## Linear systems so far

## Linear Systems

## Lecture 8. Linear DAE (Differential Algebraic

 Equations) Systems

## Torkel Glad

Reglerteknik, ISY, Linköpings Universitet

```
Torkel Glad
Linear Systems 2012, Lecture 8
Linear Systems 2012, Lecture 8
```

AUTOMATIC CONTROL
REGLERTEKNKK REGLERTEKNIK
INKKÖPNGS UNVERSITET

## (1)

remasurner

## General modeling

"A model is any collection of equations in differentiated and undifferentiated variables" (Modelica and similar modeling tools)

Can you define and compute the system properties for such a model in the linear case?

Different descriptions of the same system

- Transfer function $G(s)$
- Left MFD. $G(s)=D_{L}^{-1} N_{L}, \quad N_{L}, D_{L}$ left coprime
- Right MFD. $G(s)=N_{R} D_{R}^{-1}, \quad N_{R}, D_{R}$ right coprime
- State space. $G(s)=C(s I-A)^{-1} B, \quad A, B, C$ minimal realization
Important invariants
- $D_{L}, D_{R}, s I-A$ same Smith form: poles
- $N_{L}, N_{R},\left[\begin{array}{cc}s I-A & B \\ -C & 0\end{array}\right]$ same Smith form: zeros

```
Torkel Glad
Linear Systems 2012, Lecture 8
```


## A general description of linear systems

Consider a physical system described by an input vector $u$, an output vector $y$ and a vector of internal physical variables $\zeta$. We assume

- $u$ is determined externally.
- $u$ is sufficient to define a solution for $\zeta$ (except for initial conditions)
- $\zeta$ in itself is unimportant; we can add or delete variables and transform them.
- If it is important to keep track of a certain physical variable, it is included in $y$.
- $u$ and $y$ are not transformed.


## The PMD description

## PMD description, cont'd.

Assuming that all relations between the variables and their derivatives are linear we arrive at a representation of the form

$$
\begin{aligned}
P(s) \zeta & =Q(s) u \\
y & =R(s) \zeta+W(s) u
\end{aligned}
$$

where $P, Q, R$ and $W$ are polynomial matrices.
Interpretation of $s$ :

- $\frac{d}{d t}$ (continuous time)
- complex number (continuous time, Laplace transform)

■ shift operator: $\zeta(t) \rightarrow \zeta(t+1)$ (discrete time)
■ complex number ( discrete time, $z$-transform)

```
Torkel Glad
Linear Systems 2012, Lecture 8
```


## Special cases

$$
\begin{aligned}
& \text { Right fraction } y=N_{R} D_{R}^{-1} u: \quad \mathbf{P}=\left[\begin{array}{cc}
D_{R}(s) & I \\
-N_{R}(s) & 0
\end{array}\right] \\
& \text { Left fraction } y=D_{L}^{-1} N_{L} u: \quad \mathbf{P}=\left[\begin{array}{cc}
D_{L}(s) & N_{L}(s) \\
I & 0
\end{array}\right] \\
& \text { State space: } \quad \mathbf{P}=\left[\begin{array}{cc}
s I-A & B \\
-C & D
\end{array}\right] \\
& \text { DAE (Descriptor): } \mathbf{P}=\left[\begin{array}{cc}
s E-A & B \\
-C & D
\end{array}\right]
\end{aligned}
$$

## Transformation of $y$-equations

## Transformation of $\zeta$

Since we do not transform $y$, the only possible change to a $y$-equation is to add a polynomial multiple of a $\zeta$-equation.

In matrix terms such transformations are described by

$$
\left[\begin{array}{cc}
I & 0 \\
X(s) & I
\end{array}\right]\left[\begin{array}{cc}
P(s) & Q(s) \\
-R(s) & W(s)
\end{array}\right]
$$

where $X$ is a polynomial matrix.

```
Torkel Glad
Linear Systems 2012, Lecture 8
```

```
Torkel Glad
Linear Systems 2012, Lecture }
```


## Equivalence

The previous reasoning makes the following definition natural: Two systems are equivalent if there are unimodular matrices $M_{1}$, $M_{2}$ and polynomial matrices $X, Y$ such that the system matrices are related as


Since $U_{1}, U_{2}$ are unimodular we have

$$
\mathbf{P}_{1} \stackrel{S}{\sim} \mathbf{P}_{2}, \quad P_{1} \stackrel{\stackrel{S}{\sim}}{\sim} P_{2}, \quad\left[\begin{array}{ll}
P_{1} & Q_{1}
\end{array}\right] \stackrel{S}{\sim}\left[\begin{array}{ll}
P_{2} & Q_{2}
\end{array}\right], \quad\left[\begin{array}{c}
P_{1} \\
-R_{1}
\end{array}\right] \stackrel{\stackrel{S}{\sim}}{ }\left[\begin{array}{c}
P_{2} \\
-R_{2}
\end{array}\right]
$$

## Equivalence and transfer function

## Example. DC-motor.

$y_{1}=\zeta_{1}=$ motor angle,
$y_{2}=\zeta_{2}=$ angular velocity,
$u=$ input voltage

$$
\begin{aligned}
& \dot{\zeta}_{1}=\zeta_{2} \\
& \dot{\zeta}_{2}=-\zeta_{2}+u \\
& y_{1}=\zeta_{1} \\
& y_{2}=\zeta_{2}
\end{aligned}
$$

A straightforward calculation shows that the equivalence transformation does not change the transfer function.

$$
\mathbf{P}=\left[\begin{array}{ccc}
s & -1 & 0 \\
0 & s+1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

```
Torkel Glad
Linear Systems 2012, Lecture 8
```

AUTOMATIC CONTROL AUTOMAICGONTROL LINKÖPINGS UNVERSTTET

## Rosenbrock equivalence

To be really useful the equivalence concept has to be extended so

$$
G=\left[\begin{array}{ll}
1 & s
\end{array}\right]\left(s^{2}+s\right)^{-1}
$$

$$
\begin{aligned}
& \mathbf{P}=\left[\begin{array}{ccc}
s & -1 & 0 \\
0 & s+1 & 1 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & s & 0 \\
-(s+1) & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & s & 0 \\
0 & s(s+1) & 1 \\
0 & -1 & 0 \\
1 & 0 & 0
\end{array}\right] \rightarrow \\
& \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & s(s+1) & 1 \\
0 & -1 & 0 \\
1 & -s & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & s(s+1) & 1 \\
0 & -1 & 0 \\
0 & -s & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc}
s(s+1) & 1 \\
-1 & 0 \\
-s & 0
\end{array}\right]
\end{aligned}
$$

The result is a matrix fraction description:
that the following system matrices are regarded as equivalent

$$
\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & P(s) & Q(s) \\
0 & -R(s) & W(s)
\end{array}\right], \quad\left[\begin{array}{cc}
P(s) & Q(s) \\
-R(s) & W(s)
\end{array}\right]
$$

where the unit matrix is of arbitrary dimension.

- This corresponds to addition or deletion of trivial equations of the form $\zeta_{i}=0$, where $\zeta_{i}$ does not occur in any other equation.
■ The Smith form is only changed by the addition or deletion of trivial ones on the diagonal.


## State space form

```
state space, cont'd.
```

An arbitrary system matrix is equivalent to one in state space form:

$$
\left[\begin{array}{cc}
s I-A & B \\
-C & J(s)
\end{array}\right]
$$

This can be seen by using two facts:
(I) For an arbitrary matrix $\Lambda(s)$ in Smith form it is possible to find a constant matrix $A$ and unimodular matrices $U(s)$ and $V(s)$ such that

$$
\Lambda(s)=U(s)(s I-A) V(s)
$$

(possibly after adding or deleting ones on the diagonal of $\Lambda$ ) Idea of proof: take block-diagonal $A$, each block a companion matrix corresponding to an invariant polynomial.


1) Using (I), choose unimodular $M_{1}$ and $M_{2}$ so that

$$
\left[\begin{array}{cc}
M_{1}(s) & 0 \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
P(s) & Q(s) \\
-R(s) & W(s)
\end{array}\right]\left[\begin{array}{cc}
M_{2}(s) & 0 \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
s I-A & \tilde{Q}(s) \\
-\tilde{R}(s) & W(s)
\end{array}\right]
$$

where $\tilde{R}=R M_{2}, \tilde{Q}=M_{1} Q$.
2) Using (II), write

$$
\tilde{R}(s)=X(s)(s I-A)+C, \quad C \text { const. }
$$

Use the transformation

$$
\left[\begin{array}{cc}
I & 0 \\
X(s) & I
\end{array}\right]\left[\begin{array}{cc}
s I-A & \tilde{Q}(s) \\
-\tilde{R}(s) & W(s)
\end{array}\right]=\left[\begin{array}{cc}
s I-A & \tilde{Q}(s) \\
-C & W(s)+X(s) \tilde{Q}(s)
\end{array}\right]
$$

```
Torkel Glad
Linear Systems 2012, Lecture 8
```


## Transformation to state space form cont'd.

3) Using (II), write

$$
\tilde{Q}(s)=(s I-A) Y(s)+B, \quad B \text { const. }
$$

Use the transformation

$$
\left[\begin{array}{cc}
s I-A & \tilde{Q}(s) \\
-C & W(s)+X(s) \tilde{Q}(s)
\end{array}\right]\left[\begin{array}{cc}
I & -Y(s) \\
0 & I
\end{array}\right]=\left[\begin{array}{cc}
s I-A & B \\
-C & J(s)
\end{array}\right]
$$

where $J(s)=W(s)+X(s) \tilde{Q}(s)+C Y(s)$. The state space description is

$$
\dot{x}=A x+B u, \quad y=C x+J(d / d t) u
$$

$J$ depends on $s \Rightarrow u$ is differentiated.

[^0]

## Controllability and observability

## Irreducibility

Since any system can be transformed into state space form:

we have

$$
\begin{gathered}
P(s) \stackrel{S}{\sim} s I-A \\
{\left[\begin{array}{ll}
P(s) & Q(s)
\end{array}\right] \stackrel{S}{\sim}\left[\begin{array}{ll}
s I-A & B
\end{array}\right]} \\
{\left[\begin{array}{c}
P(s) \\
-R(s)
\end{array}\right]}
\end{gathered} \stackrel{\stackrel{s}{\sim}\left[\begin{array}{c}
s I-A \\
-C
\end{array}\right]}{ }
$$

Controllability $\Leftrightarrow P, Q$ left coprime
Observability $\Leftrightarrow P, R$ right coprime

| Torkel Glad | AUTOMATIC CONTROL REGLERTEKNIK |
| :---: | :---: |
| Linear Systems 2012, Lecture 8 | LINKÖPINGS UNVERSITET |

## Poles and zeros

A transfer function in Smith-McMillan form:

$$
\begin{gathered}
G(s)=U(s) \underbrace{\left(\begin{array}{cc}
\operatorname{diag}\left(\epsilon_{i}(s)\right) & 0 \\
0 & 0
\end{array}\right)}_{\mathcal{E}(s)} \underbrace{\left(\begin{array}{cc}
\operatorname{diag}\left(\psi_{i}(s)\right) & 0 \\
0 & I_{m-r}
\end{array}\right)^{-1} V(s)}_{\psi_{R}(s)} \\
\text { system matrix: } \mathbf{P}_{M c M}=\left[\begin{array}{cc}
\psi_{R}(s) & V(s) \\
-U(s) \mathcal{E}(s) & 0
\end{array}\right] \stackrel{S}{\sim}\left[\begin{array}{cc}
I & 0 \\
0 & \mathcal{E}(s)
\end{array}\right] \\
\text { Any other irreducible system } \quad \mathbf{P}=\left[\begin{array}{cc}
P(s) & Q(s) \\
-R(s) & W(s)
\end{array}\right]
\end{gathered}
$$

having the same transfer function $G$ must be equivalent. It follows that:
The poles of $G$ are given by $\operatorname{det} P(s)=0$.
The zeros of $G$ are given by the invariant polynomials of $\mathbf{P}(s)$.

[^1]A system

$$
\mathbf{P}=\left[\begin{array}{cc}
P(s) & Q(s) \\
-R(s) & W(s)
\end{array}\right]
$$

is called irreducible if $P, Q$ are left coprime and $P, R$ right coprime.

All state space descriptions equivalent to $\mathbf{P}$ are then controllable and observable and hence minimal.

Consequence:
All irreducible systems having the same transfer function are equivalent.

```
Torkel Glad
Linear Systems 2012, Lecture 8
```


## Input decoupling zeros

$$
\text { Suppose } \quad \mathbf{P}=\left[\begin{array}{cc}
P(s) & Q(s) \\
-R(s) & W(s)
\end{array}\right] \quad P, Q \text { not coprime }
$$

Exists equivalent state space description that is uncontrollable.

$$
\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right], \quad\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]
$$

where $A_{11}, B_{1}$ is controllable. Then

$$
\left[\begin{array}{ll}
P & Q
\end{array}\right] \stackrel{S}{\sim}\left[\begin{array}{ccc}
s I-A_{11} & -A_{12} & B_{1} \\
0 & s I-A_{22} & 0
\end{array}\right] \stackrel{S}{\sim}\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & 0 & s I-A_{22}
\end{array}\right]
$$

The zeros of the Smith form polynomials of $\left[\begin{array}{ll}P & Q\end{array}\right]$ are thus the eigenvalues of $A_{22}$, i.e. the "uncontrollable poles". They are called input decoupling zeros.

Output decoupling zeros

Similarly the Smith zeros of

$$
\left[\begin{array}{c}
P \\
-R
\end{array}\right]
$$

are called output decoupling zeros


[^0]:    Torkel Glad
    Linear Systems 2012, Lecture 8

[^1]:    Torkel Glad
    Linear Systems 2012, Lecture 8

