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Linear systems so far

Different descriptions of the same system
Transfer function G(s)
• Left MFD. G(s) = D−1

L NL, NL, DL left coprime
• Right MFD. G(s) = NRD−1

R , NR, DR right coprime
• State space. G(s) = C(sI−A)−1B, A, B, C minimal

realization

Important invariants

DL, DR, sI−A same Smith form: poles

NL, NR,
[

sI−A B
−C 0

]
same Smith form: zeros
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General modeling

“A model is any collection of equations in differentiated and
undifferentiated variables” (Modelica and similar modeling tools)

Can you define and compute the system properties for such a model
in the linear case?
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A general description of linear systems

Consider a physical system described by an input vector u, an output
vector y and a vector of internal physical variables ζ. We assume

u is determined externally.

u is sufficient to define a solution for ζ (except for initial
conditions)

ζ in itself is unimportant; we can add or delete variables and
transform them.

If it is important to keep track of a certain physical variable, it is
included in y.

u and y are not transformed.
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The PMD description

Assuming that all relations between the variables and their
derivatives are linear we arrive at a representation of the form

P(s)ζ = Q(s)u
y = R(s)ζ + W(s)u

where P, Q, R and W are polynomial matrices.
Interpretation of s:

d
dt (continuous time)

complex number (continuous time, Laplace transform)

shift operator: ζ(t)→ ζ(t + 1) (discrete time)

complex number ( discrete time, z-transform)
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PMD description, cont’d.

Matrix notation: [
P(s) Q(s)
−R(s) W(s)

]
︸ ︷︷ ︸

P

[
−ζ
u

]
=

[
0
y

]

P is called the system matrix.
P(s) is usually assumed to be invertible (ζ uniquely determined by u)
The transfer function is

G(s) = R(s)P(s)−1Q(s) + W(s)
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Special cases

Right fraction y = NRD−1
R u : P =

[
DR(s) I
−NR(s) 0

]

Left fraction y = D−1
L NLu : P =

[
DL(s) NL(s)

I 0

]

State space: P =

[
sI−A B
−C D

]

DAE (Descriptor): P =

[
sE−A B
−C D

]
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Transformation of ζ-equations

change the order

multiply one equation with nonzero constant

add one equation multiplied by a polynomial to another
equation.

If a pair ζ, u is a solution before one of these transformations is
made, it is still a solution afterwards and vice versa.
These row operations correspond to a multiplication from the left:[

M(s) 0
0 I

] [
P(s) Q(s)
−R(s) W(s)

]
where M is unimodular.
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Transformation of y-equations

Since we do not transform y, the only possible change to a
y-equation is to add a polynomial multiple of a ζ-equation.

In matrix terms such transformations are described by[
I 0

X(s) I

] [
P(s) Q(s)
−R(s) W(s)

]
where X is a polynomial matrix.
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Transformation of ζ

Multiply a variable with a nonzero constant.

Let two variables change places.

Add a polynomial multiple of a variable to another one.

These transformations correspond to multiplication by a unimodular
matrix M̄(s):

ζ̄ = M̄(s)ζ

If one allows addition of polynomial multiples of u the transformation
becomes [

−ζ̄
u

]
=

[
M̄(s) Ȳ(s)

0 I

] [
−ζ
u

]
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Transformation of ζ, cont’d.

The inverse transformation is[
−ζ
u

]
=

[
M(s) Y(s)

0 I

] [
−ζ̄
u

]
where M = M̄−1, Y = −M̄−1Ȳ.
The transformation of the system matrix is thus:[

P(s) Q(s)
−R(s) W(s)

] [
M(s) Y(s)

0 I

]
with M unimodular and Y polynomial
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Equivalence

The previous reasoning makes the following definition natural:
Two systems are equivalent if there are unimodular matrices M1,
M2 and polynomial matrices X, Y such that the system matrices are
related as[

M1(s) 0
X(s) I

]
︸ ︷︷ ︸

U1

[
P1(s) Q1(s)
−R1(s) W1(s)

]
︸ ︷︷ ︸

P1

[
M2(s) Y(s)

0 I

]
︸ ︷︷ ︸

U2

=

[
P2(s) Q2(s)
−R2(s) W2(s)

]
︸ ︷︷ ︸

P2

Since U1, U2 are unimodular we have

P1
S∼ P2, P1

S∼ P2,
[
P1 Q1

] S∼
[
P2 Q2

]
,
[

P1
−R1

]
S∼
[

P2
−R2

]
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Equivalence and transfer function

A straightforward calculation shows that the equivalence
transformation does not change the transfer function.
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Example. DC-motor.

y1 = ζ1 = motor angle,
y2 = ζ2 = angular velocity,
u = input voltage

ζ̇1 = ζ2

ζ̇2 = −ζ2 + u
y1 = ζ1

y2 = ζ2

P =


s −1 0
0 s + 1 1
−1 0 0
0 −1 0
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DC motor, transformations

P =


s −1 0
0 s + 1 1
−1 0 0
0 −1 0

→


1 s 0
−(s + 1) 0 1

0 −1 0
1 0 0

→


1 s 0
0 s(s + 1) 1
0 −1 0
1 0 0

→

→


1 0 0
0 s(s + 1) 1
0 −1 0
1 −s 0

→


1 0 0
0 s(s + 1) 1
0 −1 0
0 −s 0

→
s(s + 1) 1
−1 0
−s 0


The result is a matrix fraction description:

G =
[
1 s

]
(s2 + s)−1

Torkel Glad
Linear Systems 2012, Lecture 8

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Rosenbrock equivalence

To be really useful the equivalence concept has to be extended so
that the following system matrices are regarded as equivalentI 0 0

0 P(s) Q(s)
0 −R(s) W(s)

 ,
[

P(s) Q(s)
−R(s) W(s)

]

where the unit matrix is of arbitrary dimension.

This corresponds to addition or deletion of trivial equations of
the form ζi = 0, where ζi does not occur in any other equation.

The Smith form is only changed by the addition or deletion of
trivial ones on the diagonal.
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State space form

An arbitrary system matrix is equivalent to one in state space form:[
sI−A B
−C J(s)

]
This can be seen by using two facts:
(I) For an arbitrary matrix Λ(s) in Smith form it is possible to find a
constant matrix A and unimodular matrices U(s) and V(s) such that

Λ(s) = U(s)(sI−A)V(s)

(possibly after adding or deleting ones on the diagonal of Λ)
Idea of proof: take block-diagonal A, each block a companion matrix
corresponding to an invariant polynomial.
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state space, cont’d.

(II) For any P(s) and any A (of compatible dimensions)

P(s) = Q1(s)(sI−A) + R1

P(s) = (sI−A)Q2(s) + R2

with constant R1, R2.
Idea of proof: compare powers of s on both sides.
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Transformation to state space form

1) Using (I), choose unimodular M1 and M2 so that[
M1(s) 0

0 I

] [
P(s) Q(s)
−R(s) W(s)

] [
M2(s) 0

0 I

]
=

[
sI−A Q̃(s)
−R̃(s) W(s)

]
where R̃ = RM2, Q̃ = M1Q.
2) Using (II), write

R̃(s) = X(s)(sI−A) + C, C const.

Use the transformation[
I 0

X(s) I

] [
sI−A Q̃(s)
−R̃(s) W(s)

]
=

[
sI−A Q̃(s)
−C W(s) + X(s)Q̃(s)

]

Torkel Glad
Linear Systems 2012, Lecture 8

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Transformation to state space form cont’d.

3) Using (II), write

Q̃(s) = (sI−A)Y(s) + B, B const.

Use the transformation[
sI−A Q̃(s)
−C W(s) + X(s)Q̃(s)

] [
I −Y(s)
0 I

]
=

[
sI−A B
−C J(s)

]
where J(s) = W(s) + X(s)Q̃(s) + CY(s). The state space
description is

ẋ = Ax + Bu, y = Cx + J(d/dt)u

J depends on s⇒ u is differentiated.
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Controllability and observability
Since any system can be transformed into state space form:[

M1(s) 0
X(s) I

]
︸ ︷︷ ︸

U1

[
P(s) Q(s)
−R(s) W(s)

]
︸ ︷︷ ︸

P1

[
M2(s) Y(s)

0 I

]
︸ ︷︷ ︸

U2

=

[
sI−A B
−C J(s)

]
︸ ︷︷ ︸

P2

we have

P(s) S∼ sI−A[
P(s) Q(s)

] S∼
[
sI−A B

][
P(s)
−R(s)

]
S∼
[

sI−A
−C

]
Controllability⇔ P, Q left coprime
Observability⇔ P, R right coprime
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Irreducibility

A system

P =

[
P(s) Q(s)
−R(s) W(s)

]
is called irreducible if P, Q are left coprime and P, R right coprime.

All state space descriptions equivalent to P are then controllable and
observable and hence minimal.

Consequence:
All irreducible systems having the same transfer function are
equivalent.
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Poles and zeros

A transfer function in Smith-McMillan form:

G(s) = U(s)
(

diag(εi(s)) 0
0 0

)
︸ ︷︷ ︸

E(s)

(
diag(ψi(s)) 0

0 Im−r

)
︸ ︷︷ ︸

ψR(s)

−1

V(s)

system matrix: PMcM =

[
ψR(s) V(s)

−U(s)E(s) 0

]
S∼
[

I 0
0 E(s)

]

Any other irreducible system P =

[
P(s) Q(s)
−R(s) W(s)

]
having the same transfer function G must be equivalent. It follows
that:
The poles of G are given by det P(s) = 0.
The zeros of G are given by the invariant polynomials of P(s).
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Input decoupling zeros

Suppose P =

[
P(s) Q(s)
−R(s) W(s)

]
P, Q not coprime

Exists equivalent state space description that is uncontrollable.[
A11 A12
0 A22

]
,
[

B1
0

]
where A11, B1 is controllable. Then[

P Q
] S∼

[
sI−A11 −A12 B1

0 sI−A22 0

]
S∼
[

I 0 0
0 0 sI−A22

]
The zeros of the Smith form polynomials of [P Q] are thus the
eigenvalues of A22, i.e. the “uncontrollable poles”. They are called
input decoupling zeros.
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Output decoupling zeros

Similarly the Smith zeros of [
P
−R

]
are called output decoupling zeros
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