Dynamic Systems

Lecture 6. Polynomial Matrix Descriptions

Torkel Glad

Reglerteknik, ISY, Linköpings Universitet

Torkel Glad Dynamic Systems 2014, Lecture 6

Left and right MFDs, example

$$G(s) = \begin{pmatrix} \frac{1}{s+1} & \frac{2}{s+3} \end{pmatrix}$$
Left MFD $G(s) = \underbrace{\left((s+1)(s+3)\right)}_{D_L}^{-1} \underbrace{\left(s+3 & 2(s+1)\right)}_{N_L}$
Right MFD $G(s) = \underbrace{\left(1 & 2\right)}_{N_R} \underbrace{\left(s+1 & 0 \\ 0 & s+3\right)}_{D_R}^{-1}$

Note that the dimensions of D_L and D_R are not the same. Also note that

$$\det D_L(s) = \det D_R(s) = (s+1)(s+3)$$

Matrix Fraction Descriptions (MFDs)

For a system (not necessarily in state space form)

 $E\dot{x} = Ax + Bu, \quad y = Cx$

with n variables, m inputs, and p outputs, the transfer function

 $G(s) = C(sE - A)^{-1}B$

is a $p \times m$ matrix whose elements are rational functions. A closer analogy to the SISO case is the *matrix fraction* description

$$G(s) = N_R(s)D_R^{-1}(s)$$
 or $G(s) = D_L^{-1}(s)N_L(s)$

where N_R , D_R , N_L , D_L are polynomial matrices.

Torkel Glad Dynamic Systems 2014, Lecture 6 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

State space and descriptor systems

A state space description where all state variables are regarded as outputs

$$\dot{x} = Ax + Bu, \quad y = x$$

is directly represented as a left MFD:

$$G(s) = (sI - A)^{-1}B$$

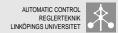
This is true also for a descriptor or DAE representation

$$E\dot{x} = Ax + Bu, \quad y = x$$

with

$$G(s) = (sE - A)^{-1}B$$

Torkel Glad Dynamic Systems 2014, Lecture 6



 $N(s) = \tilde{N}(s)R(s), \quad D(s) = \tilde{D}(s)R(s)$

- The polynomial matrix R is said to be a *common right divisor*.
- $\blacksquare N(s)D^{-1}(s) = \tilde{N}(s)\tilde{D}^{-1}(s)$
- If *R* can be written as $R = \tilde{R}S$ for every common right divisor *S*, then *R* is a *greatest common right divisor* (gcrd).
- A polynomial matrix whose inverse is also polynomial is a trivial common factor. Such a matrix is called *unimodular*.
- If a gcrd of *N* and *D* is unimodular then *N* and *R* are said to be *right coprime*.
- Common left divisor, gcld, and left coprime are defined analogously for left MFDs.

Torkel Glad Dynamic Systems 2014, Lecture 6

Hermite form

For a polynomial matrix P(s) with independent columns it is possible to find a unimodular matrix U(s) so that

$$U(s)P(s) = \begin{pmatrix} \times & \times & \dots & \times \\ 0 & \times & \dots & \times \\ 0 & 0 & \ddots & \vdots \\ \vdots & \vdots & & \times \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

where the diagonal elements are nonzero monic polynomials of higher degree than the elements above. This is called **Hermite form**.

Unimodular matrices

Fact P(s) unimodular $\Leftrightarrow \det P(s) = \text{const.} (\neq 0)$ Examples of unimodular matrices.

$\begin{pmatrix} 0 & 1 & 0 \end{pmatrix}$	/1	a(s)	0)	(5	0	0
1 0 0	0	1	0	0	1	0
$\begin{pmatrix} 0 & 0 & 1 \end{pmatrix}$	(0	a(s) 1 0	1/	$\setminus 0$	0	1/

When multiplying a matrix from the left they correspond to • an exchange of the first two rows

 \circ an addition of $a(s) \times$ (second row) to the first row

multiplication of first row by 5

Elementary row operations thus correspond to multiplication by unimodular matrices from the left.

Multiplication from the right: corresponding column operations

Torkel Glad Dynamic Systems 2014, Lecture 6 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

More on Hermite form

Both Mathematica and Maple have packages for polynomiaol matrices that compute the Hermite form.

For a matrix with independent **rows**, an analogous triangular form can be obtained by multiplying from the **right** with a unimodular matrix.

Finding a gcrd

A gcrd for N_R , D_R in $G(s) = N_R(s)D_R^{-1}(s)$: Use e.g. Hermite transformation to get

$$\begin{pmatrix} U_{11}(s) & U_{12}(s) \\ U_{21}(s) & U_{22}(s) \end{pmatrix} \begin{pmatrix} D_R(s) \\ N_R(s) \end{pmatrix} = \begin{pmatrix} R(s) \\ 0 \end{pmatrix}$$

with the U-matrix unimodular.

With $V = U^{-1}$:

$$\begin{pmatrix} D_R(s)\\N_R(s) \end{pmatrix} = \begin{pmatrix} V_{11}(s) & V_{12}(s)\\V_{21}(s) & V_{22}(s) \end{pmatrix} \begin{pmatrix} R(s)\\0 \end{pmatrix}$$

1. R is a gcrd of N_R and D_R .

2. V_{11} nonsing., det $V_{11} = \text{const.} \cdot \text{det } U_{22}$. **3.** $G(s) = V_{21}(s)V_{11}(s)^{-1}$ coprime

4. $G(s) = -U_{22}(s)^{-1}U_{21}(s)$ coprime

Torkel Glad Dynamic Systems 2014, Lecture 6

Example

$$\begin{bmatrix} \frac{1}{s+1} & \frac{1}{(s+1)(s+2)} \\ \frac{s}{(s+1)(s+2)} & \frac{2s+1}{(s+1)(s+2)} \end{bmatrix} = \begin{bmatrix} s+2 & 1 \\ s & 2s+1 \end{bmatrix} \begin{bmatrix} s^2+3s+2 & 0 \\ 0 & s^2+3s+2 \end{bmatrix}^{-1}$$

Hermite transformation gives

$$\begin{bmatrix} s^2 + 3s + 2 & 0 \\ 0 & s^2 + 3s + 2 \\ s + 2 & 1 \\ s & 2s + 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 \\ 0 & s + 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$U^{-1} = V = \begin{bmatrix} s^2 + 3s + 2 & -s - 2 & 0 & s + 1 \\ 0 & s + 2 & -s - 2 & 0 & s + 1 \\ 0 & s + 2 & -1 & 0 & 1 \\ s & 1 & 0 & 1 \end{bmatrix}$$

Torkel Glad Dynamic Systems 2014, Lecture 6

A technical result

Lemma Let P(s) be a $p \times r$ pol. matrix and Q(s) a nonsingular $r \times r$ pol. matrix. The following are equivalent.

- 1. P and Q are right coprime.
- 2. There exist pol. matrices X(s) ($r \times p$) and Y(s) ($r \times r$) such that the following **Bezout identity** is satisfied:

$$X(s)P(s) + Y(s)Q(s) = I$$

3. For every complex s:

$$\operatorname{rank} \begin{pmatrix} Q(s) \\ P(s) \end{pmatrix} = r$$

An analogous lemma holds for left coprime matrices.

Torkel Glad Dynamic Systems 2014, Lecture 6 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Example cont'd.

A right coprime MFD:

$$\underbrace{\binom{s+2}{s} - 1}_{N_R} \underbrace{\binom{(s+1)(s+2)}{0} - s - 2}_{D_R}^{-1}$$

Using U_{21} and U_{22} gives the left coprime MFD:

$$\underbrace{\binom{(s+1)(s+2)}{2s^2+5s+2}}_{D_L} \overset{0}{-s-2}^{-1} \underbrace{\binom{s+2}{2s+2}}_{N_L} \overset{1}{\underbrace{2s+2}}_{N_L}$$

Note that

$$det D_R(s) = -det D_L(s) = (s+1)(s+2)^2 det N_R(s) = -det N_L(s) = 2s+2$$

Torkel Glad Dynamic Systems 2014, Lecture 6

Theorem If

 $G(s) = N_1(s)D_1^{-1}(s) = N_2(s)D_2^{-1}(s)$

with both MFDs being right coprime, then there is a unimodular matrix U such that

 $N_1(s) = N_2(s)U(s), \quad D_1(s) = D_2(s)U(s)$

An analogous result holds for left coprime MFDs.

Torkel Glad Dynamic Systems 2014, Lecture 6

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

Strictly proper systems

We have shown:

Theorem G(s) has time-invariant finite-dimensional realization \Leftrightarrow each element is a strictly proper rational function

ls

$$\begin{bmatrix} 3s+2 & 1\\ 2s+3 & 1 \end{bmatrix} \begin{bmatrix} s^2+2s & s+1\\ s^2+s & s+1 \end{bmatrix}^{-1}$$

strictly proper?

Comparing left and right MFDs

Theorem If

$$G(s) = N_R(s)D_R^{-1}(s) = D_L^{-1}(s)N_L(s)$$

with both MFDs being coprime, then there is a constant $k \neq 0$ such that

 $\det D_R(s) = k \det D_L(s)$

Torkel Glad Dynamic Systems 2014, Lecture 6

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Row and column degrees

$$G(s) = N_R(s)D_R(s)^{-1}$$

Definitions:

- k_i : highest degree, *i*:th column of $D_R(s)$.
- G(s) proper: $\lim_{s\to\infty} G(s)$ finite
- G(s) strictly proper: $\lim_{s\to\infty} G(s) = 0$

Easy results:

- *G* strictly proper \Rightarrow each k_i > degree of corresponding column in N_R
- G proper \Rightarrow each $k_i \ge$ degree of corresponding column in N_R
- deg det $D_R(s) \leq \sum k_i$

Column and row reduced systems

- D_{hc} : matrix of columnwise highest degree coefficients.
- D_R is said to be *column reduced* if deg det $D_R(s) = \sum k_i \Leftrightarrow D_{hc}$ is nonsingular.

Theorem Let D_R be column reduced. Then $G = N_R D_R^{-1}$ is strictly proper (proper) if and only if, for each *i*, column *i* of N_R has a maximum degree $< k_i (\le k_i)$.

An analogous statement holds for left MFDs (row reduced)

It is possible to perform column operations, or equivalently to multiply from the right by a unimodular U, so that in the new description

$$\tilde{N}_R = N_R U, \quad \tilde{D}_R = D_R U$$

 \tilde{D}_R is column reduced.

Torkel Glad Dynamic Systems 2014, Lecture 6 AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Torkel Glad Dynamic Systems 2014, Lecture 6

Getting column reduced descriptions