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Lecture 1 – Rigid Body Motion
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Content

� Rigid body transformation
� Rotation

� Rotation matrices
� Euler’s theorem
� Parameterization of SO(3)

� Homogeneous representation
� Matrix representation
� Chasles’ theorem
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Background to modeling

Kinematics
� studies the motion of objects without consideration of the 

circumstances leading to the motion

Dynamics
� studies the relationship between the motion of objects and 

its causes 
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Rigid body motion
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The motion of a rigid body can be parameterized as

- position - orientation

of one point of the object. The configuration.

The motion of a rigid body can be parameterized as

- position - orientation

of one point of the object. The configuration.
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Rigid body motion

The motion of a rigid body can be parameterized as

- position - orientation

of one point of the object. The configuration.

The motion of a rigid body can be parameterized as

- position - orientation

of one point of the object. The configuration.

gc(rot,transl)

gr(rot,transl)
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Representation of orientation

� Angle – axis representation
� Euler angles
� Quaternion
� Exponential coordinates
� …

Le
ct

ur
e 

1

Dynamic Vision
M. Norrlöf and T. Schön

Euler angles
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Euler angles

� The order of rotation axes is important
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Euler angles
� Gimbal lock (Apollo IMU Gimbal lock 1, 2)
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Euler angles

� Implementing interpolation is difficult
� Ambiguous correspondence to rotations
� The result of composition is not apparent
� Non-linear dynamics

� Mathematics is well known
� Can be visualized “in the mind”
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Quaternions
Sir William Rowan Hamilton (1809-1865)
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Quaternions

Generalization of complex numbers to 3D.
s + i x+j y+k z

with i2 = j2 = k2 = ijk = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.

A quaternion is usually represented as q = <s,v> with
� s scalar (real part)
� v vector in R3 (complex part)

Unit quaternion ||q|| = 1. 
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Rotation with quaternions

Angle axis to quaternion

� ,v ��

Composition of rotations, q1 then q2

q = q2 q1

v,q
2

sin
2

cos ��
�
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Rotation with quaternions

Rotation of a vector, u = Rv

vq = <0, v>, q is quaternion representation of R

uq = qvqq-1 = <0, u>
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Some remarks

� q and –q represent the same rotation

� q = <s,v> and q-1 = <s,-v>
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Quaternions

� Can only represent orientation
� Quaternion math is not so well known

� Compact representation, based upon 
angle axis rep.

� Simple interpolation methods
� No gimbal lock
� Simple composition
� Linear (bi-linear) dynamics, (NASA)
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Comparison for different operations
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Illustration of Euler’s Theorem

Hence, the effect of the rotation R is to rotate vectors in the plane spanned by 
v1 and v2 through an angle     along u. This shows that that R rotates a rigid 
body about u through an angle    . This concludes the proof of Euler’s theorem.

Illustration courtesy of Henrik Tidefelt, Shapes.
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Canonical Representation of the Rotation Matrix

There is a canonical representation of any rotation matrix R, that allows us 
to view it as a rotation through an angle    about the z-axis.

Define the orthonormal matrix

and

Then we can show that

Recall that “change of basis = similarity transformation“
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Homogeneous Representation

How do we represent rigid body motion in general, i.e., both orientation and 
translation.

A full rigid-body motion is denoted by

The set of all possible configurations of a rigid body can be described by the 
space of rigid-body motions or special Euclidean transformations
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Homogeneous Representation

The equation 

is affine, we would like to get rid of the additive term.

We can convert the affine transformation into a linear transformation by 
augmenting an additional 1 to X
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Homogeneous Representation

What is linear about this?

Let us have a look

This leads us to the so called homogeneous representation of the special 
Euclidean transformations
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Chasle’s Theorem

Proof:

Consider a general 4x4 homogeneous matrix (describing a rigid body motion)

We will now change basis in order to see better (again, recall that “change of 
basis = similarity transform”).

Perform a similarity transformation of the matrix A
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Chasle’s Theorem

Proof (continued):

Rotation:

Choose Q according to

This is a rotation about the z-axis

Recall that v1, v2 and u are orthogonal
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Chasle’s Theorem

Hence, the rigid body motion is described by a rotation about the z-axis through 
an angle    followed by a translation along the z-axis through a distance k.

If the top 2x2 submatrix of (QTRQ - I) is singular, then QTRQ = I. This means 
that     is a pure translation.

The proof is finished.
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Chasle’s Theorem

Illustration courtesy of Henrik Tidefelt, Shapes
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Chasle’s Theorem – Screw Motion

The motion implied by Chasle’s theorem is like when you screw in that it rotates 
and translates along the same axis.
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Further Studies Besides Course Litterature

� R.M. Murray, Z. Li, and S.S. Sastry: A mathematical 
introduction to Robotic Manipulation (Chapter 2)

� James Diebel: Representing Attitude: Euler Angles, 
Unit Quaternions, and Rotation Vectors

� Erik B. Dam, Martin Koch, and Martin Lillholm: 
Quaternions, Interpolation and Animation


