	Outline of lecture 9 2(34)
<image/> <section-header><image/><image/><image/><text><text><text></text></text></text></section-header>	 Summary of lecture 8 Directed acyclic graphs General properties Conditional independence Undirected graphs General properties Conditional independence General properties Conditional independence Relation with directed graphs Factor graphs Inference using belief propagation (BP) Sum-product algorithm Max-sum algorithm (Chapter 8)
Automatic control REGLERTEKNIK T. Schön	AUTOMATIC CONTROL REGLERTERNIK T. Schön
Summary of lecture 8 (I/III) 3(34)	Summary of lecture 8 (II/III) 4(34)
In boosting we train a sequence of <i>M</i> models $y_m(x)$, where the error function used to train a certain model depends on the performance of the previous models. The models are then combined to produce the resulting classifier (for the two class problem) according to $Y_M(x) = \operatorname{sign}\left(\sum_{m=1}^M \alpha_m y_m(x)\right)$ We saw that the AdaBoost algorithm can be interpreted as a	 We started introducing some basic concepts for probabilistic graphical models G = (V, L) consisting of 1. a set of nodes V (a.k.a. vertices) representing the random variables and 2. a set of links L (a.k.a. edges or arcs) containing elements (<i>i</i>, <i>j</i>) ∈ L connecting a pair of nodes (<i>i</i>, <i>j</i>) ∈ V and thereby encoding the probabilistic relations between nodes.
sequential minimization of an exponential cost function.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Summary of lecture 8 (III/III)	5(34)	Why graphs?	6(34)
The set of parents to node j is defined as		Simple vieualization of probabilistic relationships	
$\mathcal{P}(j) \triangleq \{i \in \mathcal{V} \mid (i,j) \in \mathcal{E}\}$		 Simple visualization of probabilistic relationships. Can be used to design and motivate new models. 	b b
The directed graph describes how the joint distribution $p(x)$ factors into a product of factors $p(x_i x_{\mathcal{P}(i)})$ only depending on a subset of the variables,		 They can provide some insights into the properties of the model, such as conditional independence properties. Some complex computations for inference and learning can be expressed and visualized. 	
$p(x_\mathcal{V}) = \prod_{i \in \mathcal{V}} p(x_i \mid x_{\mathcal{P}(i)}).$		We are going to consider three types of graphs:	
Hence, for the state space model on the previous slide, we have		 Directed graphs a.k.a. Bayesian networks Undirected graphs a.k.a. Markov random fields 	
$p(X,Y) = p(x_0) \prod_{t=1}^{N} p(x_t \mid x_{t-1}) \prod_{t=1}^{N} p(y_t \mid x_t)$		• Factor graphs are a more convenient form that can be obtained from the above two for the purposes of inference and learning.	
Machine Learning T. Schön	AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET	Machine Learning T. Schön	AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET
Directed acyclic graphs	7(34)	Measured, hidden and multiple variables	8(34)
 Suppose we have K random variables x_{1:K} = {x₁,, x_K}. The most general decomposition of the joint density of these variables is 		• The measured variables are shown with shaded nodes.	
 <i>p</i>(<i>x</i>_{1:K}) = <i>p</i>(<i>x</i>₁) ∏_{k=2} <i>p</i>(<i>x</i>_k <i>x</i>_{0:k-1}) With a directed acyclic graph, we have the following model. 	x_1 x_3 x_3	 If one has identical nodes, plates can be used to graph. 	simplify the
$p(x_{1:K}) = \prod_{k=1}^{K} p(x_k x_{\mathcal{P}(k)})$		The variable N in the lower right corner gives the	number of the
$p(x_{1:K}) = \prod_{k=1}^{K} p(x_k x_{\mathcal{P}(k)})$ where $\mathcal{P}(k)$ is the parents of node k .	x_4 x_5 x_6 x_7	The variable N in the lower right corner gives the identical nodes.	number of the

Inference in factor graphs

Machine Learning

T. Schön

33(34)

- When the sum-product algorithm is applied to directed graphs without loops the resulting algorithm is sometimes referred to as belief propagation.
- In a graph with loops, the sum-product algorithm is not exact and actually might not converge.
- People anyway apply it to the graphs with loops also, which is called **loopy belief propagation**.
- Even in this form, it has important applications in communications (decoding of error correcting codes).

AUTOMATIC CONTROL

REGLERTEKNIK LINKÖPINGS UNIVERSITET

A few concepts to summarize lecture 9

Directed graphs: A graphical description of a probabilistic model where the conditional probabilities correspond to edges.

D-separation: Checking for conditional independence is somewhat troublesome for directed graphs requiring a condition called D-separation to be satisfied.

Undirected graphs: Another graphical representation where conditional independence is given by simple graph separation.

Factor graphs: An extension of directed and undirected graphs which makes the probabilistic factors explicit.

Belief propagation: A probabilistic inference type using graphs where local messages are propagated among the graph nodes.

Sum-product algorithm: A form of belief propagation which gives exact results only for trees but also applied to graphs with loops anyway.

Machine Learning T. Schön

34(34)