Matrix Fraction Descriptions (MFDs)

Dynamic Systems

Lecture 6. Polynomial Matrix Descriptions

Torkel Glad

Reglerteknik, ISY, Linköpings Universitet

Torkel Glad

Dynamic Systems 2014, Lecture 6
AUTOMATC CONTROL
REGLERTEKNK
IINKÖPNGS UNVERSITET

Left and right MFDs, example

$$
G(s)=\left(\begin{array}{ll}
\frac{1}{s+1} & \frac{2}{s+3}
\end{array}\right)
$$

Left MFD $G(s)=\underbrace{((s+1)(s+3))}_{D_{L}} \underbrace{-1}_{N_{L}} \underbrace{(s+3 \quad 2(s+1))}$
Right MFD $\quad G(s)=\underbrace{\left(\begin{array}{ll}1 & 2\end{array}\right)}_{N_{R}} \underbrace{\left(\begin{array}{cc}s+1 & 0 \\ 0 & s+3\end{array}\right)^{-1}}_{D_{R}}$
Note that the dimensions of D_{L} and D_{R} are not the same. Also note that

$$
\operatorname{det} D_{L}(s)=\operatorname{det} D_{R}(s)=(s+1)(s+3)
$$

For a system (not necessarily in state space form)

$$
E \dot{x}=A x+B u, \quad y=C x
$$

with n variables, m inputs, and p outputs, the transfer function

$$
G(s)=C(s E-A)^{-1} B
$$

is a $p \times m$ matrix whose elements are rational functions.
A closer analogy to the SISO case is the matrix fraction description

$$
G(s)=N_{R}(s) D_{R}^{-1}(s) \text { or } G(s)=D_{L}^{-1}(s) N_{L}(s)
$$

where $N_{R}, D_{R}, N_{L}, D_{L}$ are polynomial matrices.

```
Torkel Glad
Dynamic Systems 2014, Lecture 6
```


State space and descriptor systems

A state space description where all state variables are regarded as outputs

$$
\dot{x}=A x+B u, \quad y=x
$$

is directly represented as a left MFD:

$$
G(s)=(s I-A)^{-1} B
$$

This is true also for a descriptor or DAE representation

$$
E \dot{x}=A x+B u, \quad y=x
$$

with

$$
G(s)=(s E-A)^{-1} B
$$

Common factors

$$
N(s)=\tilde{N}(s) R(s), \quad D(s)=\tilde{D}(s) R(s)
$$

- The polynomial matrix R is said to be a common right divisor.
- $N(s) D^{-1}(s)=\tilde{N}(s) \tilde{D}^{-1}(s)$
- If R can be written as $R=\tilde{R} S$ for every common right divisor S, then R is a greatest common right divisor (gcrd).
- A polynomial matrix whose inverse is also polynomial is a trivial common factor. Such a matrix is called unimodular.
- If a gcrd of N and D is unimodular then N and R are said to be right coprime.
■ Common left divisor, gcld, and left coprime are defined analogously for left MFDs.

```
Torkel Glad
Dynamic Systems 2014, Lecture 6
```


Hermite form

For a polynomial matrix $P(s)$ with independent columns it is possible to find a unimodular matrix $U(s)$ so that

$$
U(s) P(s)=\left(\begin{array}{cccc}
\times & \times & \ldots & \times \\
0 & \times & \ldots & \times \\
0 & 0 & \ddots & \vdots \\
\vdots & \vdots & & \times \\
0 & 0 & \ldots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right)
$$

where the diagonal elements are nonzero monic polynomials of higher degree than the elements above. This is called Hermite form

Unimodular matrices

Fact $P(s)$ unimodular $\Leftrightarrow \operatorname{det} P(s)=$ const. $(\neq 0)$
Examples of unimodular matrices

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{ccc}
1 & a(s) & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
5 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

When multiplying a matrix from the left they correspond to

- an exchange of the first two rows
- an addition of $a(s) \times$ (second row) to the first row
- multiplication of first row by 5

Elementary row operations thus correspond to multiplication by unimodular matrices from the left.

Multiplication from the right: corresponding column operations

```
Torkel Glad
Dynamic Systems 2014, Lecture }
```


More on Hermite form

Both Mathematica and Maple have packages for polynomiaol matrices that compute the Hermite form.

For a matrix with independent rows, an analogous triangular form can be obtained by multiplying from the right with a unimodular matrix.

Finding a gcrd

A technical result

A gcrd for N_{R}, D_{R} in $G(s)=N_{R}(s) D_{R}^{-1}(s)$:
Use e.g. Hermite transformation to get

$$
\left(\begin{array}{ll}
U_{11}(s) & U_{12}(s) \\
U_{21}(s) & U_{22}(s)
\end{array}\right)\binom{D_{R}(s)}{N_{R}(s)}=\binom{R(s)}{0}
$$

with the U-matrix unimodular.
With $V=U^{-1}$:

$$
\binom{D_{R}(s)}{N_{R}(s)}=\left(\begin{array}{ll}
V_{11}(s) & V_{12}(s) \\
V_{21}(s) & V_{22}(s)
\end{array}\right)\binom{R(s)}{0}
$$

1. R is a gcrd of N_{R} and D_{R}.
2. V_{11} nonsing., $\operatorname{det} V_{11}=$ const. $\cdot \operatorname{det} U_{22}$.
3. $G(s)=V_{21}(s) V_{11}(s)^{-1}$ coprime
4. $G(s)=-U_{22}(s)^{-1} U_{21}(s)$ coprime
Torkel Glad
Dynamic Systems 2014, Lecture 6

AUTOMATC CONTROL
REGLERTEKNK
LINKÖPNGS UNVERSITET

Example

$$
\left[\begin{array}{cc}
\frac{1}{s+1} & \frac{1}{(s+1)(s+2)} \\
\frac{s}{(s+1)(s+2)} & \frac{2 s+1}{(s+1)(s+2)}
\end{array}\right]=\left[\begin{array}{cc}
s+2 & 1 \\
s & 2 s+1
\end{array}\right]\left[\begin{array}{cc}
s^{2}+3 s+2 & 0 \\
0 & s^{2}+3 s+2
\end{array}\right]^{-1}
$$

Hermite transformation gives

$$
\left[\begin{array}{cc}
s^{2}+3 s+2 & 0 \\
0 & s^{2}+3 s+2 \\
s+2 & 1 \\
s & 2 s+1
\end{array}\right] \rightarrow\left[\begin{array}{cc}
1 & 1 \\
0 & s+1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

$$
U^{-1}=V=\left[\begin{array}{cccc}
s^{2}+3 s+2 & -s-2 & 0 & s+1 \\
0 & s+2 & 1 & 0 \\
s+2 & -1 & 0 & 1 \\
s & 1 & 0 & 1
\end{array}\right]
$$

[^0]

Lemma Let $P(s)$ be a $p \times r$ pol. matrix and $Q(s)$ a nonsingular $r \times r$ pol. matrix. The following are equivalent.

1. P and Q are right coprime.
2. There exist pol. matrices $X(s)(r \times p)$ and $Y(s)(r \times r)$ such that the following Bezout identity is satisfied:

$$
X(s) P(s)+Y(s) Q(s)=I
$$

3. For every complex s :

$$
\operatorname{rank}\binom{Q(s)}{P(s)}=r
$$

An analogous lemma holds for left coprime matrices.

```
Torkel Glad
Dynamic Systems 2014, Lecture 6
```


Example cont'd.

A right coprime MFD:

$$
\underbrace{\left(\begin{array}{cc}
s+2 & -1 \\
s & 1
\end{array}\right)}_{N_{R}} \underbrace{\left(\begin{array}{cc}
(s+1)(s+2) & -s-2 \\
0 & s+2
\end{array}\right)}_{D_{R}}
$$

Using U_{21} and U_{22} gives the left coprime MFD:

$$
\underbrace{\left(\begin{array}{cc}
(s+1)(s+2) & 0 \\
2 s^{2}+5 s+2 & -s-2
\end{array}\right)^{-1}}_{D_{L}} \underbrace{\left(\begin{array}{cc}
s+2 & 1 \\
2 s+2 & 0
\end{array}\right)}_{N_{L}}
$$

Note that

$$
\begin{aligned}
& \operatorname{det} D_{R}(s)=-\operatorname{det} D_{L}(s)=(s+1)(s+2)^{2} \\
& \operatorname{det} N_{R}(s)=-\operatorname{det} N_{L}(s)=2 s+2
\end{aligned}
$$

Almost uniqueness of coprime MFDs

Comparing left and right MFDs

Theorem If

$$
G(s)=N_{1}(s) D_{1}^{-1}(s)=N_{2}(s) D_{2}^{-1}(s)
$$

with both MFDs being right coprime,
then there is a unimodular matrix U such that

$$
N_{1}(s)=N_{2}(s) U(s), \quad D_{1}(s)=D_{2}(s) U(s)
$$

An analogous result holds for left coprime MFDs.

```
Torkel Glad
Dynamic Systems 2014, Lecture 6
```


Row and column degrees

$$
G(s)=N_{R}(s) D_{R}(s)^{-1}
$$

Definitions:

- k_{i} : highest degree, i :th column of $D_{R}(s)$.
- $G(s)$ proper: $\lim _{s \rightarrow \infty} G(s)$ finite
- $G(s)$ strictly proper: $\lim _{s \rightarrow \infty} G(s)=0$

Easy results:

- G strictly proper \Rightarrow each $k_{i}>$ degree of corresponding column in N_{R}
■ G proper \Rightarrow each $k_{i} \geq$ degree of corresponding column in N_{R}
- $\operatorname{deg} \operatorname{det} D_{R}(s) \leq \sum k_{i}$
- $D_{h c}$: matrix of columnwise highest degree coefficients.
- D_{R} is said to be column reduced if
$\operatorname{deg} \operatorname{det} D_{R}(s)=\sum k_{i} \Leftrightarrow D_{h c}$ is nonsingular.
Theorem Let D_{R} be column reduced. Then $G=N_{R} D_{R}^{-1}$ is strictly proper (proper) if and only if, for each i, column i of N_{R} has a maximum degree $<k_{i}\left(\leq k_{i}\right)$.

An analogous statement holds for left MFDs (row reduced)
It is possible to perform column operations, or equivalently to multiply from the right by a unimodular U, so that in the new description

$$
\tilde{N}_{R}=N_{R} U, \quad \tilde{D}_{R}=D_{R} U
$$

\tilde{D}_{R} is column reduced.

```
Torkel Glad
Dynamic Systems 2014, Lecture 6
```


[^0]: Torkel Glad
 Dynamic Systems 2014, Lecture 6

