# Homework 2 Networked Control and Multi-Agent Systems

Magnus Egerstedt

Due: August 30, 2013

# 1.

Consider a directed cycle graph of planar agents, where agent 1 can see agent 2, agent 2 can see agent 3, and so forth. Instead of the agents "aiming" at each other, let them have a certain degree of offset in their aim, i.e.,

$$\dot{x}_i = R(\theta)(x_{i+1} - x_i), \ i = 1, \dots, N - 1, \quad \dot{x}_N = R(\theta)(x_1 - x_N),$$

where  $R(\theta)$  is the rotation matrix

$$R(\theta) = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix},$$

as shown below.

a

Show that if the offset angle  $\theta$  is given by

$$\theta = \frac{\pi}{N}$$

and the agents are initially placed evenly spaced on a circle, then they execute a circular motion (so-called cyclic pursuit).

## $\mathbf{b}$

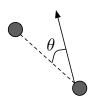
What do you think would happen if  $\theta > \pi/N$ ? What if  $\theta < \pi/N$ ?

# 2.

Given an undirected graph G = (V, E). An edge tension function is in general given by

$$\mathcal{E}(x) = \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \mathcal{E}_{ij}(x_i, x_j),$$

with  $\mathcal{E}_{ij}(x_i, x_j) \neq 0$  only when  $(i, j) \in E$ .



The control law one would obtain from this is

$$\dot{x} = -\frac{\partial \mathcal{E}^T}{\partial x} \Rightarrow \dot{x}_i = -\sum_{j \in N_i} \frac{\partial \mathcal{E}_{ij}^T}{\partial x_i}$$

 $\mathbf{a}$ 

Let (where we assume that  $(i, j) \in E$  – otherwise  $\mathcal{E}_{ij} = 0$ )

$$\mathcal{E}_{ij} = (\|x_i - x_j\| - d_{ij})^2,$$

where  $d_{ij}$  is the desired distance between agents *i* and *j*.

What is  $\dot{x}_i$ ? What will the system do under this choice of control law?

#### $\mathbf{b}$

Same question as in 3a but with

$$\mathcal{E}_{ij} = \|x_i - x_j\|^2 - d_{ij}^2.$$

## 3.

One way of achieving translationally-invariant formations is to let the desired position for agent i be  $y_i$ , and to run the control protocol

$$\dot{x}_i = -\sum_{j \in N_i} ((x_i - x_j) - (y_i - y_j))$$

Now, consider two connected agents on the line. Assume that there is some confusion about where the target positions really are. In particular, let agent 1 run the above protocol with  $y_1 = -1$  and  $y_2 = 1$ . At the same time, agent 2 runs the protocol with  $y_1 = 0$  and  $y_2 = -3$ .

What happens to  $x_1(t), x_2(t)$ , and  $x_1(t) - x_2(t)$  as  $t \to \infty$ ?

## **4**.

In a leader-follower network, we typically let the followers be attracted to the leaders. But, if they are repelled by the leaders instead, we would get

$$\dot{x}_i = \sum_{j \in N_i} s_j (x_j - x_i),$$

where  $s_j = 1$  is agent j is a follower and  $s_j = -1$  if j is a leader.

For the graph  $K_3$  with two followers and one repelling leader, is it possible for the leader to move in such a way that it prevents the two followers from meeting?

## 5.

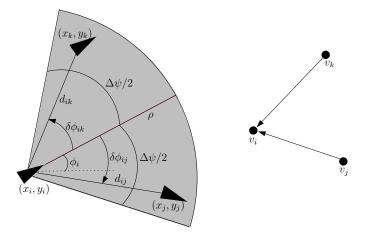
We have seen examples of proximity graphs, i.e. graphs whose edges are geometrically defined. For example, a  $\Delta$ -disk graph is a proximity graph  $V \times E$  such that  $(v_i, v_j) \in E \Leftrightarrow ||x_i - x_j|| \leq \Delta$ , where  $x_i \in \mathbb{R}^d$ ,  $i = 1, \ldots, N$  is the state of robot *i*. In this question, we will be exploring another type of proximity graph, namely the *wedge graph*. Assume that instead of single integrator dynamics, the agents' dynamics are defined as unicycle robots, i.e.

$$\begin{aligned} \dot{x}_i &= v_i \cos \phi_i \\ \dot{y}_i &= v_i \sin \phi_i \\ \dot{\phi}_i &= \omega_i. \end{aligned}$$

Here  $(x_i, y_i)$  is the position of robot *i*, while  $\phi_i$  is its orientation. Moreover,  $v_i$  and  $\omega_i$  are the translational and rotational velocities, which are the controlled inputs.

Now, assume that such a robot is equipped with a rigidly mounted camera, facing in the forward direction. This gives rise to a directed *wedge-graph*, as seen in the figure below. For such a setup, if robot j is visible from robot i, the avialable information is  $d_{ij} = ||(x_i, y_j)^T - (x_j, y_j)^T||$  (distance between agents) and  $\delta \phi_{ij}$  (relative inter-agent angle) as per the figure below. (In fact, use the notation given in the figure.)

*Explain how you whould try and solve the rendezvous problem for such a system.* (Note: I don't need proofs, but I do need a discussion about the choices that you make.)



## 6.

Given a scale-invariant triangular formation

$$\dot{x}_i = -\sum_{j=1}^3 (\|x_i - x_j\| - \alpha_i K)(x_i - x_j) + v, \ i = 1, 2, 3,$$

where K is the nominal, desired inter-agent distance, v is the general direction in which the formation is moving, and  $\alpha_i$  is the scale parameter applied by agent *i*.

Now consider the situation below in which the three agents are to squeeze through a narrow opening (the gray areas correspond to obstacles). Discuss how you would go about selecting appropriate  $\alpha_i$ 's in a decentralized manner; both when communications are possible and when they are not. (You can always assume that you can measure the relative displacements.)

