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1. Summary of lecture 8
2. Directed acyclic graphs

• General properties
• Conditional independence

3. Undirected graphs
• General properties
• Conditional independence
• Relation with directed graphs

4. Factor graphs
• Inference using belief propagation (BP)

– Sum-product algorithm
– Max-sum algorithm

(Chapter 8)
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Summary of lecture 8 (I/III) 3(34)

In boosting we train a sequence of M models ym(x), where the
error function used to train a certain model depends on the
performance of the previous models.

The models are then combined to produce the resulting classifier (for
the two class problem) according to

YM(x) = sign

(
M

∑
m=1

αmym(x)

)

We saw that the AdaBoost algorithm can be interpreted as a
sequential minimization of an exponential cost function.
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Summary of lecture 8 (II/III) 4(34)

We started introducing some basic concepts for probabilistic
graphical models G = (V ,L) consisting of

1. a set of nodes V (a.k.a. vertices) representing the random
variables and

2. a set of links L (a.k.a. edges or arcs) containing elements
(i, j) ∈ L connecting a pair of nodes (i, j) ∈ V and thereby
encoding the probabilistic relations between nodes.

x0 x1 x2
. . .

xN

y1 y2 yN
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Summary of lecture 8 (III/III) 5(34)

The set of parents to node j is defined as

P(j) , {i ∈ V | (i, j) ∈ E}

The directed graph describes how the joint distribution p(x) factors
into a product of factors p(xi | xP(i)) only depending on a subset of
the variables,

p(xV ) = ∏
i∈V

p(xi | xP(i)).

Hence, for the state space model on the previous slide, we have

p(X, Y) = p(x0)
N

∏
t=1

p(xt | xt−1)
N

∏
t=1

p(yt | xt)
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Why graphs? 6(34)

• Simple visualization of probabilistic relationships.

• Can be used to design and motivate new models.

• They can provide some insights into the properties of the
model, such as conditional independence properties.

• Some complex computations for inference and learning
can be expressed and visualized.

We are going to consider three types of graphs:

• Directed graphs a.k.a. Bayesian networks

• Undirected graphs a.k.a. Markov random fields

• Factor graphs are a more convenient form that can be
obtained from the above two for the purposes of
inference and learning.
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Figure 8.1 A directed graphical model representing the joint probabil-
ity distribution over three variables a, b, and c, correspond-
ing to the decomposition on the right-hand side of (8.2).

a

b

c

(8.2). Then, for each conditional distribution we add directed links (arrows) to the
graph from the nodes corresponding to the variables on whichthe distribution is
conditioned. Thus for the factorp(c|a, b), there will be links from nodesa andb to
nodec, whereas for the factorp(a) there will be no incoming links. The result is
the graph shown in Figure 8.1. If there is a link going from a nodea to a nodeb,
then we say that nodea is theparentof nodeb, and we say that nodeb is thechild
of nodea. Note that we shall not make any formal distinction between anode and
the variable to which it corresponds but will simply use the same symbol to refer to
both.

An interesting point to note about (8.2) is that the left-hand side is symmetrical
with respect to the three variablesa, b, andc, whereas the right-hand side is not.
Indeed, in making the decomposition in (8.2), we have implicitly chosen a particular
ordering, namelya, b, c, and had we chosen a different ordering we would have
obtained a different decomposition and hence a different graphical representation.
We shall return to this point later.

For the moment let us extend the example of Figure 8.1 by considering the joint
distribution overK variables given byp(x1, . . . , xK). By repeated application of
the product rule of probability, this joint distribution can be written as a product of
conditional distributions, one for each of the variables

p(x1, . . . , xK) = p(xK |x1, . . . , xK−1) . . . p(x2|x1)p(x1). (8.3)

For a given choice ofK, we can again represent this as a directed graph havingK
nodes, one for each conditional distribution on the right-hand side of (8.3), with each
node having incoming links from all lower numbered nodes. Wesay that this graph
is fully connectedbecause there is a link between every pair of nodes.

So far, we have worked with completely general joint distributions, so that the
decompositions, and their representations as fully connected graphs, will be applica-
ble to any choice of distribution. As we shall see shortly, itis theabsenceof links
in the graph that conveys interesting information about theproperties of the class of
distributions that the graph represents. Consider the graph shown in Figure 8.2.
This is not a fully connected graph because, for instance, there is no link fromx1 to
x2 or fromx3 to x7.

We shall now go from this graph to the corresponding representation of the joint
probability distribution written in terms of the product ofa set of conditional dis-
tributions, one for each node in the graph. Each such conditional distribution will
be conditioned only on the parents of the corresponding nodein the graph. For in-
stance,x5 will be conditioned onx1 andx3. The joint distribution of all7 variables
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8.3. Markov Random Fields 389

Figure 8.31 An undirected graphical model representing a
Markov random field for image de-noising, in
which xi is a binary variable denoting the state
of pixel i in the unknown noise-free image, and yi

denotes the corresponding value of pixel i in the
observed noisy image.

xi

yi

indices of neighbouring pixels. Again, we want the energy tobe lower when the
pixels have the same sign than when they have the opposite sign, and so we choose
an energy given by−βxixj whereβ is a positive constant.

Because a potential function is an arbitrary, nonnegative function over a maximal
clique, we can multiply it by any nonnegative functions of subsets of the clique, or
equivalently we can add the corresponding energies. In thisexample, this allows us
to add an extra termhxi for each pixeli in the noise-free image. Such a term has
the effect of biasing the model towards pixel values that have one particular sign in
preference to the other.

The complete energy function for the model then takes the form

E(x,y) = h
∑

i

xi − β
∑

{i,j}

xixj − η
∑

i

xiyi (8.42)

which defines a joint distribution overx andy given by

p(x,y) =
1

Z
exp{−E(x,y)}. (8.43)

We now fix the elements ofy to the observed values given by the pixels of the
noisy image, which implicitly defines a conditional distribution p(x|y) over noise-
free images. This is an example of theIsing model, which has been widely studied in
statistical physics. For the purposes of image restoration, we wish to find an imagex
having a high probability (ideally the maximum probability). To do this we shall use
a simple iterative technique callediterated conditional modes, or ICM (Kittler and
Föglein, 1984), which is simply an application of coordinate-wise gradient ascent.
The idea is first to initialize the variables{xi}, which we do by simply settingxi =
yi for all i. Then we take one nodexj at a time and we evaluate the total energy
for the two possible statesxj = +1 andxj = −1, keeping all other node variables
fixed, and setxj to whichever state has the lower energy. This will either leave
the probability unchanged, ifxj is unchanged, or will increase it. Because only
one variable is changed, this is a simple local computation that can be performedExercise 8.13
efficiently. We then repeat the update for another site, and so on, until some suitable
stopping criterion is satisfied. The nodes may be updated in asystematic way, for
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(a) (b) (c)

Figure 8.43 (a) A directed polytree. (b) The result of converting the polytree into an undirected graph showing
the creation of loops. (c) The result of converting the polytree into a factor graph, which retains the tree structure.

precise form of the factorization. Figure 8.45 shows an example of a fully connected
undirected graph along with two different factor graphs. In(b), the joint distri-
bution is given by a general formp(x) = f(x1, x2, x3), whereas in (c), it is given
by the more specific factorizationp(x) = fa(x1, x2)fb(x1, x3)fc(x2, x3). It should
be emphasized that the factorization in (c) does not correspond to any conditional
independence properties.

8.4.4 The sum-product algorithm

We shall now make use of the factor graph framework to derive apowerful class
of efficient, exact inference algorithms that are applicable to tree-structured graphs.
Here we shall focus on the problem of evaluating local marginals over nodes or
subsets of nodes, which will lead us to thesum-productalgorithm. Later we shall
modify the technique to allow the most probable state to be found, giving rise to the
max-sumalgorithm.

Also we shall suppose that all of the variables in the model are discrete, and
so marginalization corresponds to performing sums. The framework, however, is
equally applicable to linear-Gaussian models in which casemarginalization involves
integration, and we shall consider an example of this in detail when we discuss linear
dynamical systems.Section 13.3

Figure 8.44 (a) A fragment of a di-
rected graph having a lo-
cal cycle. (b) Conversion
to a fragment of a factor
graph having a tree struc-
ture, in which f(x1, x2, x3) =
p(x1)p(x2|x1)p(x3|x1, x2).

x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)
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Directed acyclic graphs 7(34)

• Suppose we have K random variables
x1:K = {x1, . . . , xK}.
• The most general decomposition of the joint density of

these variables is

p(x1:K) = p(x1)
K

∏
k=2

p(xk|x0:k−1)

• With a directed acyclic graph, we have the following
model.

p(x1:K) =
K

∏
k=1

p(xk|xP(k))

where P(k) is the parents of node k.

8.1. Bayesian Networks 361

Figure 8.1 A directed graphical model representing the joint probabil-
ity distribution over three variables a, b, and c, correspond-
ing to the decomposition on the right-hand side of (8.2).

a

b

c

(8.2). Then, for each conditional distribution we add directed links (arrows) to the
graph from the nodes corresponding to the variables on whichthe distribution is
conditioned. Thus for the factorp(c|a, b), there will be links from nodesa andb to
nodec, whereas for the factorp(a) there will be no incoming links. The result is
the graph shown in Figure 8.1. If there is a link going from a nodea to a nodeb,
then we say that nodea is theparentof nodeb, and we say that nodeb is thechild
of nodea. Note that we shall not make any formal distinction between anode and
the variable to which it corresponds but will simply use the same symbol to refer to
both.

An interesting point to note about (8.2) is that the left-hand side is symmetrical
with respect to the three variablesa, b, andc, whereas the right-hand side is not.
Indeed, in making the decomposition in (8.2), we have implicitly chosen a particular
ordering, namelya, b, c, and had we chosen a different ordering we would have
obtained a different decomposition and hence a different graphical representation.
We shall return to this point later.

For the moment let us extend the example of Figure 8.1 by considering the joint
distribution overK variables given byp(x1, . . . , xK). By repeated application of
the product rule of probability, this joint distribution can be written as a product of
conditional distributions, one for each of the variables

p(x1, . . . , xK) = p(xK |x1, . . . , xK−1) . . . p(x2|x1)p(x1). (8.3)

For a given choice ofK, we can again represent this as a directed graph havingK
nodes, one for each conditional distribution on the right-hand side of (8.3), with each
node having incoming links from all lower numbered nodes. Wesay that this graph
is fully connectedbecause there is a link between every pair of nodes.

So far, we have worked with completely general joint distributions, so that the
decompositions, and their representations as fully connected graphs, will be applica-
ble to any choice of distribution. As we shall see shortly, itis theabsenceof links
in the graph that conveys interesting information about theproperties of the class of
distributions that the graph represents. Consider the graph shown in Figure 8.2.
This is not a fully connected graph because, for instance, there is no link fromx1 to
x2 or fromx3 to x7.

We shall now go from this graph to the corresponding representation of the joint
probability distribution written in terms of the product ofa set of conditional dis-
tributions, one for each node in the graph. Each such conditional distribution will
be conditioned only on the parents of the corresponding nodein the graph. For in-
stance,x5 will be conditioned onx1 andx3. The joint distribution of all7 variables
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Figure 8.2 Example of a directed acyclic graph describing the joint
distribution over variables x1, . . . , x7. The corresponding
decomposition of the joint distribution is given by (8.4).

x1

x2 x3

x4 x5

x6 x7

is therefore given by

p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5). (8.4)

The reader should take a moment to study carefully the correspondence between
(8.4) and Figure 8.2.

We can now state in general terms the relationship between a given directed
graph and the corresponding distribution over the variables. The joint distribution
defined by a graph is given by the product, over all of the nodesof the graph, of
a conditional distribution for each node conditioned on thevariables corresponding
to the parents of that node in the graph. Thus, for a graph withK nodes, the joint
distribution is given by

p(x) =

K∏

k=1

p(xk|pak) (8.5)

wherepak denotes the set of parents ofxk, andx = {x1, . . . , xK}. This key
equation expresses thefactorizationproperties of the joint distribution for a directed
graphical model. Although we have considered each node to correspond to a single
variable, we can equally well associate sets of variables and vector-valued variables
with the nodes of a graph. It is easy to show that the representation on the right-
hand side of (8.5) is always correctly normalized provided the individual conditional
distributions are normalized.Exercise 8.1

The directed graphs that we are considering are subject to animportant restric-
tion namely that there must be nodirected cycles, in other words there are no closed
paths within the graph such that we can move from node to node along links follow-
ing the direction of the arrows and end up back at the startingnode. Such graphs are
also calleddirected acyclic graphs, or DAGs. This is equivalent to the statement thatExercise 8.2
there exists an ordering of the nodes such that there are no links that go from any
node to any lower numbered node.

8.1.1 Example: Polynomial regression
As an illustration of the use of directed graphs to describe probability distrib-

utions, we consider the Bayesian polynomial regression model introduced in Sec-
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Measured, hidden and multiple variables 8(34)

• The measured variables are shown with shaded nodes.

• If one has identical nodes, plates can be used to simplify the
graph. 8.1. Bayesian Networks 363

Figure 8.3 Directed graphical model representing the joint
distribution (8.6) corresponding to the Bayesian
polynomial regression model introduced in Sec-
tion 1.2.6.

w

t1 tN

tion 1.2.6. The random variables in this model are the vectorof polynomial coeffi-
cientsw and the observed datat = (t1, . . . , tN )T. In addition, this model contains
the input datax = (x1, . . . , xN )T, the noise varianceσ2, and the hyperparameterα
representing the precision of the Gaussian prior overw, all of which are parameters
of the model rather than random variables. Focussing just onthe random variables
for the moment, we see that the joint distribution is given bythe product of the prior
p(w) andN conditional distributionsp(tn|w) for n = 1, . . . , N so that

p(t,w) = p(w)

N∏

n=1

p(tn|w). (8.6)

This joint distribution can be represented by a graphical model shown in Figure 8.3.

When we start to deal with more complex models later in the book, we shall find
it inconvenient to have to write out multiple nodes of the form t1, . . . , tN explicitly as
in Figure 8.3. We therefore introduce a graphical notation that allows such multiple
nodes to be expressed more compactly, in which we draw a single representative
nodetn and then surround this with a box, called aplate, labelled withN indicating
that there areN nodes of this kind. Re-writing the graph of Figure 8.3 in thisway,
we obtain the graph shown in Figure 8.4.

We shall sometimes find it helpful to make the parameters of a model, as well as
its stochastic variables, explicit. In this case, (8.6) becomes

p(t,w|x, α, σ2) = p(w|α)

N∏

n=1

p(tn|w, xn, σ
2).

Correspondingly, we can makex andα explicit in the graphical representation. To
do this, we shall adopt the convention that random variableswill be denoted by open
circles, and deterministic parameters will be denoted by smaller solid circles. If we
take the graph of Figure 8.4 and include the deterministic parameters, we obtain the
graph shown in Figure 8.5.

When we apply a graphical model to a problem in machine learning or pattern
recognition, we will typically set some of the random variables to specific observed

Figure 8.4 An alternative, more compact, representation of the graph
shown in Figure 8.3 in which we have introduced a plate
(the box labelledN ) that representsN nodes of which only
a single example tn is shown explicitly.

tn
N

w
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Figure 8.3 Directed graphical model representing the joint
distribution (8.6) corresponding to the Bayesian
polynomial regression model introduced in Sec-
tion 1.2.6.
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The variable N in the lower right corner gives the number of the
identical nodes.
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Example – Gaussian mixture (I/II) 9(34)

Suppose we have x1:N i.i.d. and distributed as

xi ∼ p(x|π1:K, µ1:K, Λ1:K) =
K

∑
k=1

πkN
(

x; µk, Λ−1
k

)

for i = 1, . . . , N.

In a Bayesian model, all the unknowns {π1:K, µ1:K, Λ1:K} are
modelled as random variables.

π1:K ∼Dir(π1:K|α0)
4
∝

K

∏
k=1

πα0−1
k

µ1:K, Λ1:K ∼p(µ1:K, Λ1:K) ,
K

∏
k=1
N (µk; m0, (β0Λk)

−1)W(Λk|W0, ν0)
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Example – Gaussian mixture (II/II) 10(34)

Define the latent variables zn , [zn1, · · · , znK]
T for n = 1, . . . , N as

we did in the construction used for EM and VB.

Then the joint density can be written as

p(x1:N, z1:N) =
N

∏
n=1

K

∏
k=1

πznk
k N

(
x; µk, Λ−1

k

)znk
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Observing conditional independence (I/III) 11(34)

Example: Polynomial regression.

• Let t1:N be the values of a function at the points x1:N.

• We would like to find the Kth degree polynomial approximating
this function whose coefficients are shown as w ∈ RK+1.

• w ∼ N (0, Σ)
• Then the model can be written as

tn = φ(xn)w + vn

where φ(x) =
[
1, x, x2, . . . , xK].

• {vn}N
n=1 is i.i.d. and vn ∼ N (0, R).
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Observing conditional independence (II/III) 12(34)

Example: Polynomial regression

tn = φ(xn)w + vn

• The joint density for the problem can be written as

p(t1:N, w) = p(t1:N|w)p(w) = p(w)
N

∏
i=1

p(ti|w)

• What is the reason for the equality p(t1:N|w) = ∏N
i=1 p(ti|w)?
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Observing conditional independence (III/III) 13(34)

Example: Polynomial regression

· · ·

w

t1 t2 tN

· · ·

w

t1 t2 tN

When w is assumed known it is said to “block the path”, rendering
all the variables {tn}N

n=1 conditionally independent.

Important question: Can this be formalized, i.e., can we discern CI
properties directly from the graph?
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CI from DAGs – Ex 1 14(34)

p(a, b|c) =p(a, b, c)
p(c)

=
p(a|c)p(b|c)p(c)

p(c)
=p(a|c)p(b|c)

=⇒ a ⊥ b|c

374 8. GRAPHICAL MODELS

Figure 8.16 As in Figure 8.15 but where we have conditioned on the
value of variable c.

c

a b

where∅ denotes the empty set, and the symbol6⊥⊥ means that the conditional inde-
pendence property does not hold in general. Of course, it mayhold for a particular
distribution by virtue of the specific numerical values associated with the various
conditional probabilities, but it does not follow in general from the structure of the
graph.

Now suppose we condition on the variablec, as represented by the graph of
Figure 8.16. From (8.23), we can easily write down the conditional distribution of
a andb, givenc, in the form

p(a, b|c) =
p(a, b, c)

p(c)

= p(a|c)p(b|c)

and so we obtain the conditional independence property

a ⊥⊥ b | c.

We can provide a simple graphical interpretation of this result by considering
the path from nodea to nodeb via c. The nodec is said to betail-to-tail with re-
spect to this path because the node is connected to the tails of the two arrows, and
the presence of such a path connecting nodesa andb causes these nodes to be de-
pendent. However, when we condition on nodec, as in Figure 8.16, the conditioned
node ‘blocks’ the path froma to b and causesa and b to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. Thejoint distribu-
tion corresponding to this graph is again obtained from our general formula (8.5) to
give

p(a, b, c) = p(a)p(c|a)p(b|c). (8.26)

First of all, suppose that none of the variables are observed. Again, we can test to
see ifa andb are independent by marginalizing overc to give

p(a, b) = p(a)
∑

c

p(c|a)p(b|c) = p(a)p(b|a).

Figure 8.17 The second of our three examples of 3-node
graphs used to motivate the conditional indepen-
dence framework for directed graphical models.

a c b
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CI rule for tail-to-tail nodes
For conditional independence of two nodes, the tail-to-tail nodes
between them must be observed, which blocks the path.
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CI from DAGs – Ex 2 15(34)

Head-to-tail nodes:

374 8. GRAPHICAL MODELS

Figure 8.16 As in Figure 8.15 but where we have conditioned on the
value of variable c.

c

a b

where∅ denotes the empty set, and the symbol6⊥⊥ means that the conditional inde-
pendence property does not hold in general. Of course, it mayhold for a particular
distribution by virtue of the specific numerical values associated with the various
conditional probabilities, but it does not follow in general from the structure of the
graph.

Now suppose we condition on the variablec, as represented by the graph of
Figure 8.16. From (8.23), we can easily write down the conditional distribution of
a andb, givenc, in the form

p(a, b|c) =
p(a, b, c)

p(c)

= p(a|c)p(b|c)

and so we obtain the conditional independence property

a ⊥⊥ b | c.

We can provide a simple graphical interpretation of this result by considering
the path from nodea to nodeb via c. The nodec is said to betail-to-tail with re-
spect to this path because the node is connected to the tails of the two arrows, and
the presence of such a path connecting nodesa andb causes these nodes to be de-
pendent. However, when we condition on nodec, as in Figure 8.16, the conditioned
node ‘blocks’ the path froma to b and causesa and b to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. Thejoint distribu-
tion corresponding to this graph is again obtained from our general formula (8.5) to
give

p(a, b, c) = p(a)p(c|a)p(b|c). (8.26)

First of all, suppose that none of the variables are observed. Again, we can test to
see ifa andb are independent by marginalizing overc to give

p(a, b) = p(a)
∑

c

p(c|a)p(b|c) = p(a)p(b|a).

Figure 8.17 The second of our three examples of 3-node
graphs used to motivate the conditional indepen-
dence framework for directed graphical models.

a c b

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML
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• How about when c is given; a
?
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Figure 8.18 As in Figure 8.17 but now conditioning on node c. a c b

which in general does not factorize intop(a)p(b), and so

a 6⊥⊥ b | ∅ (8.27)

as before.
Now suppose we condition on nodec, as shown in Figure 8.18. Using Bayes’

theorem, together with (8.26), we obtain

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(c|a)p(b|c)

p(c)

= p(a|c)p(b|c)

and so again we obtain the conditional independence property

a ⊥⊥ b | c.

As before, we can interpret these results graphically. The nodec is said to be
head-to-tailwith respect to the path from nodea to nodeb. Such a path connects
nodesa andb and renders them dependent. If we now observec, as in Figure 8.18,
then this observation ‘blocks’ the path froma to b and so we obtain the conditional
independence propertya ⊥⊥ b | c.

Finally, we consider the third of our 3-node examples, shownby the graph in
Figure 8.19. As we shall see, this has a more subtle behaviourthan the two
previous graphs.

The joint distribution can again be written down using our general result (8.5) to
give

p(a, b, c) = p(a)p(b)p(c|a, b). (8.28)

Consider first the case where none of the variables are observed. Marginalizing both
sides of (8.28) overc we obtain

p(a, b) = p(a)p(b)

Figure 8.19 The last of our three examples of 3-node graphs used to
explore conditional independence properties in graphi-
cal models. This graph has rather different properties
from the two previous examples.

c

a b

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML

CI rule for head-to-tail nodes
For conditional independence of two nodes, the head-to-tail nodes
between them must be observed, which blocks the path.
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CI from DAGs – Ex 3 16(34)

Head-to-head nodes:

• Are a and b independent a
?

⊥ b? Yes, since∫
p(a, b, c)dc =

∫
p(a)p(b)p(c | a, b)dc =

p(a)p(b).

• How about when c is given; a
?

⊥ b|c? No,

since p(a, b | c) = p(a,b,c)
p(c) =

p(a)p(b)p(c|a,b)
p(c) 6= p(a | c)p(b | c).
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Figure 8.18 As in Figure 8.17 but now conditioning on node c. a c b

which in general does not factorize intop(a)p(b), and so

a 6⊥⊥ b | ∅ (8.27)

as before.
Now suppose we condition on nodec, as shown in Figure 8.18. Using Bayes’

theorem, together with (8.26), we obtain

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(c|a)p(b|c)

p(c)

= p(a|c)p(b|c)

and so again we obtain the conditional independence property

a ⊥⊥ b | c.

As before, we can interpret these results graphically. The nodec is said to be
head-to-tailwith respect to the path from nodea to nodeb. Such a path connects
nodesa andb and renders them dependent. If we now observec, as in Figure 8.18,
then this observation ‘blocks’ the path froma to b and so we obtain the conditional
independence propertya ⊥⊥ b | c.

Finally, we consider the third of our 3-node examples, shownby the graph in
Figure 8.19. As we shall see, this has a more subtle behaviourthan the two
previous graphs.

The joint distribution can again be written down using our general result (8.5) to
give

p(a, b, c) = p(a)p(b)p(c|a, b). (8.28)

Consider first the case where none of the variables are observed. Marginalizing both
sides of (8.28) overc we obtain

p(a, b) = p(a)p(b)

Figure 8.19 The last of our three examples of 3-node graphs used to
explore conditional independence properties in graphi-
cal models. This graph has rather different properties
from the two previous examples.
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a b
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376 8. GRAPHICAL MODELS

Figure 8.20 As in Figure 8.19 but conditioning on the value of node
c. In this graph, the act of conditioning induces a depen-
dence between a and b.

c

a b

and soa andb are independent with no variables observed, in contrast to the two
previous examples. We can write this result as

a ⊥⊥ b | ∅. (8.29)

Now suppose we condition onc, as indicated in Figure 8.20. The conditional
distribution ofa andb is then given by

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

which in general does not factorize into the productp(a)p(b), and so

a 6⊥⊥ b | c.

Thus our third example has the opposite behaviour from the first two. Graphically,
we say that nodec is head-to-headwith respect to the path froma to b because it
connects to the heads of the two arrows. When nodec is unobserved, it ‘blocks’
the path, and the variablesa and b are independent. However, conditioning onc
‘unblocks’ the path and rendersa andb dependent.

There is one more subtlety associated with this third example that we need to
consider. First we introduce some more terminology. We say that nodey is a de-
scendantof nodex if there is a path fromx to y in which each step of the path
follows the directions of the arrows. Then it can be shown that a head-to-head path
will become unblocked if either the node,or any of its descendants, is observed.Exercise 8.10

In summary, a tail-to-tail node or a head-to-tail node leaves a path unblocked
unless it is observed in which case it blocks the path. By contrast, a head-to-head
node blocks a path if it is unobserved, but once the node, and/or at least one of its
descendants, is observed the path becomes unblocked.

It is worth spending a moment to understand further the unusual behaviour of the
graph of Figure 8.20. Consider a particular instance of sucha graph corresponding
to a problem with three binary random variables relating to the fuel system on a car,
as shown in Figure 8.21. The variables are calledB, representing the state of a
battery that is either charged (B = 1) or flat (B = 0), F representing the state of
the fuel tank that is either full of fuel (F = 1) or empty (F = 0), andG, which is
the state of an electric fuel gauge and which indicates either full (G = 1) or empty

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML

CI rule for head-to-head nodes
For conditional independence of two nodes, the head-to-head nodes
between them must be unobserved, which blocks the path.
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D-separation 17(34)

D-separation for Directed Acyclic Graphs
Consider a directed acyclic graph in which A, B and C are arbitrary
non-intersecting sets of nodes. We have the property

A ⊥ B|C

if, on all possible paths from any node in A to any node in B,

• all tail-to-tail and head-to-tail nodes are in C;

• neither head-to-head nodes nor any of their descendants are in
C.
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D-separation examples 18(34)
8.2. Conditional Independence 379

Figure 8.22 Illustration of the con-
cept of d-separation. See the text for
details.

f

e b

a

c

(a)

f

e b

a

c

(b)

be satisfied by any distribution that factorizes according to this graph. Note that this
path is also blocked by nodee becausee is a head-to-head node and neither it nor its
descendant are in the conditioning set.

For the purposes of d-separation, parameters such asα andσ2 in Figure 8.5,
indicated by small filled circles, behave in the same was as observed nodes. How-
ever, there are no marginal distributions associated with such nodes. Consequently
parameter nodes never themselves have parents and so all paths through these nodes
will always be tail-to-tail and hence blocked. Consequently they play no role in
d-separation.

Another example of conditional independence and d-separation is provided by
the concept of i.i.d. (independent identically distributed) data introduced in Sec-
tion 1.2.4. Consider the problem of finding the posterior distribution for the mean
of a univariate Gaussian distribution. This can be represented by the directed graphSection 2.3
shown in Figure 8.23 in which the joint distribution is defined by a priorp(µ) to-
gether with a set of conditional distributionsp(xn|µ) for n = 1, . . . , N . In practice,
we observeD = {x1, . . . , xN} and our goal is to inferµ. Suppose, for a moment,
that we condition onµ and consider the joint distribution of the observations. Using
d-separation, we note that there is a unique path from anyxi to any otherxj 6=i and
that this path is tail-to-tail with respect to the observed nodeµ. Every such path is
blocked and so the observationsD = {x1, . . . , xN} are independent givenµ, so that

p(D|µ) =

N∏

n=1

p(xn|µ). (8.34)

Figure 8.23 (a) Directed graph corre-
sponding to the problem
of inferring the mean µ of
a univariate Gaussian dis-
tribution from observations
x1, . . . , xN . (b) The same
graph drawn using the plate
notation.

µ

x1 xN

(a)

xn

N

N

µ

(b)

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
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• The path from a to b is not blocked by f ,
since it is a tail-to-tail node and f not
observed.

• Nor is it blocked by e, which is a
head-to-head node, with an observed
node c as descendant.

• Hence, CI (a ⊥ b | c) does not follow
from this graph.
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Figure 8.22 Illustration of the con-
cept of d-separation. See the text for
details.
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be satisfied by any distribution that factorizes according to this graph. Note that this
path is also blocked by nodee becausee is a head-to-head node and neither it nor its
descendant are in the conditioning set.

For the purposes of d-separation, parameters such asα andσ2 in Figure 8.5,
indicated by small filled circles, behave in the same was as observed nodes. How-
ever, there are no marginal distributions associated with such nodes. Consequently
parameter nodes never themselves have parents and so all paths through these nodes
will always be tail-to-tail and hence blocked. Consequently they play no role in
d-separation.

Another example of conditional independence and d-separation is provided by
the concept of i.i.d. (independent identically distributed) data introduced in Sec-
tion 1.2.4. Consider the problem of finding the posterior distribution for the mean
of a univariate Gaussian distribution. This can be represented by the directed graphSection 2.3
shown in Figure 8.23 in which the joint distribution is defined by a priorp(µ) to-
gether with a set of conditional distributionsp(xn|µ) for n = 1, . . . , N . In practice,
we observeD = {x1, . . . , xN} and our goal is to inferµ. Suppose, for a moment,
that we condition onµ and consider the joint distribution of the observations. Using
d-separation, we note that there is a unique path from anyxi to any otherxj 6=i and
that this path is tail-to-tail with respect to the observed nodeµ. Every such path is
blocked and so the observationsD = {x1, . . . , xN} are independent givenµ, so that

p(D|µ) =

N∏

n=1

p(xn|µ). (8.34)

Figure 8.23 (a) Directed graph corre-
sponding to the problem
of inferring the mean µ of
a univariate Gaussian dis-
tribution from observations
x1, . . . , xN . (b) The same
graph drawn using the plate
notation.
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• The path from a to b is blocked by f ,
since it is a tail-to-tail node and f is
observed.

• It is also blocked by e, head-to-head
node and neither it not its descendants
are observed.

• Hence, CI (a ⊥ b | c) follows from this
graph.
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Undirected graphical model (Markov random fields)
19(34)

• Nodes and edges carry
similar meanings.

• Conditional independence is
determined by graphical
separation.

A ⊥ B|C

• A more natural
representation for some
models, e.g., images.

• One must take special care
while converting directed
graphs to undirected ones.
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Figure 8.27 An example of an undirected graph in
which every path from any node in set
A to any node in set B passes through
at least one node in set C. Conse-
quently the conditional independence
property A ⊥⊥ B | C holds for any
probability distribution described by this
graph.

A

C
B

is indeed the case and corresponds to undirected graphical models. By removing the
directionality from the links of the graph, the asymmetry between parent and child
nodes is removed, and so the subtleties associated with head-to-head nodes no longer
arise.

Suppose that in an undirected graph we identify three sets ofnodes, denotedA,
B, andC, and that we consider the conditional independence property

A ⊥⊥ B | C. (8.37)

To test whether this property is satisfied by a probability distribution defined by a
graph we consider all possible paths that connect nodes in set A to nodes in setB.
If all such paths pass through one or more nodes in setC, then all such paths are
‘blocked’ and so the conditional independence property holds. However, if there
is at least one such path that is not blocked, then the property does not necessarily
hold, or more precisely there will exist at least some distributions corresponding to
the graph that do not satisfy this conditional independencerelation. This is illus-
trated with an example in Figure 8.27. Note that this is exactly the same as the
d-separation criterion except that there is no ‘explainingaway’ phenomenon. Test-
ing for conditional independence in undirected graphs is therefore simpler than in
directed graphs.

An alternative way to view the conditional independence test is to imagine re-
moving all nodes in setC from the graph together with any links that connect to
those nodes. We then ask if there exists a path that connects any node inA to any
node inB. If there are no such paths, then the conditional independence property
must hold.

The Markov blanket for an undirected graph takes a particularly simple form,
because a node will be conditionally independent of all other nodes conditioned only
on the neighbouring nodes, as illustrated in Figure 8.28.

8.3.2 Factorization properties
We now seek a factorization rule for undirected graphs that will correspond to

the above conditional independence test. Again, this will involve expressing the joint
distributionp(x) as a product of functions defined over sets of variables that are local

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML
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Conversion from directed to undirected 20(34)

• When conversion is done
directly some correlations
that would be present in the
original model can be lost.

• One must “marry” the
parents to get those
correlations back, this is
called moralization.

• Moralization has to be
performed for all the pairs of
parents.

=⇒

=⇒

8.3. Markov Random Fields 391

Figure 8.33 Example of a simple
directed graph (a) and the corre-
sponding moral graph (b).

x1 x3

x4

x2

(a)

x1 x3

x4

x2

(b)

This is easily done by identifying

ψ1,2(x1, x2) = p(x1)p(x2|x1)

ψ2,3(x2, x3) = p(x3|x2)

...

ψN−1,N (xN−1, xN) = p(xN |xN−1)

where we have absorbed the marginalp(x1) for the first node into the first potential
function. Note that in this case, the partition functionZ = 1.

Let us consider how to generalize this construction, so thatwe can convert any
distribution specified by a factorization over a directed graph into one specified by a
factorization over an undirected graph. This can be achieved if the clique potentials
of the undirected graph are given by the conditional distributions of the directed
graph. In order for this to be valid, we must ensure that the set of variables that
appears in each of the conditional distributions is a memberof at least one clique of
the undirected graph. For nodes on the directed graph havingjust one parent, this is
achieved simply by replacing the directed link with an undirected link. However, for
nodes in the directed graph having more than one parent, thisis not sufficient. These
are nodes that have ‘head-to-head’ paths encountered in ourdiscussion of conditional
independence. Consider a simple directed graph over 4 nodesshown in Figure 8.33.
The joint distribution for the directed graph takes the form

p(x) = p(x1)p(x2)p(x3)p(x4|x1, x2, x3). (8.46)

We see that the factorp(x4|x1, x2, x3) involves the four variablesx1, x2, x3, and
x4, and so these must all belong to a single clique if this conditional distribution is
to be absorbed into a clique potential. To ensure this, we addextra links between
all pairs of parents of the nodex4. Anachronistically, this process of ‘marrying
the parents’ has become known asmoralization, and the resulting undirected graph,
after dropping the arrows, is called themoral graph. It is important to observe that
the moral graph in this example is fully connected and so exhibits no conditional
independence properties, in contrast to the original directed graph.

Thus in general to convert a directed graph into an undirected graph, we first add
additional undirected links between all pairs of parents for each node in the graph and

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML
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PDF for an undirected graphical model 21(34)

The core result is given by the so-called
Hammersley-Clifford theorem using the concept
of cliques.

x1 x2

x3 x4 x5

Definition (Clique)

A clique C is a subset of nodes {1, . . . , N} of an undirected graph
such that there exists a link between all pairs.

Hammersley-Clifford Theorem (a basic version)

The joint probability distribution p(x1:N) of an undirected graph for
variables {x1, . . . , xN} is given by

p(x1:N) =
1
Z ∏

C
ψC(xC) where Z = ∑

x1:N

∏
C

ψC(xC).
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Physics interpretation 22(34)

• The Hammersley-Clifford theorem has a physics interpretation
when the functions ψC(xC) are non-zero everywhere.
• In this case, we can write

ψC(xC) = exp(−E(xC))

where E(·) is called an energy function.
• The overall graph can then be considered as a lattice with a

potential energy function described by E(xC).
• Finding the maximum of the density can then be considered as

finding the point where the total potential energy is minimized.

p(x1:N) =
1
Z ∏

C
exp(−E(xC)) =

1
Z

exp

(
−∑

C
E(xC)

)

• A local maximum then corresponds to an equilibrium.
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Application – image de-noising (I/II) 23(34)

Suppose we have a noisy image and want to
remove the noise.

• Model the true pixel values as xi,j.

• Model the measured image pixel values as

yi,j = xi,j + vi,j, vi,j ∼ N (0, β2).

• Choose the energy functions as

Ey(xi,j, yi,j) =
1
β2 (yi,j − xi,j)

2

Ex(xi1,j1 , xi2,j2) =min
(

1
α2 (xi1,j1 − xi2,j2)

2, γ

)
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Application – image de-noising (II/II) 24(34)

• The density is then

− log p(x1:Nx,1:Ny , y1:Nx,1:Ny) =∑
i,j

Ey(xi,j, yi,j)

+ Ex(xi,j, xi+1,j+1) + Ex(xi,j, xi−1,j−1)

+ Ex(xi,j, xi−1,j+1) + Ex(xi,j, xi+1,j−1) + C

• If the image is 8 bit grayscale, maximization
in general requires the calculation of
256(Nx×Ny) different combinations.

• We instead maximize w.r.t. only one pixel
keeping the others fixed at their last values.

• This is called Iterative Conditional Modes
(ICM).
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Road surface estimation 25(34)

Aim: Estimate the road surface using images from a stereo camera.

Solved using a Conditional Random Field (CRF) model and message
passing.

60 5 Experimental Results

shown in Figure 5.15. A more advanced method for keeping track of different
objects and allowing them to overlap is needed to solve this problem.

Figure 5.14: Example of the object detection marking an obstacle that con-
sists of several different parts. In this case a curb, a speed bump and a traffic
isle. To the left is the dem input and to the right the estimated road surface
(red), the estimated curb line (white) and the detected obstacle (purple).

Figure 5.15: Example of two objects receiving the same label when coming
close to each other. To the left, two vehicles being recognized as different
objects. To the right, the vehicles are too close to be recognized as different
objects using the tracking method described.

5.4 Obstacle Detection Evaluation 59

5.4 Obstacle Detection Evaluation

With height measurements in a horizontal grid and a good estimate of the road
surface available, it is shown that a relatively simple but still effective obstacle
detection can be achieved by comparing a node’s deviation from the road surface
to its estimated height deviation. A requirement is that the estimated height
deviations correspond, or at least come close to the real deviations. It shows that
the variance approximation in Section 3.1.2 provides sufficiently reliable results
for this to work.

Example results showing detected obstacles together with estimated road sur-
faces and curb lines can be seen in Figure 5.13.

(a)

(b)

Figure 5.13: Two example results from the obstacle detection. To the left
are the dem inputs and to the right are the final outputs from the algorithm.
Red areas are the classified road nodes with the estimated road surface. The
white lines are the estimated curb lines. The colored objects mark detected
obstacles, where each color represents a separate object.

The method for detecting and tracking obstacles described in this thesis only
works in relative simple scenarios. Object shapes are not taken into consideration
when distributing their labels, and so several adjacent objects can receive the
same label as shown in Figure 5.14. Another problem is when moving objects,
e.g. vehicles or pedestrians, in some time instance come close to each other they
can be perceived as the same object and will therefore receive equal labels as

Lorentzon, M. and Andersson, T. Road surface modeling using stereo vision, Master’s thesis, LiTH-ISY-EX–12/4582–SE,
Linköping university, Sweden, 2012.

http://liu.diva-portal.org/smash/record.jsf?searchId=2&pid=diva2:532767
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Inference in graphical models 26(34)

Inference in graphical models amounts to computing the posterior
distribution of one or more of the nodes that are not observed.

The structure in the graphical model is exploited in finding inference
algorithms.

Most inference algorithms can be expressed in terms of message
passing algorithms, where local messages are propagated around
the graph.
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Inference on a chain 27(34)

The message µα(xn) can be evaluated recursively

µα(xn) = ∑
xn−1

ψn−1,n(xn−1, xn)

(
∑

xn−2

· · ·
)

= ∑
xn−1

ψn−1,n(xn−1, xn)µα(xn−1),

where the recursion is started by µα(x2) = ∑x1
ψ1,2(x1, x2).

Similarly, for the message µβ(xn) we have

µβ(xn) = ∑
xn+1

ψn,n+1(xn, xn+1)

(
∑

xn+2

· · ·
)

= ∑
xn+1

ψn,n+1(xn, xn+1)µβ(xn+1).

The generalization of this message passing idea to trees is referred
to as the sum-product algorithm.
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Factor graphs 28(34)

• Both directed and undirected
graphs give a factorial
representation for the joint
density.

• Factor graphs make this
factorization more explicit by
adding nodes for each factor.

• Both directed and undirected
graphs can be converted into
factor graphs.

400 8. GRAPHICAL MODELS

Figure 8.40 Example of a factor graph, which corresponds
to the factorization (8.60).

x1 x2 x3

fa fb fc fd

individual variables byxi, however, as in earlier discussions, these can comprise
groups of variables (such as vectors or matrices). Each factor fs is a function of a
corresponding set of variablesxs.

Directed graphs, whose factorization is defined by (8.5), represent special cases
of (8.59) in which the factorsfs(xs) are local conditional distributions. Similarly,
undirected graphs, given by (8.39), are a special case in which the factors are po-
tential functions over the maximal cliques (the normalizing coefficient1/Z can be
viewed as a factor defined over the empty set of variables).

In a factor graph, there is a node (depicted as usual by a circle) for every variable
in the distribution, as was the case for directed and undirected graphs. There are also
additional nodes (depicted by small squares) for each factor fs(xs) in the joint dis-
tribution. Finally, there are undirected links connectingeach factor node to all of the
variables nodes on which that factor depends. Consider, forexample, a distribution
that is expressed in terms of the factorization

p(x) = fa(x1, x2)fb(x1, x2)fc(x2, x3)fd(x3). (8.60)

This can be expressed by the factor graph shown in Figure 8.40. Note that there are
two factorsfa(x1, x2) andfb(x1, x2) that are defined over the same set of variables.
In an undirected graph, the product of two such factors wouldsimply be lumped
together into the same clique potential. Similarly,fc(x2, x3) andfd(x3) could be
combined into a single potential overx2 andx3. The factor graph, however, keeps
such factors explicit and so is able to convey more detailed information about the
underlying factorization.

x1 x2
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(a)

x1 x2

x3
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(b)

x1 x2

x3
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fb

(c)

Figure 8.41 (a) An undirected graph with a single clique potential ψ(x1, x2, x3). (b) A factor graph with factor
f(x1, x2, x3) = ψ(x1, x2, x3) representing the same distribution as the undirected graph. (c) A different factor
graph representing the same distribution, whose factors satisfy fa(x1, x2, x3)fb(x1, x2) = ψ(x1, x2, x3).
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Inference in factor graphs 29(34)

• We have the joint density for the graph on
the right given as

p(x1:7) ∝ f1(x1)f2(x1:3)f3(x2)f4(x2, x7)f5(x3:6)

• When we have measurements of some
variables, we might need the posteriors of
some or all unobserved variables.

x1

x2

x3

x4

x5

x6

x7

f1 f2

f3

f4

f5

p(x1, x3, x4, x5, x7|x2, x6) =
p(x1:7)

p(x2, x6)

=
p(x1:7)

∑x1,x3,x4,x5,x7
p(x1:7)
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Inference in factor graphs 30(34)

• Making inference requires marginals.

• It is possible to calculate the marginals on a graph
efficiently by passing local messages along the
graph.
• Two interconnected types of messages are

considered
• Messages from variable nodes to factor nodes

µxi→fj(xi) = ∏
f`∈ne(xi)\fj

µf`→xi
(xi)

• Messages from factor nodes to variable nodes

µfj→xi
(xi) = ∑

x`∈ne(fj)\xi

fj ∏
x`∈ne(fj)\xi

µx`→fj(x`)

x1

x2

x3

x4

x5

x6

x7

f1 f2

f3

f4

f5

xi fj

µxi→fj(xi)

f`

xi fj

µfj→xi
(xi)

x`
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Inference in factor graphs 31(34)

Sum-Product Algorithm
• Calculate messages from variable nodes to factor nodes

µxi→fj(xi) = ∏
f`∈ne(xi)\fj

µf`→xi(xi)

• Calculate messages from factor nodes to variable nodes

µfj→xi(xi) = ∑
x`∈ne(fj)\xi

fj ∏
x`∈ne(fj)\xi

µx`→fj(x`)

• Iterate messages until convergence. (Different iteration schemes can
be designed.)
• After convergence, the marginals are calculated as

p(xi) ∝ ∏
f`∈ne(xi)

µf`→xi(xi)
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Inference in factor graphs 32(34)

• The values in the observed nodes are just
substituted into the factors and not integrated out.
• If the graph is a tree, the algorithm can calculate

all the marginals by making
• a forward pass from the root to the leaves
• a backward pass from the leaves to the root.

• The sum-product algorithm gives the exact results
in a tree structured graph.

• The sum-product algorithm is equivalent to a
Kalman smoother for linear Gaussian dynamical
systems.

410 8. GRAPHICAL MODELS
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Figure 8.52 Flow of messages for the sum-product algorithm applied to the example graph in Figure 8.51. (a)
From the leaf nodes x1 and x4 towards the root node x3. (b) From the root node towards the leaf nodes.

One message has now passed in each direction across each link, and we can now
evaluate the marginals. As a simple check, let us verify thatthe marginalp(x2) is
given by the correct expression. Using (8.63) and substituting for the messages using
the above results, we have

p̃(x2) = µfa→x2
(x2)µfb→x2

(x2)µfc→x2
(x2)

=

[
∑

x1

fa(x1, x2)

][
∑

x3

fb(x2, x3)

][
∑

x4

fc(x2, x4)

]

=
∑

x1

∑

x2

∑

x4

fa(x1, x2)fb(x2, x3)fc(x2, x4)

=
∑

x1

∑

x3

∑

x4

p̃(x) (8.86)

as required.
So far, we have assumed that all of the variables in the graph are hidden. In most

practical applications, a subset of the variables will be observed, and we wish to cal-
culate posterior distributions conditioned on these observations. Observed nodes are
easily handled within the sum-product algorithm as follows. Suppose we partitionx
into hidden variablesh and observed variablesv, and that the observed value ofv

is denoted̂v. Then we simply multiply the joint distributionp(x) by
∏

i I(vi, v̂i),
whereI(v, v̂) = 1 if v = v̂ andI(v, v̂) = 0 otherwise. This product corresponds
to p(h,v = v̂) and hence is an unnormalized version ofp(h|v = v̂). By run-
ning the sum-product algorithm, we can efficiently calculate the posterior marginals
p(hi|v = v̂) up to a normalization coefficient whose value can be found efficiently
using a local computation. Any summations over variables inv then collapse into a
single term.

We have assumed throughout this section that we are dealing with discrete vari-
ables. However, there is nothing specific to discrete variables either in the graphical
framework or in the probabilistic construction of the sum-product algorithm. For
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Inference in factor graphs 33(34)

• When the sum-product algorithm is applied to
directed graphs without loops the resulting
algorithm is sometimes referred to as belief
propagation.

• In a graph with loops, the sum-product algorithm
is not exact and actually might not converge.

• People anyway apply it to the graphs with loops
also, which is called loopy belief propagation.

• Even in this form, it has important applications in
communications (decoding of error correcting
codes).

8.4. Inference in Graphical Models 403

x1 x2

x3

(a)

x1 x2

x3

f(x1, x2, x3)

(b)

x1 x2

x3

fa

fcfb

(c)

Figure 8.45 (a) A fully connected undirected graph. (b) and (c) Two factor graphs each of which corresponds
to the undirected graph in (a).

There is an algorithm for exact inference on directed graphswithout loops known
asbelief propagation(Pearl, 1988; Lauritzen and Spiegelhalter, 1988), and is equiv-
alent to a special case of the sum-product algorithm. Here weshall consider only the
sum-product algorithm because it is simpler to derive and toapply, as well as being
more general.

We shall assume that the original graph is an undirected treeor a directed tree or
polytree, so that the corresponding factor graph has a tree structure. We first convert
the original graph into a factor graph so that we can deal withboth directed and
undirected models using the same framework. Our goal is to exploit the structure of
the graph to achieve two things: (i) to obtain an efficient, exact inference algorithm
for finding marginals; (ii) in situations where several marginals are required to allow
computations to be shared efficiently.

We begin by considering the problem of finding the marginalp(x) for partic-
ular variable nodex. For the moment, we shall suppose that all of the variables
are hidden. Later we shall see how to modify the algorithm to incorporate evidence
corresponding to observed variables. By definition, the marginal is obtained by sum-
ming the joint distribution over all variables exceptx so that

p(x) =
∑

x\x

p(x) (8.61)

wherex \ x denotes the set of variables inx with variablex omitted. The idea is
to substitute forp(x) using the factor graph expression (8.59) and then interchange
summations and products in order to obtain an efficient algorithm. Consider the
fragment of graph shown in Figure 8.46 in which we see that thetree structure of
the graph allows us to partition the factors in the joint distribution into groups, with
one group associated with each of the factor nodes that is a neighbour of the variable
nodex. We see that the joint distribution can be written as a product of the form

p(x) =
∏

s∈ne(x)

Fs(x,Xs) (8.62)

ne(x) denotes the set of factor nodes that are neighbours ofx, andXs denotes the
set of all variables in the subtree connected to the variablenodex via the factor node
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A few concepts to summarize lecture 9 34(34)

Directed graphs: A graphical description of a probabilistic model where the conditional
probabilities correspond to edges.

D-separation: Checking for conditional independence is somewhat troublesome for directed
graphs requiring a condition called D-separation to be satisfied.

Undirected graphs: Another graphical representation where conditional independence is
given by simple graph separation.

Factor graphs: An extension of directed and undirected graphs which makes the probabilistic
factors explicit.

Belief propagation: A probabilistic inference type using graphs where local messages are
propagated among the graph nodes.

Sum-product algorithm: A form of belief propagation which gives exact results only for trees
but also applied to graphs with loops anyway.

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET


