Content

Lecture 1 - Rigid Body Motion

Mikael Norrlöf and Thomas Schön, Division of Automatic Control, Department of Electrical Engineering, Linköping University.

Email: \{mino,schon\}@isy.liu.se

Dynamic Vision
M. Norrlöf and T. Schön

AUTOMATC CONTROL
AUTOMATIC CONTROL
REGLERTEKNKK LINKÖPINGS UNVERSITET

- Rigid body transformation
- Rotation
- Rotation matrices
- Euler's theorem
- Parameterization of $\mathrm{SO}(3)$
- Homogeneous representation
- Matrix representation
- Chasles' theorem

Dynamic Vision
M. Norrlöf and T. Schön

Rigid body motion

[^0]
Rigid body motion

g_{r} (rot,transl)

Representation of orientation

- Angle - axis representation
- Euler angles
- Quaternion
- Exponential coordinates
- ...

Euler angles

Euler angles

© The order of rotation axes is important

i)

ii)

iii)

$$
\begin{aligned}
& R_{1}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & \sin (\alpha) \\
0 & -\sin (\alpha) & \cos (\alpha)
\end{array}\right] \\
& R_{2}(\alpha)=\left[\begin{array}{ccc}
\cos (\alpha) & 0 & -\sin (\alpha) \\
0 & 1 & 0 \\
\sin (\alpha) & 0 & \cos (\alpha)
\end{array}\right] \\
& R_{3}(\alpha)=\left[\begin{array}{ccc}
\cos (\alpha) & \sin (\alpha) & 0 \\
-\sin (\alpha) & \cos (\alpha) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Dynamic Vision
M. Norrlöf and T. Schön

Euler angles

: Gimbal lock (Apollo IMU Gimbal lock 1, 2)

Dynamic Vision
M. Norrlöf and T. Schön

Quaternions

Sir William Rowan Hamilton (1809-1865)

Lectures on Quaternions: Containing a systematic statement of

\mathfrak{A} New Mathematical Method

OF which the principles were communicated in 1843 to the royal Irish ACADEMY; AND WHICH HAS SINCE FORMED THE SUBJECT OF SUCCESSIVE COURSES OF LECTURES, DELIVERED in 1848 AND SUBSEQUENT YEARS in THE HALLS OF TRINITY COLLEGE, DUBLIN: WITH NUMEROUS ILLUSTRATIVE DIAGRAMS, AND WITH SOME GEOMETRICAL AND PHYSICAL APPLICATIONS.

Euler angles

© Implementing interpolation is difficult
© Ambiguous correspondence to rotations
© The result of composition is not apparent
© Non-linear dynamics
() Mathematics is well known
(-) Can be visualized "in the mind"

Quaternions

Rotation with quaternions

Generalization of complex numbers to 3D.

$$
s+i x+j y+k z
$$

with $\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{ijk}=-1, \mathrm{ij}=-\mathrm{ji}=\mathrm{k}, \mathrm{jk}=-\mathrm{kj}=\mathrm{i}, \mathrm{ki}=-\mathrm{ik}=\mathrm{j}$.

A quaternion is usually represented as $q=\langle s, v\rangle$ with

- s scalar (real part)
- v vector in R^{3} (complex part)

Unit quaternion $\|q\|=1$.

Dynamic Vision
M. Norrlöf and T. Schön

Angle axis to quaternion

$$
\theta, v \Rightarrow q=\left\langle\cos \frac{\theta}{2}, \sin \frac{\theta}{2} v\right\rangle
$$

Composition of rotations, q_{1} then q_{2}

$$
q=q_{2} q_{1}
$$

Dynamic Vision
M. Norrlöf and T. Schön

AUTOMATIC CONTROL | REGLERTEKNIK |
| :--- | LINKÖPINGS UNVERSITET

Rotation with quaternions

Rotation of a vector, $u=R v$
$\mathrm{v}_{\mathrm{q}}=\langle 0, \mathrm{v}\rangle, q$ is quaternion representation of R
$u_{q}=q v_{q} q^{-1}=<0, u>$

$$
\begin{aligned}
& R_{q}(\mathbf{q})= \\
& {\left[\begin{array}{ccc}
q_{0}^{2}+q_{1}^{2}-q_{2}^{2}-q_{3}^{2} & 2 q_{1} q_{2}+2 q_{0} q_{3} & 2 q_{1} q_{3}-2 q_{0} q_{2} \\
2 q_{1} q_{2}-2 q_{0} q_{3} & q_{0}^{2}-q_{1}^{2}+q_{2}^{2}-q_{3}^{2} & 2 q_{2} q_{3}+2 q_{0} q_{1} \\
2 q_{1} q_{3}+2 q_{0} q_{2} & 2 q_{2} q_{3}-2 q_{0} q_{1} & q_{0}^{2}-q_{1}^{2}-q_{2}^{2}+q_{3}^{2}
\end{array}\right] .}
\end{aligned}
$$

Quaternions

Comparison for different operations

: Can only represent orientation
: Quaternion math is not so well known
© Compact representation, based upon angle axis rep.
(:) Simple interpolation methods
(-) No gimbal lock

- Simple composition
© Linear (bi-linear) dynamics, (NASA)

Dynamic Vision
M. Norrlöf and T. Schön

AUTOMATIC CONTROL REGLERTEKNIK
LINKÖPINGS UNVERSTIEE
Performance comparison of rotation chaining operations

Method	Storage	\# multiplies	\# add/subtracts	total operations
Rotation matrix	9	27	18	45
Quaternions	4	16	12	28

Performance comparison of various rotation operations					
Method Storage \# multiplies \# add/subtracts \# sin/cos total operations Rotation matrix 9 9 6 0 15 Quaternions 4 21 18 0 39 Angle/axis 4^{\star} 23 16 2 41					

Dynamic Vision
M. Norrlöf and T. Schön

Illustration of Euler's Theorem

Hence, the effect of the rotation R is to rotate vectors in the plane spanned by v_{1} and v_{2} through an angle φ along u. This shows that that R rotates a rigid body about u through an angle φ. This concludes the proof of Euler's theorem.

Canonical Representation of the Rotation Matrix

There is a canonical representation of any rotation matrix R, that allows us to view it as a rotation through an angle φ about the z-axis.
Define the orthonormal matrix $Q=\left(\begin{array}{l|l|l}v_{1} & v_{2} & u\end{array}\right)$ and

$$
\Lambda=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Then we can show that

$$
R=Q \wedge Q^{T}
$$

Recall that "change of basis = similarity transformation"

Homogeneous Representation

How do we represent rigid body motion in general, i.e., both orientation and translation.

$$
X^{w}=R^{w c} X^{c}+T^{w c}
$$

A full rigid-body motion is denoted by $g=(R, T)$
The set of all possible configurations of a rigid body can be described by the space of rigid-body motions or special Euclidean transformations

$$
S E(3) \triangleq\left\{g=(R, T) \mid R \in S O(3), T \in \mathbb{R}^{3}\right\}
$$

Dynamic Vision
M. Norrlöf and T. Schön

Homogeneous Representation

What is linear about this?
Let us have a look

$$
\bar{X}^{w}=\binom{X^{w}}{1}=\left(\begin{array}{cc}
R^{w c} & T^{w c} \\
0 & 1
\end{array}\right)\binom{X^{c}}{1}=\bar{g}^{w c} \bar{X}^{c}
$$

This leads us to the so called homogeneous representation of the special Euclidean transformations

$$
S E(3) \triangleq\left\{\left.\bar{g}=\left(\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right) \right\rvert\, R \in S O(3), T \in \mathbb{R}^{3}\right\}
$$

Dynamic Vision
M. Norrlöf and T. Schön

Homogeneous Representation

The equation

$$
X^{w}=R^{w c} X^{c}+T^{w c}
$$

is affine, we would like to get rid of the additive term.
We can convert the affine transformation into a linear transformation by augmenting an additional 1 to X

$$
\bar{X}=\binom{X}{1}=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
X_{3} \\
1
\end{array}\right)
$$

Chasle's Theorem

Proof:

Consider a general 4×4 homogeneous matrix (describing a rigid body motion)

$$
A=\left(\begin{array}{ll}
R & d \\
0 & 1
\end{array}\right)
$$

We will now change basis in order to see better (again, recall that "change of basis = similarity transform").
Perform a similarity transformation of the matrix A

$$
\begin{aligned}
\Lambda & =\left(\begin{array}{cc}
Q^{T} & -Q^{T} c \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
R & d \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
Q & c \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
Q^{T} R Q & Q^{T} R c-Q^{T} c+Q^{T} d \\
0 & 1
\end{array}\right)
\end{aligned}
$$

\qquad

Chasle's Theorem

Chasle's Theorem

Proof (continued):

Rotation:

-Recall that v_{1}, v_{2} and u are orthogonal
Choose Q according to $Q=\left(\begin{array}{llll}v_{1} & \left|v_{2}\right| u\end{array}\right) \quad \longrightarrow$

$$
Q^{T} R Q=\left(\begin{array}{ccc}
\cos \varphi & -\sin \varphi & 0 \\
\sin \varphi & \cos \varphi & 0 \\
0 & 0 & 1
\end{array}\right)
$$

This is a rotation about the z-axis

Chasle's Theorem

Hence, the rigid body motion is described by a rotation about the z-axis through an angle φ followed by a translation along the z-axis through a distance k .

If the top 2×2 submatrix of $\left(Q^{\top} R Q-I\right)$ is singular, then $Q^{\top} R Q=I$. This means that Λ is a pure translation.

The proof is finished.

Dynamic Vision
 M. Norrlöf and T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK LINKÖPNGS UNVERSSTET

Chasle's Theorem - Screw Motion

The motion implied by Chasle's theorem is like when you screw in that it rotates and translates along the same axis.

Further Studies Besides Course Litterature

- R.M. Murray, Z. Li, and S.S. Sastry: A mathematical introduction to Robotic Manipulation (Chapter 2)
- James Diebel: Representing Attitude: Euler Angles, Unit Quaternions, and Rotation Vectors
- Erik B. Dam, Martin Koch, and Martin Lillholm: Quaternions, Interpolation and Animation

[^0]: Dynamic Vision
 M. Norrlöf and T. Schön

