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Bayesian Nonparametric Learning: Expres-
sive Priors for Intelligent Systems

Michael I. Jordan

1 Introduction

One of the milestones in the development of artificial intelligence (AI) is the em-
brace of uncertainty and inductive reasoning as primary concerns of the field. This
embrace has been a surprisingly slow process, perhaps because the naive interpre-
tation of “uncertain” seems to convey an image that is the opposite of “intelligent.”
That the field has matured beyond this naive opposition is one of the singular
achievements of Judea Pearl. While the pre-Pearl AI researcher tended to focus on
mimicking the deductive capabilities of human intelligence, a post-Pearl researcher
has been sensitized to the inevitable uncertainty that intelligent systems face in
any realistic environment, and the need to explicitly represent that uncertainty so
as to be able to mitigate its effects. Not only does this embrace of uncertainty
accord more fully with the human condition, but it also recognizes that the first ar-
tificially intelligent systems—necessarily limited in their cognitive capabilities—will
be if anything more uncertain regarding their environments than us humans. It is
only by embracing uncertainty that a bridge can be built from systems of limited
intelligence to those having robust human-level intelligence.

A computational perspective on uncertainty has two aspects: the explicit rep-
resentation of uncertainty and the algorithmic manipulation of this representation
so as to transform and (often) to reduce uncertainty. In his seminal 1988 book,
Probabilistic Reasoning in Intelligent Systems, Pearl showed that these aspects are
intimately related. In particular, obtaining a compact representation of uncer-
tainty has important computational consequences, leading to efficient algorithms
for marginalization and conditioning. Moreover, marginalization and conditioning
are the core inductive operations that tend to reduce uncertainty. Thus, by devel-
oping an effective theory of the representation of uncertainty, Pearl was able to also
develop an effective computational approach to probabilistic reasoning.

Uncertainty about an environment can also be reduced by simply observing that
environment; i.e., by learning from data. Indeed, another response to the early focus
on deduction in AI has been to emphasize learning as a pathway to the development
of intelligent systems. In the 1980’s, concurrently with Pearl’s work on probabilis-
tic expert systems, this perspective was taken up in earnest, building on an earlier
tradition in pattern recognition (which itself built on even earlier traditions in statis-
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tics). The underlying inductive principle was essentially the law of large numbers,
a principle of probability theory which states that the statistical aggregation of
independent, identically distributed samples yields a decrease of uncertainty that
goes (roughly speaking) at a rate inversely proportional to the square root of the
number of samples. The question has been how to perform this “aggregation,” and
the learning field has been avidly empirical, exploring a variety of computational
architectures, including extremely simple representations (e.g., nearest neighbor),
ideas borrowed from deductive traditions (e.g., decision trees), ideas closely related
to classical statistical models (e.g., boosting and the support vector machine), and
architectures motivated at least in part by complex biological and physical systems
(e.g., neural networks). Several of these architectures have factorized or graphical
representations, and numerous connections to graphical models have been made.

A narrow reader of Pearl’s book might wish to argue that learning is not distinct
from the perspective on reasoning presented in that book; in particular, observing
the environment is simply a form of conditioning. This perspective on learning is
indeed reasonable if we assume that a learner maintains an explicit probabilistic
model of the environment; in that case, making an observation merely involves
instantiating some variable in the model. However, many learning researchers do
not wish to make the assumption that the learner maintains an explicit probabilistic
model of the environment, and many algorithms developed in the learning field
involve some sort of algorithmic procedure that is not necessarily interpretable as
computing a conditional probability. These procedures are instead justified in terms
of their unconditional performance when used again and again on various data sets.

Here we are of course touching on the distinction between the Bayesian and the
frequentist approaches to statistical inference. While this is not the place to develop
that distinction in detail, it is worth noting that statistics—the field concerned
with the theory and practice of inference—involves the interplay of the conditional
(Bayesian) and the unconditional (frequentist) perspectives and this interplay also
underlies many developments in AI research. Indeed, the trend since Pearl’s work
in the 1980’s has been to blend reasoning and learning: put simply, one does not
need to learn (from data) what one can infer (from the current model). Moreover,
one does not need to infer what one can learn (intractable inferential procedures
can be circumvented by collecting data). Thus learning (whether conditional or
not) and reasoning interact. The most difficult problems in AI are currently being
approached with methods that blend reasoning with learning. While the extremes
of classical expert systems and classical tabula rasa learning are still present and
still have their value in specialized situations, they are not the centerpieces of the
field. Moreover, the caricatures of probabilistic reasoning and statistical inference
that fed earlier ill-informed debates in AI have largely vanished. For this we owe
much to Judea Pearl.

There remain, however, a number of limitations—both perceived and real—of
probabilistic and statistical approaches to AI. In this essay, I wish to focus on some
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of these limitations and provide some suggestions as to the way forward.
It is both a perception and reality that to use probabilistic methods in AI one

is generally forced to write down long lists of assumptions. This is often a helpful
exercise, in that it focuses a designer to bring hidden assumptions to the foreground.
Moreover, these assumptions are often qualitative in nature, with the quantitative
details coming from elicitation methods (i.e., from domain experts) and learning
methods. Nonetheless, the assumptions are not always well motivated. In par-
ticular, independence assumptions are often imposed for reasons of computational
convenience, not because they are viewed as being true, and the effect on inference
is not necessarily clear. More subtly, and thus of particular concern, is the fact
that the tail behavior of probability distributions is often not easy to obtain (from
elicitation or from data), and choices of convenience are often made.

A related issue is that probabilistic methods are often not viewed as sufficiently
expressive. One common response to this issue has involved trying to bring ideas
from first-order logic to bear on probabilistic modeling. This line of work has,
however, mainly involved using logical representations as a high-level interface for
model specification and then compiling these representations down to flat proba-
bilistic representations for inference. It is not yet clear how to bring together the
powerful inferential methods of logic and probability into an effective computational
architecture.

In the current paper, we will pursue a different approach to expressive probabilis-
tic representation and to a less assumption-laden approach to inference. The idea
is to move beyond the simple fixed-dimensional random variables that have been
generally used in graphical models (multinomials, Gaussians and other exponential
family distributions) and to consider a wider range of probabilistic representations.
We are motivated by the ubiquity of flexible data structures in computer science—
the field is based heavily on objects such as trees, lists and collections of sets that
are able to expand and contract as needed. Moreover, these data structures are
often associated with combinatorial and algebraic identities that lead to efficient
algorithms. We would like to mimic this flexibility within the world of probabilistic
representations.

In fact, the existing field of stochastic processes provides essentially this kind
of flexibility. Recall that a stochastic process is an indexed collection of random
variables, where the index set can be infinite (countably infinite or uncountably
infinite) [Karlin and Taylor 1975]. Within the general theory of stochastic processes
it is quite natural to define probability distributions on objects such trees, lists
and collections of sets. It is also possible to define probability distributions on
spaces of probability distributions, yielding an appealing recursivity. Moreover,
many stochastic processes have interesting ties to combinatorics (and to other areas
of mathematics concerned with compact structure, such as algebra). Probability
theorists have spent many decades developing these ties and a rich literature on
“combinatorial stochastic processes” has emerged [Pitman 2002]. It is natural to
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take this literature as a point of departure for the development of expressive data
structures for computationally efficient reasoning and learning.

One general way to use stochastic processes in inference is to take a Bayesian per-
spective and replace the parametric distributions used as priors in classical Bayesian
analysis with stochastic processes. Thus, for example, we could consider a model
in which the prior distribution is a stochastic process that ranges over trees of ar-
bitrary depth and branching factor. Combining this prior with a likelihood, we
obtain a posterior distribution that is also a stochastic process that ranges over
trees of arbitrary depth and branching factor. Bayesian learning amounts to up-
dating one flexible representation (the prior stochastic process) into another flexible
representation (the posterior stochastic process).

This idea is not new, indeed it is the core idea in an area of research known as
Bayesian nonparametrics, and there is a small but growing community of researchers
who work in the area. The word “nonparametrics” needs a bit of explanation. The
word does not mean “no parameters”; indeed, many stochastic processes can be
usefully viewed in terms of parameters (often, infinite collections of parameters).
Rather, it means “not parametric,” in the sense that Bayesian nonparametric in-
ference is not restricted to objects whose dimensionality stays fixed as more data is
observed. The spirit of Bayesian nonparametrics is that of flexible data structures—
representations can grow as needed. Moreover, stochastic processes yield a much
broader class of probability distributions than the class of exponential family distri-
butions that is the focus of the graphical model literature. In this sense, Bayesian
nonparametric learning is less assumption-laden than classical Bayesian parametric
learning.

In this paper we offer an invitation to Bayesian nonparametrics. Our presenta-
tion is meant to evoke Pearl’s presentation of Bayesian networks in that our focus
is on foundational representational issues. As in the case of graphical models, if
the representational issues are handled well, then there are favorable algorithmic
consequences. Indeed, the parallel is quite strong—in the case of graphical mod-
els, these algorithmic consequences are combinatorial in nature (they involve the
combinatorics of sums and products), and in the case of Bayesian nonparametrics
favorable algorithmic consequences also arise from the combinatorial properties of
certain stochastic process priors.

2 De Finetti’s theorem and the foundations of Bayesian

inference

A natural point of departure for our discussion is a classical theorem due to Bruno
De Finetti that is one of the pillars of Bayesian inference. This core result not
only suggests the need for prior distributions in statistical models but it also leads
directly to the consideration of stochastic processes as Bayesian priors.

Consider an infinite sequence of random variables, (X1, X2, . . .). To simplify our
discussion somewhat, let us assume that these random variables are discrete. We say
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that such a sequence is infinitely exchangeable if the joint probability distribution
of any finite subset of those random variables is invariant to permutation. That
is, for any N , we have p(x1, x2, . . . , xN ) = p(xπ(1), xπ(2), . . . , xπ(N)), where π is a
permutation and p is a probability mass function. De Finetti’s theorem states that
(X1, X2, . . .) are infinitely exchangeable if and only the joint probability distribution
of any finite subset can be written as a marginal probability in the following way:

p(x1, x2, . . . , xN ) =
∫ N∏

i=1

p(xi |G)P (dG). (1)

In one direction this theorem is straightforward: If the joint distribution can be
written as an integral in this way, then we clearly have invariance to permutation
(because the product is invariant to permutation). It is the other direction that
is non-trivial. It states that for exchangeable random variables, there necessarily
exists an underlying random element G, and a probability distribution P , such that
the random variables Xi are conditionally independent given G, and such that their
joint distribution is obtained by integrating over the distribution P . If we view G as
a “parameter,” then this theorem can be interpreted as stating that exchangeability
implies the existence of an underlying parameter and a prior distribution on that
parameter. As such, De Finetti’s theorem is often viewed as providing foundational
support for the Bayesian paradigm.

We placed “parameter” in quotes in the preceding paragraph because there is no
restriction that G should be a finite-dimensional object. Indeed, the full import of
De Finetti’s theorem is clear when we realize that in many instances G is in fact an
infinite-dimensional object, and P defines a stochastic process.

Let us give a simple example. The Pólya urn model is a simple probability
model for sequentially labeling the balls in an urn. Consider an empty urn and a
countably infinite collection of colors. Pick a color at random according to some
fixed distribution G0 and place a ball having that color in the urn. For all subsequent
balls, either choose a ball from the urn (uniformly at random) and return that ball
to the urn with another ball of the same color, or choose a new color from G0 and
place a ball of that color in the urn. Mathematically, we have:

p(Xi = k |x1, . . . xi−1) ∝

{
nk if xj = k for some j ∈ {1, . . . , i− 1}
α0 otherwise,

(2)

where α0 > 0 is a parameter of the process.
It turns out that the Pólya urn model is exchangeable. That is, even though we

defined the model by picking a particular ordering of the balls, the resulting distri-
bution is independent of the order. This is proved by writing the joint distribution
p(x1, x2, . . . , xN ) as a product of conditionals of the form in Eq. (2) and noting
(after some manipulation) that the resulting expression is independent of order.

While the Pólya urn model defines a distribution on labels, it can also be used to
induce a distribution on partitions. This is achieved by simply partitioning the balls
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into groups that have the same color. This distribution on partitions is known as the
Chinese restaurant process [Aldous 1985]. As we discuss in more detail in Section 4,
the Chinese restaurant process and the Pólya urn model can be used as the basis of
a Bayesian nonparametric model of clustering where the random partition provides
a prior on clusterings and the color associated with a given cell can be viewed as a
parameter vector for a distribution associated with a given cluster.

The exchangeability of the Pólya urn model implies—by De Finetti’s theorem—
the existence of an underlying random element G that renders the ball colors con-
ditionally independent. This random element is not a classical fixed-dimension
random variable; rather, it is a stochastic process known as the Dirichlet process.
In the following section we provide a brief introduction to the Dirichlet process.

3 The Dirichlet process

In thinking about how to place random distributions on infinite objects, it is natural
to begin with the special case of the positive integers. A distribution π = (π1, π2, . . .)
on the integers can be viewed as a sequence of nonnegative numbers that sum to
one. How can we obtain random sequences that sum to one?

One solution to this problem is provided by a procedure known as “stick-breaking.”
Define an infinite sequence of independent random variables as follows:

βk ∼ Beta(1, α0) k = 1, 2, . . . , (3)

where α0 > 0 is a parameter. Now define an infinite random sequence as follows:

π1 = β1, πk = βk

k−1∏
l=1

(1− βl) k = 2, 3, . . . . (4)

It is not difficult to show that
∑∞

k=1 πk = 1 (with probability one).
We can exploit this construction to generate a large class of random distributions

on sets other than the integers. Consider an arbitrary measurable space Ω and let
G0 be a probability distribution on Ω. Draw an infinite sequence of points {φk}
independently from G0. Now define:

G =
∞∑

k=1

πkδφk
, (5)

where δφk
is a unit mass at the point φk. Clearly G is a measure. Indeed, for any

measurable subset B of Ω, G(A) just adds up the values πk for those k such that
φk ∈ B, and this process satisfies the countable additivity needed in the definition
of a measure. Moreover, G is a probability measure, because G(Ω) = 1.

Note that G is random in two ways—the weights πk are obtained by a random
process, and the locations φk are also obtained by a random process. While it seems
clear that such an object is not a classical finite-dimensional random variable, in
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what sense is G is a stochastic process; i.e., an indexed collection of random vari-
ables? The answer is that G is a stochastic process where the indexing variables
are the measurable subsets of Ω. Indeed, for any fixed A ⊆ Ω, G(A) is a random
variable. Moreover (and this is not an obvious fact), ranging over sets of subsets,
{A1, A2, . . . , AK}, the joint distributions on the collections of random variables
{G(Ai)} are consistent with each other. This shows, via an argument in the spirit
of the Kolmogorov theorem, that G is a stochastic process. A more concrete under-
standing of this fact can be obtained by specializing to sets {A1, A2, . . . , AK} that
form a partition of Ω. In this case, the random vector (G(A1), G(A2), . . . , G(AK))
can be shown to have a classical finite-dimensional Dirichlet distribution:

(G(A1), . . . , G(AK)) ∼ Dir(α0G0(A1), . . . , α0G0(AK)), (6)

from which the needed consistency properties follow immediately from classical
properties of the Dirichlet distribution. For this reason, the stochastic process
defined by Eq. (5) is known as a Dirichlet process. Eq. (6) can be summarized as
saying that a Dirichlet process has Dirichlet marginals.

Having defined a stochastic process G, we can now turn De Finetti’s theorem
around and ask what distribution is induced on a sequence (X1, X2, . . . , XN ) if
we draw these variables independently from G and then integrate out G. The
answer: the Pólya urn. We say that the Dirichlet process is the De Finetti mixing
distribution underlying the Pólya urn.

In the remainder of this chapter, we denote the stochastic process defined by
Eq. (5) as follows:

G ∼ DP(α0, G0). (7)

The Dirichlet process has two parameters, a concentration parameter α0, which is
proportional to the probability of obtaining a new color in the Pólya urn, and the
base measure G0, which is the source of the “atoms” φk.

The set of ideas introduced in this section emerged slowly over several decades.
The basic definition of the Dirichlet process as a stochastic process is due to Fergu-
son [1973], based on earlier work by Freedman [1963]. The fact that the Dirichlet
process is the De Finetti mixing distribution underlying the Pólya urn model is due
to Blackwell and MacQueen [1973]. The stick-breaking construction of the Dirich-
let process was presented by Sethuraman [1994]. The application of these ideas to
Bayesian modeling and inference required some additional work as described in the
following section.

The Dirichlet process and the stick-breaking process are essential tools in Bayesian
nonparametrics. It is as important for a Bayesian nonparametrician to master them
as it is for a graphical modeler to master Pearl’s book. See Hjort et al. [2010] for a
book-length treatment of the Dirichlet process and related ideas.
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4 Dirichlet process mixtures

With an interesting class of stochastic process priors in hand, let us now describe
an application of these priors to a Bayesian nonparametric modeling problem. In
particular, as alluded to in the previous section, the Dirichlet process defines a
prior on partitions of objects, and this prior can be used to develop a Bayesian
nonparametric approach to clustering. A notable aspect of this approach is that
one does not have to fix the number of clusters a priori.

Let (X1, X2, . . . , XN ) be a sequence of random vectors, whose realizations we
want to model in terms of an underlying set of clusters. We treat these variables as
exchangeable (i.e., as embedded in an infinitely-exchangeable sequence) and, as sug-
gested by De Finetti’s theorem, treat these variables as conditionally independent
given an underlying random element G. In particular, letting G be a draw from a
Dirichlet process, we define a Dirichlet process mixture model (DP-MM) [Antoniak
1974; Lo 1984] as follows:

G ∼ DP(α0, G0)

θi |G ∼ G, i = 1, . . . , N

xi | θi ∼ p(xi | θi), i = 1, . . . , N,

where p(xi | θi) is a cluster-specific distribution (e.g., a Gaussian distribution, where
θi is a mean vector and covariance matrix). This probabilistic specification is indeed
directly related to De Finetti’s theorem—the use of the intermediate variable θi is
simply an expanded way to write the factor p(xi |G) in Eq. (1). In particular, G

is a sum across atoms, and thus θi is simply one of the atoms in G, chosen with
probability equal to the weight associated with that atom.

We provide a graphical model representation of the DP-MM in Figure 1. As this
figure suggests, it is entirely possible to use the graphical model formalism to display
Bayesian nonparametric models. Nodes in such a graph are associated with general
random elements, and the distributions on these random elements can be general
stochastic processes. By going to stochastic process priors we have not strayed
beyond probability theory, and all of the conditional independence semantics of
graphical models continue to apply.

5 Inference for Dirichlet process mixtures

Inference with stochastic processes is an entire topic of its own, and we limit our-
selves here to a brief description of one particular Markov chain Monte Carlo
(MCMC) inference procedure for the DP-MM. This particular procedure is due
to Escobar [1994], and its virtue is simplicity of exposition, but it should not be
viewed as the state of the art. See Neal [2000] for a discussion of a variety of other
MCMC inference procedures for DP-MMs.

We begin by noting that the specification in Eq. (8) induces a Pólya urn marginal
distribution on θ = (θ1, θ2, . . . , θN ). The joint distribution of θ and X = (X1, X2, . . . , XN )
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Gα 0

G0

θi

xi

Figure 1. A graphical model representation of the Dirichlet process mixture model.
Recall that the plate representation means that the parameters θi are drawn in-
dependently conditional on G. On the right side of the figure we have depicted
specific instantiations of the random elements G and θi and the distribution of the
observation xi.

is thus the following product:

p(θ, x) = p(θ1, θ2, . . . , θN )
N∏

i=1

p(xi | θi), (8)

where the first factor is the Pólya urn model. This can be viewed as a product of
a prior (the first factor) and a likelihood (the remaining factors).

The variable x is held fixed in inference (it is the observed data) and the goal is
to sample θ. We develop a Gibbs sampler for this purpose. The main problem is to
sample a particular component θi while holding all of the other components fixed. It
is here that the property of exchangeability is essential. Because the joint probability
of (θ1, . . . , θN ) is invariant to permutation, we can permute the vector to move θi to
the end of the list. But the prior probability of the last component given all of the
preceding variables is given by the urn model specification in Eq. (2). We multiply
each of the distributions in this expression by the likelihood p(xi | θ) and integrate
with respect to θ. (We are assuming that G0 and the likelihood are conjugate that
this integral can be done in closed form.) The result is the conditional distribution
of θi given the other components and given xi. This conditional is sampled to yield
the updated value of θi. This is done for all of the indices i ∈ {1, . . . , N} and the
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process iterates.
This link between exchangeability and an efficient inference algorithm is an im-

portant one. In other more complex Bayesian nonparametric models, while we may
no longer assume exchangeability, we generally aim to maintain some weaker notion
(e.g., partial exchangeability) so as to have some hope of tractable inference.

6 Hierarchical Dirichlet processes

The spirit of the graphical model formalism—in particular the Bayesian network
formalism based on directed graphs—is that of hierarchical Bayesian modeling. In a
hierarchical Bayesian model, the joint distribution of all of the variables in the model
is obtained as a product over conditional distributions, where each conditional may
depend on other variables in the model. While the graphical model literature has
focused almost exclusively on parametric hierarchies—where each of the conditionals
is a finite-dimensional distribution—it is also possible to build hierarchies in which
the components are stochastic processes. In this section we consider how to do this
for the Dirichlet process.

One of the simplest and most useful ways in which hierarchies arise in Bayesian
models is in the form of a conditional independence motif in which a set of variables,
(θ1, θ2, . . . , θm), are coupled via an underlying variable θ0. For example, θi might be
a Gaussian variable whose mean is equal to θ0, which is also Gaussian; moreover, the
θi are conditionally independent given θ0. The inferential effect of this construction
is to “shrink” the posterior distributions of θi towards each other. This is often
a desirable effect, particularly when m is large relative to the number of observed
data points.

The same tying of distributions can be done with Dirichlet processes. Recall that
a Dirichlet process, Gi ∼ DP(α0, G0), is a random measure Gi that has a “param-
eter” G0 that is itself a measure. If we treat G0 as itself a draw from a Dirichlet
process, and let the measures {G1, G2, . . . , Gm} be conditionally independent given
G0, we obtain the following hierarchy:

G0 | γ, H ∼ DP(γ, H)

Gi |α, G0 ∼ DP(α0, G0) i = 1, . . . ,m,

where γ and H are concentration and base measure parameters at the top of the
hierarchy. This construction—which is known as a hierarchical Dirichlet process
(HDP)—yields an interesting kind of “shrinkage.” Recall that G0 is a discrete
random measure, with its support on a countably infinite set of atoms. Drawing
Gi ∼ DP(α0, G0) means that Gi will also have its support on the same set of atoms,
and this will be true for each of {G1, G2, . . . , Gm}. Thus these measures will share
atoms. They will differ in the weights assigned to these atoms. The weights are
obtained via conditionally independent stick-breaking processes.

One application of this sharing of atoms is to share mixture components across
multiple clustering problems. Consider in particular a problem in which we have



Bayesian Nonparametric Learning

m groups of data, {(x11, x12, . . . , x1N1), . . . , (xm1, xm2, . . . xmNm
)}, where we wish

to cluster the points {xij} in the ith group. Suppose, moreover, that we view the
groups as related, and we think that clusters discovered in one group might also be
useful in other groups. To achieve this, we define the following hierarchical Dirichlet
process mixture model (HDP-MM):

G0 | γ, H ∼ DP(γ, H)

Gi |α, G0 ∼ DP(α0, G0) i = 1, . . . ,m,

θij |Gi ∼ Gi j = 1, . . . , Ni,

xij | θij ∼ F (xij , θij) j = 1, . . . , Ni.

This model is shown in graphical form in Figure 2. To see how the model achieves
our goal of sharing clusters across groups, recall that the Dirichlet process clusters
points within a single group by assigning the same parameter vector to those points.
That is, if θij = θij′ , the points xij and xij′ are viewed as belonging to the same
cluster. This equality of parameter vectors is possible because both θij and θij′ are
drawn from Gi, and Gi is a discrete measure. Now if Gi and Gi′ share atoms, as
they do in the HDP-MM, then points in different groups can be assigned to the
same cluster. Thus we can share clusters across groups.

The HDP was introduced by Teh, Jordan, Beal and Blei [2006] and it has since
appeared as a building block in a variety of applications. One application is to the
class of models known as grade of membership models [Erosheva 2003], an instance
of which is the latent Dirichlet allocation (LDA) model [Blei, Ng, and Jordan 2003].
In these models, each entity is associated not with a single cluster but with a
set of clusters (in LDA terminology, each “document” is associated with a set of
“topics”). To obtain a Bayesian nonparametric version of these models, the DP
does not suffice; rather, the HDP is required. In particular, the topics for the ith
document are drawn from a random measure Gi, and the random measures Gi are
drawn from a DP with a random base measure G0; this allows the same topics to
appear in multiple documents.

Another application is to the hidden Markov model (HMM) where the number of
states is unknown a priori. At the core of the HMM is the transition matrix, each
row of which contains the conditional probabilities of transitioning to the “next
state” given the “current state.” Viewing states as clusters, we obtain a set of
clustering problems, one for each row of the transition matrix. Using a DP for each
row, we obtain a model in which the number of next states is open-ended. Using
an HDP to couple these DPs, the same pool of next states is available from each of
the current states. The resulting model is known as the HDP-HMM [Teh, Jordan,
Beal, and Blei 2006]. Marginalizing out the HDP component of this model yields an
urn model that is known as the infinite HMM [Beal, Ghahramani, and Rasmussen
2002].

Similarly, it is also possible to use the HDP to define an architecture known as
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Gα 0

G0

θ

x
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ij
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γ

H

Figure 2. A graphical model representation of the hierarchical Dirichlet process
mixture model. The nested plate representation means that G0 is first drawn and
held fixed, then the random measures {Gi} are drawn independently (conditional
on G0), and finally the parameters {θij} are drawn independently (conditional on
Gi). On the right side of the figure we have depicted draws from G0 and the {Gi}.
Note that the atoms in these measures are at the same locations; only the weights
associated with the atoms differ.
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the HDP hidden Markov tree (HDP-HMT), a Markovian tree in which the number
of states at each node in the tree is unknown a priori and the state space is shared
across the nodes. The HDP-HMT has been shown to be useful in image denoising
and scene recognition problems [Kivinen, Sudderth, and Jordan 2007].

Let us also mention that the HDP can be also used to develop a Bayesian non-
parametric approach to probabilistic context free grammars. In particular, the
HDP-PCFG of Liang, Jordan and Klein [2010] involves an HDP-based lexicalized
grammar in which the number of nonterminal symbols is open-ended and inferred
from data (see also Finkel, Grenager and Manning [2007] and Johnson, Griffiths and
Goldwater [2007]). When a new nonterminal symbol is created at some location in
a parse tree, the tying achieved by the HDP makes this symbol available at other
locations in the parse tree.

There are other ways to connect multiple Dirichlet processes. One broadly useful
idea is to use a Dirichlet process to define a distribution on Dirichlet processes.
In particular, let {G∗1, G∗2, . . .} be independent draws from a Dirichlet process,
DP(γ, H), and then let G be equal to G∗k with probability πk, where the weights
{πk} are drawn from the stick-breaking process in Eq. (4). This construction (which
can be extended to multiple levels) is known as a nested Dirichlet process [Rodŕıguez,
Dunson, and Gelfand 2008]. Marginalizing over the Dirichlet processes the resulting
urn model is known as the nested Chinese restaurant process [Blei, Griffiths, and
Jordan 2010], which is a model that can be viewed as a tree of Chinese restaurants.
A customer enters the tree at a root Chinese restaurant and sits at a table. This
points to another Chinese restaurant, where the customer goes to dine on the fol-
lowing evening. The construction then recurses. Thus a given customer follows a
path through the tree of restaurants, and successive customers tend to follow the
same paths, eventually branching off.

These nested constructions differ from the HDP in that they do not share atoms
among the multiple instances of lower-level DPs. That is, the draws {G∗1, G∗2, . . .}
involve disjoint sets of atoms. The higher-level DP involves a choice among these
disjoint sets.

A general discussion of some of these constructions involving multiple DPs and
their relationships to directed graphical model representations can be found in
Welling, Porteous and Bart [2008]. Finally, let us mention the work of MacEach-
ern [1999], whose dependent Dirichlet processes provide a general formalism for
expressing probabilistic dependencies among both the stick-breaking weights and
the atom locations in the stick-breaking representation of the Dirichlet process.

7 Completely random measures

The Dirichlet process is not the only tool in the Bayesian nonparametric toolbox. In
this section we briefly consider another class of stochastic processes that significantly
expands the range of models that can be considered.

From the graphical model literature we learn that probabilistic independence of
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random variables has desirable representational and computational consequences.
In the Bayesian nonparametric setting, random variables arise by evaluating a ran-
dom measure G on subsets of a measurable space Ω; in particular, for fixed subsets
A1 and A2, G(A1) and G(A2) are random variables. If A1 and A2 are disjoint it
seems reasonable to ask that G(A1) and G(A2) be independent. Such an indepen-
dence relation would suggest a divide-and-conquer approach to inference.

The class of stochastic processes known as completely random measures are char-
acterized by this kind of independence—for a completely random measure the
random masses assigned to disjoint subsets of the sample space Ω are indepen-
dent [Kingman 1967]. Note that the Dirichlet process is not a completely random
measure—the fact that the total mass is one couples the random variables {G(Ai)}.

The Dirichlet process provides a latent representation for a clustering problem,
where each entity is assigned to one and only cluster. This couples the cluster
assignments and suggests (correctly) that the underlying stochastic process is not
completely random. If, on the other hand, we consider a latent trait model—one
in which entities are described via a set of non-mutually-exclusive binary traits—
it is natural to consider completely random processes as latent representations. In
particular, the beta process is a completely random measure in which a draw consists
of a countably infinite collection of atoms, each associated with a probability, where
these probabilities are independent [Hjort 1990; Thibaux and Jordan 2007]. In
effect, a draw from a beta process yields an infinite collection of independent coins.
Tossing these coins once yields a binary featural representation for a single entity.
Tossing the coins multiple times yields an exchangeable featural representation for
a set of entities.

The beta process arises via the following general construction. Consider the
product space Ω⊗(0, 1). Place a product measure on this space, where the measure
associated with Ω is the base measure B0, and the measure associated with (0, 1)
is obtained from the improper beta density, cp−1(1 − p)c−1, where c > 0 is a
parameter. Treating this product measure as a rate measure for a nonhomogeneous
Poisson process, draw a set of points {(ωi, pi)} in the product space Ω⊗(0, 1). From
these points, form a random measure on Ω as follows:

B =
∞∑

i=1

piδωi . (9)

The fact that we obtain an infinite collection of atoms is due to the fact that we
have used a beta density that integrates to infinity. This construction is depicted
graphically in Figure 3.

If we replace the beta density in this construction with other densities (generally
defined on the positive real line rather than the unit interval (0,1)), we obtain
other completely random measures. In particular, we obtain the gamma process
by using an improper gamma density in place of the beta density. The gamma
process provides a natural latent representation for models in which entities are



Bayesian Nonparametric Learning

Ω

0 1

Figure 3. The construction of the beta process from a Poisson process. In this
example, Ω is a bounded interval. The rate measure for the Poisson process is the
shaded surface—it is the product of a uniform distribution on Ω with an improper
beta distribution on (0, 1). Sampling the Poisson process yields the red points in
the plane, and these points are connected by line segments to the Ω-axis interval to
form the random measure B =

∑∞
i=1 piδωi .

represented by a countably infinite set of counts or rates. It is also worth noting
that the Dirichlet process can be obtained by normalizing the gamma process.

Recall from our discussion in Section 2 that the Chinese restaurant process can
be obtained by integrating out the Dirichlet process in a conditional independence
hierarchy. In the other direction, the Dirichlet process is the random measure that
is guaranteed (by exchangeability and De Finetti’s theorem) to underlie the Chinese
restaurant process. Given the importance of the latter model in Bayesian nonpara-
metric modeling and computation, it is of interest to ask if there is a corresponding
probability law on binary matrices obtained by integrating out the beta process.
As shown by Thibaux and Jordan [2007], the answer is yes, where the probability
law is the Indian buffet process (IBP) of Griffiths and Ghahramani [2006].

To describe the IBP, consider an Indian buffet with a countably infinite number
of dishes. Let N customers arrive in sequence in the buffet line. Let Z denote
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a binary-valued matrix in which the rows are customers and the columns are the
dishes, and where Zn,k = 1 if customer n samples dish k. Customer n samples
dish k with probability mk/n, where mk is the number of customers who have
previously sampled dish k; that is, Zn,k ∼ Ber(mk/n). (Note that this rule can
be interpreted in terms of classical Bayesian analysis as sampling the predictive
distribution obtained from a sequence of Bernoulli draws based on an improper
beta prior.) Having sampled from the dishes previously sampled by other customers,
customer n then goes on to sample an additional number of new dishes determined
by a draw from a Poiss(α/n) distribution.

The connection to the beta process delineated by Thibaux and Jordan [2007] is
as follows (see Teh and Jordan [2010] for an expanded discussion). Dishes in the
IBP correspond to atoms in the beta process, and the independent beta/Bernoulli
updating of the dish probabilities in the IBP reflects the independent nature of
the atoms in the beta process. Moreover, the fact that a Poisson distribution is
adopted for the number of dishes in the IBP reflects the fact that the beta process
is defined in terms of an underlying Poisson process. The exchangeability of the
IBP (which requires considering equivalence classes of matrices if argued directly
on the IBP representation) follows immediately from the beta process construction
(by the conditional independence of the rows of Z given the underlying draw from
the beta process).

It is also possible to define hierarchical beta processes for models involving mul-
tiple beta processes that are tied in some manner [Thibaux and Jordan 2007]. This
is done by simply letting the base measure for the beta process itself be drawn from
the beta process:

B0 ∼ BP(c0, B00)

B ∼ BP(c,B0),

where BP(c,B0) denotes the beta process with concentration parameter c and base
measure B0. This construction can be used in a manner akin to the hierarchical
Dirichlet process; for example, we can use it to model groups of entities that are
described by sparse binary vectors, where we wish to share the sparsity pattern
among groups.

8 Conclusions

Judea Pearl’s work on probabilistic graphical models yielded a formalism that was
significantly more expressive than existing probabilistic representations in AI, but
yet retained enough mathematical structure that it was possible to design efficient
computational procedures for a wide class of useful models. In this short article,
we have argued that Bayesian nonparametrics provides a framework in which this
agenda can be taken further. By replacing the traditional parametric prior distri-
butions of Bayesian analysis with stochastic processes, we obtain a rich vocabulary,
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encompassing probability distributions on objects such as trees of infinite depth,
partitions, subsets of features, measures and functions. We also obtain natural
notions of recursion. In addition to this structural expressiveness, the Bayesian
nonparametric framework also permits a wide range of distributional shapes. Fi-
nally, although we have devoted little attention to computation in this article, the
stochastic processes that have been used in Bayesian nonparametrics have proper-
ties (e.g., exchangeability, independence of measure on disjoint sets) that permit
the design of efficient inference algorithms. Certainly the framework is rich enough
to design some intractable models, but the same holds true for graphical models.
The point is that the Bayesian nonparametric framework opens the door to a richer
class of useful models for AI. The growing list of successful applications of Bayesian
nonparametrics testifies to the practical value of the framework [Hjort, Holmes,
Mueller, and Walker 2010].

A skeptical reader might question the value of Bayesian nonparametric model-
ing given that for any given finite data set the posterior distribution of a Bayesian
nonparametric model will concentrate on a finite set of degrees of freedom, and it
would be possible in principle to build a parametric model that mimics the non-
parametric model on those degrees of freedom. While this skepticism should not
be dismissed out of hand—and we certainly do not wish to suggest that parametric
modeling should be abandoned—this skeptical argument has something of the flavor
of a computer scientist arguing that data structures such as linked lists and heaps
are not needed because they can always be mimicked by fixed-dimension arrays.
The nonparametric approach can lead to conceptual insights that are only available
at the level of an underlying stochastic process. Moreover, by embedding a model
for a fixed number of data points in a sequence of models for a growing number
of data points, one can often learn something about the statistical properties of
the model—this is the spirit of nonparametric statistics in general. Finally, infinite
limits often lead to simpler mathematical objects.

In short, we view Bayesian nonparametrics as providing an expressive, useful
language for probabilistic modeling, one which follows on directly from the tradition
of graphical models. We hope and expect to see Bayesian nonparametrics have as
broad of an effect on AI as that of graphical models.
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