

Machine Learning, Lecture 9 Graphical models

Thomas Schön
Division of Automatic Control
Linköping University
Linköping, Sweden.
Email: schon@isy.liu.se,
Phone: 013-281373,
Office: House B, Entrance 27.

Machine Learning T. Schön	

Summary of lecture 8 (I/II)

In boosting we train a sequence of M models $y_{m}(x)$, where the error function used to train a certain model depends on the performance of the previous models.

The models are then combined to produce the resulting classifier (for the two class problem) according to

$$
Y_{M}(x)=\operatorname{sign}\left(\sum_{m=1}^{M} \alpha_{m} y_{m}(x)\right)
$$

We saw that the AdaBoost algorithm can be interpreted as a sequential minimization of an exponential cost function.

1. Summary of lecture 8
2. Directed acyclic graphs

- General properties
- Conditional independence

3. Undirected graphs

- General properties
- Conditional independence
- Relation with directed graphs

4. Factor graphs

- Inference using belief propagation (BP)
- Sum-product algorithm
- Max-sum algorithm
(Chapter 8)

Machine Learning T. Schön	AUTOMATIC CONTROL REGLERTEKNIK LNKÖPINGS UNVERSITET

Summary of lecture 8 (IIIII)

We started introducing some basic concepts for probabilistic graphical models $\mathcal{G}=(\mathcal{V}, \mathcal{L})$ consisting of

1. a set of nodes \mathcal{V} (a.k.a. vertices) representing the random variables and
2. a set of links \mathcal{L} (a.k.a. edges or arcs) containing elements $(i, j) \in \mathcal{L}$ connecting a pair of nodes $(i, j) \in \mathcal{V}$ and thereby encoding the probabilistic relations between nodes.

Summary of lecture 8 (IIIIII)

The set of parents to node j is defined as

$$
\mathcal{P}(j) \triangleq\{i \in \mathcal{V} \mid(i, j) \in \mathcal{E}\}
$$

The directed graph describes how the joint distribution $p(x)$ factors into a product of factors $p\left(x_{i} \mid x_{\mathcal{P}(i)}\right)$ only depending on a subset of the variables,

$$
p\left(x_{\mathcal{V}}\right)=\prod_{i \in \mathcal{V}} p\left(x_{i} \mid x_{\mathcal{P}(i)}\right)
$$

Hence, for the state space model on the previous slide, we have

$$
p(X, Y)=p\left(x_{0}\right) \prod_{t=1}^{N} p\left(x_{t} \mid x_{t-1}\right) \prod_{t=1}^{N} p\left(y_{t} \mid x_{t}\right)
$$

Machine Learning T. Schön	AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Directed acyclic graphs

- Suppose we have K random variables
$x_{1: K}=\left\{x_{1}, \ldots, x_{K}\right\}$.
- The most general decomposition of the joint density of these variables is

$$
p\left(x_{1: K}\right)=p\left(x_{1}\right) \prod_{k=2}^{K} p\left(x_{k} \mid x_{0: k-1}\right)
$$

- With a directed acyclic graph, we have the following model.

$$
p\left(x_{1: K}\right)=\prod_{k=1}^{K} p\left(x_{k} \mid x_{\mathcal{P}(k)}\right)
$$

where $\mathcal{P}(k)$ is the parents of node k.
 model.
Machine Learning
т. Schön

Example - Gaussian mixture (III)

Suppose we have $x_{1: N}$ i.i.d. and distributed as

$$
x_{i} \sim p\left(x \mid \pi_{1: K}, \mu_{1: K}, \Lambda_{1: K}\right)=\sum_{k=1}^{K} \pi_{k} \mathcal{N}\left(x ; \mu_{k}, \Lambda_{k}^{-1}\right)
$$

for $i=1, \ldots, N$.
In a Bayesian model, all the unknowns $\left\{\pi_{1: K}, \mu_{1: K}, \Lambda_{1: K}\right\}$ are modelled as random variables.

$$
\begin{gathered}
\pi_{1: K} \sim \operatorname{Dir}\left(\pi_{1: K} \mid \alpha_{0}\right) \stackrel{\otimes}{\propto} \prod_{k=1}^{K} \pi_{k}^{\alpha_{0}-1} \\
\mu_{1: K}, \Lambda_{1: K} \sim p\left(\mu_{1: K}, \Lambda_{1: K}\right) \triangleq \prod_{k=1}^{K} \mathcal{N}\left(\mu_{k} ; m_{0},\left(\beta_{0} \Lambda_{k}\right)^{-1}\right) \mathcal{W}\left(\Lambda_{k} \mid W_{0}, v_{0}\right)
\end{gathered}
$$

Machine Learning T. Schön	AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Observing conditional independence (IIII)

Example: Polynomial regression.

- Let $t_{1: N}$ be the values of a function at the points $x_{1: N}$.
- We would like to find the Kth degree polynomial approximating this function whose coefficients are shown as $\mathbf{w} \in \mathbb{R}^{K+1}$.
- $\mathbf{w} \sim \mathcal{N}(0, \Sigma)$
- Then the model can be written as

$$
t_{n}=\phi\left(x_{n}\right) \mathbf{w}+v_{n}
$$

where $\phi(x)=\left[1, x, x^{2}, \ldots, x^{K}\right]$.

- $\left\{v_{n}\right\}_{n=1}^{N}$ is i.i.d. and $v_{n} \sim \mathcal{N}(0, R)$.

Example - Gaussian mixture (IIII)

10(34)

Define the latent variables $z_{n} \triangleq\left[z_{n 1}, \cdots, z_{n K}\right]^{\mathrm{T}}$ for $n=1, \ldots, N$ as we did in the construction used for EM and VB.

Then the joint density can be written as

$$
p\left(x_{1: N}, z_{1: N}\right)=\prod_{n=1}^{N} \prod_{k=1}^{K} \pi_{k}^{z_{n k}} \mathcal{N}\left(x ; \mu_{k}, \Lambda_{k}^{-1}\right)^{z_{n k}}
$$

Example: Polynomial regression

$$
t_{n}=\phi\left(x_{n}\right) \mathbf{w}+v_{n}
$$

- The joint density for the problem can be written as

$$
p\left(t_{1: N}, \mathbf{w}\right)=p\left(t_{1: N} \mid \mathbf{w}\right) p(\mathbf{w})=p(\mathbf{w}) \prod_{i=1}^{N} p\left(t_{i} \mid \mathbf{w}\right)
$$

- What is the reason for the equality $p\left(t_{1: N} \mid \mathbf{w}\right)=\prod_{i=1}^{N} p\left(t_{i} \mid \mathbf{w}\right)$?

Observing conditional independence (III/III)

13(34)

Example: Polynomial regression

When \mathbf{w} is assumed known it is said to "block the path", rendering all the variables $\left\{t_{n}\right\}_{n=1}^{N}$ conditionally independent.
Important question: Can this be formalized, i.e., can we discern Cl properties directly from the graph?

Machine Learning T. Schön	AUTOMATC CONTROL REGLERTEKNK LINKÖPNGS UNVERSITET

Cl from DAGs - Ex 2

15(34)

Head-to-tail nodes:

- Are a and b independent $a \stackrel{\perp}{\perp}$?
- How about when c is given; $a \dot{\perp} b \mid c$?

CI rule for head-to-tail nodes

For conditional independence of two nodes, the head-to-tail nodes between them must be observed, which blocks the path.

Machine Learning

T. Schön

$$
\begin{aligned}
p(a, b \mid c) & =\frac{p(a, b, c)}{p(c)} \\
& =\frac{p(a \mid c) p(b \mid c) p(c)}{p(c)} \\
& =p(a \mid c) p(b \mid c) \\
& \Longrightarrow a \perp b \mid c
\end{aligned}
$$

CI rule for tail-to-tail nodes

For conditional independence of two nodes, the tail-to-tail nodes between them must be observed, which blocks the path.

$$
\begin{aligned}
& \text { Machine Learning } \\
& \text { T. Schön }
\end{aligned}
$$

AUTOMATC CONTROL | AUTOMATIC CONTROL |
| :--- |
| RELLLRTEKNIK | REGLLRTEKNK

LINKÖPNGS UNVERSIET

Cl from DAGs - Ex 3

16(34)

Head-to-head nodes:

- Are a and b independent $a \perp b$? Yes, since $\int p(a, b, c) \mathrm{d} c=\int p(a) p(b) p(c \mid a, b) \mathrm{d} c=$ $p(a) p(b)$.

- How about when c is given; $a \stackrel{?}{\perp} b \mid c$? No, since $p(a, b \mid c)=\frac{p(a, b, c)}{p(c)}=$

$$
\frac{p(a) p(b) p(c \mid a, b)}{p(c)} \neq p(a \mid c) p(b \mid c) .
$$

CI rule for head-to-head nodes

For conditional independence of two nodes, the head-to-head nodes between them must be unobserved, which blocks the path.

D-separation for Directed Acyclic Graphs

Consider a directed acyclic graph in which A, B and C are arbitrary non-intersecting sets of nodes. We have the property

$$
A \perp B \mid C
$$

if, on all possible paths from any node in A to any node in B,

- all tail-to-tail and head-to-tail nodes are in C;
- neither head-to-head nodes nor any of their descendants are in C.

Machine Learning T. Schön	AUTOMATIC CONTROL REGLERTENK LINKÖPINGS UNVVERSITET

Undirected graphical model (Markov random fields) 19(34)

- Nodes and edges carry similar meanings.
- Conditional independence is determined by graphical separation.

$$
A \perp B \mid C
$$

- A more natural representation for some models, e.g., images.
- One must take special care while converting directed graphs to undirected ones.

[^0]T. Schön

PDF for an undirected graphical model

21 (34)

The core result is given by the so-called Hammersley-Clifford theorem using the concept of cliques.

Definition (Clique)

A clique C is a subset of nodes $\{1, \ldots, N\}$ of an undirected graph such that there exists a link between all pairs.

Hammersley-Clifford Theorem (a basic version)

The joint probability distribution $p\left(x_{1: N}\right)$ of an undirected graph for variables $\left\{x_{1}, \ldots, x_{N}\right\}$ is given by

$$
p\left(x_{1: N}\right)=\frac{1}{Z} \prod_{C} \psi_{C}\left(x_{C}\right) \quad \text { where } \quad Z=\sum_{x_{1: N}} \prod_{C} \psi_{C}\left(x_{C}\right)
$$

Machine Learning	AUTOMATIC CONTROL
REGLERTEKNNK	
T. Schön	

Application - image de-noising (III)

23(34)

Suppose we have a noisy image and want to remove the noise.

- Model the true pixel values as $x_{i, j}$.
- Model the measured image pixel values as

$$
y_{i, j}=x_{i, j}+v_{i, j}, \quad v_{i, j} \sim \mathcal{N}\left(0, \beta^{2}\right)
$$

- Choose the energy functions as

$$
\begin{aligned}
E_{y}\left(x_{i, j}, y_{i, j}\right) & =\frac{1}{\beta^{2}}\left(y_{i, j}-x_{i, j}\right)^{2} \\
E_{x}\left(x_{i_{1}, j_{1}}, x_{i_{2}, j_{2}}\right) & =\min \left(\frac{1}{\alpha^{2}}\left(x_{i_{1}, j_{1}}-x_{i_{2}, j_{2}}\right)^{2}, \gamma\right)
\end{aligned}
$$

- The Hammersley-Clifford theorem has a physics interpretation when the functions $\psi_{C}\left(x_{C}\right)$ are non-zero everywhere.
- In this case, we can write

$$
\psi_{C}\left(x_{C}\right)=\exp \left(-E\left(x_{C}\right)\right)
$$

where $E(\cdot)$ is called an energy function.

- The overall graph can then be considered as a lattice with a potential energy function described by $E\left(x_{\mathrm{C}}\right)$.
- Finding the maximum of the density can then be considered as finding the point where the total potential energy is minimized.

$$
p\left(x_{1: N}\right)=\frac{1}{Z} \prod_{C} \exp \left(-E\left(x_{C}\right)\right)=\frac{1}{Z} \exp \left(-\sum_{C} E\left(x_{C}\right)\right)
$$

- A local maximum then corresponds to an equilibrium.

Machine Learning T. Schön	

Application - image de-noising (IIII)

24(34)

- The density is then

$$
\begin{aligned}
-\log p\left(x_{1: N_{x}, 1: N_{y}}, y_{1: N_{x}, 1: N_{y}}\right)= & \sum_{i, j} E_{y}\left(x_{i, j}, y_{i, j}\right) \\
& +E_{x}\left(x_{i, j}, x_{i+1, j+1}\right)+E_{x}\left(x_{i, j}, x_{i-1, j-1}\right) \\
& +E_{x}\left(x_{i, j}, x_{i-1, j+1}\right)+E_{x}\left(x_{i, j}, x_{i+1, j-1}\right)+C
\end{aligned}
$$

- If the image is 8 bit grayscale, maximization in general requires the calculation of $256^{\left(N_{x} \times N_{y}\right)}$ different combinations.
- We instead maximize w.r.t. only one pixel keeping the others fixed at their last values.
- This is called Iterative Conditional Modes
 (ICM).

Aim: Estimate the road surface using images from a stereo camera.
Solved using a Conditional Random Field (CRF) model and message passing.

Lorentzon, M. and Andersson, T. Road surface modeling using stereo vision, Master's thesis, LiTH-ISY-EX-12/4582-SE, Linköping university, Sweden, 2012.
http://liu.diva-portal.org/smash/record.jsf?searchId=2\&pid=diva2:532767

| Machine Learning
 T. Schön | AUTOMATIC CONTROL
 REGLERTEKNK
 LINKÖPNGS UNVERSIIET |
| :--- | :---: | :---: |

Inference on a chain

The message $\mu_{\alpha}\left(x_{n}\right)$ can be evaluated recursively

$$
\begin{aligned}
\mu_{\alpha}\left(x_{n}\right) & =\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right)\left(\sum_{x_{n-2}} \cdots\right) \\
& =\sum_{x_{n-1}} \psi_{n-1, n}\left(x_{n-1}, x_{n}\right) \mu_{\alpha}\left(x_{n-1}\right)
\end{aligned}
$$

where the recursion is started by $\mu_{\alpha}\left(x_{2}\right)=\sum_{x_{1}} \psi_{1,2}\left(x_{1}, x_{2}\right)$.
Similarly, for the message $\mu_{\beta}\left(x_{n}\right)$ we have

$$
\begin{aligned}
\mu_{\beta}\left(x_{n}\right) & =\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right)\left(\sum_{x_{n+2}} \cdots\right) \\
& =\sum_{x_{n+1}} \psi_{n, n+1}\left(x_{n}, x_{n+1}\right) \mu_{\beta}\left(x_{n+1}\right) .
\end{aligned}
$$

The generalization of this message passing idea to trees is referred to as the sum-product algorithm.

Machine Learning T. Schön	AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Inference in graphical models amounts to computing the posterior distribution of one or more of the nodes that are not observed.

The structure in the graphical model is exploited in finding inference algorithms.

Most inference algorithms can be expressed in terms of message passing algorithms, where local messages are propagated around the graph.

Machine Learning	AUTOMATIC CONTROL REGLERTEKNIK
T. Schön	LINKÖPINGS UNVERSITET

Factor graphs
28(34)

- Both directed and undirected graphs give a factorial representation for the joint density.

- Factor graphs make this factorization more explicit by $p\left(x_{1: 4}\right)=f_{a}\left(x_{1}, x_{2}\right) f_{b}\left(x_{1}, x_{2}\right) f_{c}\left(x_{2}, x_{3}\right) f_{d}\left(x_{3}\right)$ adding nodes for each factor.
- Both directed and undirected graphs can be converted into factor graphs.

Machine Learning
T. Schön

Inference in factor graphs

29(34)

- We have the joint density for the graph on the right given as
$p\left(x_{1: 7}\right) \propto f_{1}\left(x_{1}\right) f_{2}\left(x_{1: 3}\right) f_{3}\left(x_{2}\right) f_{4}\left(x_{2}, x_{7}\right) f_{5}\left(x_{3: 6}\right)$

- When we have measurements of some variables, we might need the posteriors of some or all unobserved variables.

$$
\begin{aligned}
p\left(x_{1}, x_{3}, x_{4}, x_{5}, x_{7} \mid x_{2}, x_{6}\right) & =\frac{p\left(x_{1: 7}\right)}{p\left(x_{2}, x_{6}\right)} \\
& =\frac{p\left(x_{1: 7}\right)}{\sum_{x_{1}, x_{3}, x_{4}, x_{5}, x_{7}} p\left(x_{1: 7}\right)}
\end{aligned}
$$

Machine Learning T. Schön	AUTOMATC CONTROL REGLEREKNK LINKÖPNGS UNVERSITET

Inference in factor graphs

31 (34)

Sum-Product Algorithm

- Calculate messages from variable nodes to factor nodes

$$
\mu_{x_{i} \rightarrow f_{j}}\left(x_{i}\right)=\prod_{f_{\ell} \in \operatorname{ne}\left(x_{i}\right) \backslash \bigvee_{j}} \mu_{f_{\ell} \rightarrow x_{i}}\left(x_{i}\right)
$$

- Calculate messages from factor nodes to variable nodes

$$
\mu_{f_{j} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{\ell} \in \operatorname{ne}\left(f_{j}\right) \backslash x_{i}} f_{j} \prod_{x_{\ell} \in \operatorname{ne}\left(f_{j}\right) \backslash x_{i}} \mu_{x_{\ell} \rightarrow f_{j}}\left(x_{\ell}\right)
$$

- Iterate messages until convergence. (Different iteration schemes can be designed.)
- After convergence, the marginals are calculated as

$$
p\left(x_{i}\right) \propto \prod_{f_{\ell} \in \operatorname{ne}\left(x_{i}\right)} \mu_{f_{\ell} \rightarrow x_{i}}\left(x_{i}\right)
$$

- Making inference requires marginals.
- It is possible to calculate the marginals on a graph efficiently by passing local messages along the graph.

- Two interconnected types of messages are considered
- Messages from variable nodes to factor nodes

$$
\mu_{x_{i} \rightarrow f_{j}}\left(x_{i}\right)=\prod_{f_{\ell} \in \operatorname{ne}\left(x_{i}\right) \backslash f_{j}} \mu_{f_{\ell} \rightarrow x_{i}}\left(x_{i}\right)
$$

- Messages from factor nodes to variable nodes

$$
\mu_{f_{j} \rightarrow x_{i}}\left(x_{i}\right)=\sum_{x_{\ell} \in \operatorname{ne}\left(f_{j}\right) \backslash x_{i}} f_{j} \prod_{x_{\ell} \in \operatorname{ne}\left(f_{j}\right) \backslash x_{i}} \mu_{x_{\ell} \rightarrow f_{j}}\left(x_{\ell}\right)
$$

Machine Learning

T. Schön

Inference in factor graphs

32(34)

- The values in the observed nodes are just substituted into the factors and not integrated out.
- If the graph is a tree, the algorithm can calculate all the marginals by making
- a forward pass from the root to the leaves
- a backward pass from the leaves to the root.
- The sum-product algorithm gives the exact results in a tree structured graph.
- The sum-product algorithm is equivalent to a Kalman smoother for linear Gaussian dynamical systems.

Machine Learning

T. Schön

AUTOMATIC CONTROL REGLERTEKNIK
INKÖPGGS UNVERSTET LINKÖPNGG UNVEERSTET

Inference in factor graphs

- When the sum-product algorithm is applied to directed graphs without loops the resulting algorithm is sometimes referred to as belief propagation.
- In a graph with loops, the sum-product algorithm is not exact and actually might not converge.
- People anyway apply it to the graphs with loops also, which is called loopy belief propagation.
- Even in this form, it has important applications in
 communications (decoding of error correcting codes). probabilities correspond to edges.
D-separation: Checking for conditional independence is somewhat troublesome for directed graphs requiring a condition called D-separation to be satisfied.

Undirected graphs: Another graphical representation where conditional independence is given by simple graph separation.

Factor graphs: An extension of directed and undirected graphs which makes the probabilistic factors explicit.

Belief propagation: A probabilistic inference type using graphs where local messages are propagated among the graph nodes.

Sum-product algorithm: A form of belief propagation which gives exact results only for trees but also applied to graphs with loops anyway.

| Machine Learning
 T. Schön | AUTOMATIC CONTROL
 REGLERTEKNIK
 LINKÖPGS UNVERSITET |
| :--- | ---: | :--- |

Machine Learning	AUTOMATIC CONTROL
RGGLERTEKNK	
T. Schön	LINKÖPGGS UNVERSTTET

[^0]: Machine Learning

