (You can always assume that you can measure the relative displacements.)

