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Abstract

Integrated tracking and detection, based on unthresholded measurements, also re-
ferred to as track before detect (TBD) is a hard nonlinear and non-Gaussian dynam-
ical estimation and detection problem, see e.g., [3] for a good and recent overview.
However, it is a technique that enables the user to track and detect targets that
would be extremely hard to track and detect, if possible at all with ”classical”
methods. TBD enables us to be better able to detect and track weak, stealthy or
dim targets in noise and clutter and particles filter have shown to be very useful in
the implementation of TBD algorithms. This Master’s thesis has investigated the
use of particle filters on radar measurements, in a TBD approach. The work has
been divided into two major problems, a time efficient implementation and new
functional features, as estimating the radar cross section (RCS) and the extension
of the target. The later is of great importance when the resolution of the radar is
such, that specific features of the target can be distinguished.
Results will be illustrated by means of realistic examples.

Keywords: Particle Filter, Target Tracking, Track Before Detect, TBD,
Bayesian Estimation, Monte Carlo Methods, Nonlinear Filtering.
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Notation

Operators and functions

amaxx Maximum acceleration in x direction
amaxy Maximum acceleration in y direction
b Bearing
d Doppler (Doppler Speed)
δ Delta-Dirac function
D The whole range-doppler-bearing cell space
f State equation transition mapping (discrete-time)
F Linearized state update matrix
h Measurement relation
hA Reflection form, defined for every range-doppler-bearing cell
hP Power distribution from a target
H Linearized measurement relation matrix
H0 Hypothesis that no target is present
K Kalman gain
k Discrete time subscript
mk Modal state
µt Expected measurement when mk = 1
µv Expected measurement when mk = 0
nQ Zero-mean white Gaussian noise
nI Zero-mean white Gaussian noise
Neff Number of effective particles
Nth Threshold on effective number of particles
N (·) Gaussian distribution
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∼ Similar to
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Chapter 1

Introduction

Many real-world problems involve estimating unknown dynamic quantities on the
basis of observed data. In most of these applications the a priori knowledge of
the underlying phenomenon can be modeled. These models enable us to apply
statistical methods. With such a method it is possible to optimally estimate quan-
tities, based on the observations. Stated otherwise, by using such an approach, the
maximum of information possible can be extracted, given our data. The process
of extracting information from a (dynamical) system is generally referred to as
filtering.

t = 0. . .. . .
t = k

-
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s@I
vk

βk -

6 s@I
v̂k

ŷk

x̂k

{ri, βi}k
i=0- Filtering

x̂k, ŷk, v̂k
-

Figure 1.1. An object is moving in the two dimensional space. We want to estimate
the position and the velocity of the object. Our measurement consist of the distance r to
the target and the angle β. Each time step k we get a new measurement and we want
to continuously estimate x, y and v based on these measurements. If we have knowledge
about the dynamics of the object and the measurements, this can be modeled and used
in the filtering.

Real life examples that fit into this framework are; Tracking a target on the basis
of (radar) measurements, estimating a signal in a noisy communication channel,
GPS navigation, ship navigation on the basis of (radar) measurements, estimation
in mechanically constrained systems, volatility estimation of financial indices on the
basis of stock market data, object tracking and location with camera measurements,
radar-based distance estimation for collision avoidance (cars) etc.
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Figure 1.2. Both figures shows the power received by the radar. In a) the SNR is high
and it is easy to discern the target as a high peak. In b) the SNR is low and it is not
possible to distinguish the target from the noise.

Classical tracking methods take as input plots that typically consists of range-,
bearing-, elevation-, and range rate (Doppler) measurements, [1, 2]. In this classical
setting, tracking consists of estimating kinematical state properties, e.g., position,
velocity and acceleration on the basis of these measurements. In the classical setup
the measurements are the output of the extraction, see Figure 2.3. In this setup
there is a processing chain before the tracking, which can consist (e.g., in case of
radar) of a detection stage, a clustering stage and an extraction stage, Figure 2.3. In
the method used in this Master’s thesis, the raw measurement data, e.g., reflected
power will be used as measurements, see Figure 1.2. This method is referred to as
track before detect (TBD).

To perform TBD, a particle filter, [3] will be used. A particle filter can, compared
to the well known Kalman filter, deal with nonlinear models and non-Gaussian
noise. The difference between classical target tracking and TBD will be explained
in Chapter 2. A description of a particle filter and the theory behind it will be
presented in Chapter 3.

1.1 Problem Formulation

The objective is to investigate and implement a number of improvements on a
particle filter for a track before detect application. The different improvements
are of such kind, that they can be seen as three independent problems. They will,
however, be handled in the order stated below. This because a time efficient particle
filter is a necessity to run large simulations on the other two topics within reasonable
time.
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Figure 1.3. As an illustration, the two measurements in Figure 1.2 are thresholded. It is
easy to see that in the case were the SNR is low, the target might not lead to a detection.

• Implement a time efficient particle filter for a track before detect application

(TBD) in MATLAB.

• Estimate the radar cross section (RCS) of a target, see Section 2.1.2.

• Estimate the extension of a target.

1.2 Restrictions

• No consideration has been taken to the fact that the signal to noise ratio

(SNR) is range-dependent, ∝ 1/r4. This can by motivated by that we only
look at target trajectories which are small in comparison to the distance
between the sensor and the target.

• In the applications we only consider single target, the models can, however,
easily be modified to multiple target models.

• Target trajectories are modeled in two dimensions.

• The coordination system is considered to be fix in the radar and all the
estimated parameters are relative to the radar, expressed in these coordinates,
see figure 2.1.
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1.3 Outline

In Chapter 2 underlying radar theory is presented to give knowledge about how the
measurements are obtained. We will also give some background to target tracking
and explain the advantages with TBD. Chapter 3 covers the estimation theory with
an Bayesian approach in a very brief manner, starting with the Kalman filter and
ending with the particle filter. A good tutorial on particle filtering can be found in
[24]. In Chapter 4, a time efficient particle filter for a track before detect application
is implemented. This is a presumption to be able to run the application with real
time feasibility. It will also allow us to do large Monte Carlo simulations within
reasonable time. Chapter 5 and Chapter 6 describes how the two estimates of RCS
and target extension is made. Simulations and results are presented in the end of
each chapter. Finally in Chapter 7 we will summarize the conclusions from Chapter
3 to 6 and discuss future work in this field.



Chapter 2

Radar Theory

Radar is a method to detect, locate, track, and identify distant objects. The princi-
ple of Radar (radio detection and ranging) is based on the fact that objects reflect
electromagnetic waves. Radar is an active sensor in that way that it is transmitting
electromagnetic energy and measure the energy reflected by the target. Because of
its all-weather performance and its ability to measure kinematics, the radar has for
a long time played a very important role in areas such as air-traffic-control (ATC),
surveillance, target tracking, ship navigation, and so on. Typical kinematics mea-
sured for a specific bearing and elevation are range and range rate (Doppler), see
Figure 2.1. For a thorough description of radar, see Skolnik (1980).

2.1 Measurements

Figure 2.1 shows a typical measurement setup for the radar. The range r is the
distance between the radar and the target. The elevation angle φ is the angle
between the horizontal plane and the direction in which the radar points at. The
bearing angle θ is the rotation around the z-axis given a reference, here the x-axis.

The transformation from angle and range which the radar measures, to the
Cartesian coordinates in which the target dynamics is modeled, brings nonlin-
earaties into the system. The transformation is given by

x = r cos θ cos φ, y = r cos θ sin φ, z = r sin θ (2.1)

where φ, θ, and r are measured by the radar.
Different types of radar exist, continuous-waves, Doppler etc. The one considered
here is of Doppler type. The Doppler-shift gives information about the target speed.
The radar transmits a puls of width τp, this puls is reflected by the target and is
measured by the radar after t seconds. The range to the target is then given by

r =
ct

2
, (2.2)

5
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Figure 2.1. Radar Coordinates, relative range r, azimuth θ, and elevation φ.

where c is the speed of light and the factor 2 is due to the fact that the pulse has
to travel two times r, to and from the target. A practical radar design will check
for a returning pulse at a number of discrete ranges, by matched filtering of the
returning pulse against a set of discrete delayed versions of the transmitted pulse.
These discrete ranges are referred to as bins. A target not centered in a given range
bin will have its energy spread across adjacent bins [1]. If the transmitted energy
has a wavelength of λ and the radial range speed is ṙ, the Doppler shift fd is given
by

fd = −2ṙ

λ
(2.3)

This gives the information about the radial velocity of the target. The Doppler
processing is generally performed by computing the discrete Fourier transform of
the matched filter samples of a number of returning pulses. In this way the return-
ing energy is separated into a discrete number of doppler bins. As with range, if
the Doppler is not centered in one bin, it will spread across adjacent bins. A typical
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measurement for a specific bearing and elevation angle, range, and Doppler could
look like Figure 2.2.
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Figure 2.2. A measurement of range and Doppler for a specific bearing and elevation.
The received power as a function of the range and Doppler. The high peak correspond to
the energy reflected by the target plus noise and the surrounding to just noise.

2.1.1 Resolution

The sensor provides a sequence of two-dimensional images (also referred to as maps
or frames), Figure 2.2. The resolution of these images (the size of the rectangular
cells) is mainly determined by the physical characteristics of the antenna and the
puls transmitted.

∆r =
cτ

2
=

c

2B
, β ∼ λ

Ae

, ∆fd =
1

T
. (2.4)

It should be clarified that the resolution is not the same as the accuracy. The
resolution is a hard constraint depending on the radar.

2.1.2 Radar Cross Section (RCS)

The reflected energy is dependent on the characteristics of the target such as the
shape, material, size, and the area exposed to the radar. RCS is a parameter denoted
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Table 2.1.

∆r range resolution m
c speed of light m/s
τ pulse width s
B band width Hz
β antenna beam-width deg
λ radar wave length m
Ae antenna aperture m
fd doppler shift Hz
T time of pulse integration s

by σ used to characterize the scattering properties of radar target. It is defined as
an area intercepting that amount of power which, when scattered isotropically,
produces at the receiver a density which is equal to that scattered by the actual
target.
RCS can, to a certain degree be used to identify targets but in general the RCS
also is a function of the electrical properties of the target and the radar frequency.
Therefore two targets with the same physical size and shape can have different
RCS.

2.1.3 The Radar Equation

The most essential concept in the context of radar, is the radar equation. The
radar equation gives the relationship between the transmitted energy Ptransmitted,
the received energy Preceived and the range r. It can be derived starting from an
isotropic antenna which radiates in all directions. The radar equation consists of
three different factors, according to (2.5).

Preceived =
PtransmittedGt

4πr2
︸ ︷︷ ︸

I

× σ

4πr2
︸ ︷︷ ︸

II

× Ae
︸︷︷︸

III

. (2.5)

The factor Gt is the antenna gain and describes the ability of the antenna to
concentrate the transmitted energy in a narrow angular region (a directive beam).
The factors in the equation can then be described as

I. The power density at a range of r meter from the radar.

II. The factor σ is the target cross section in square meters and the denominator
accounts for the divergence on the return path (from target to radar) of the
radiation.

III. The effective antenna aperture area Ae.
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The product of the first two factors is then the power density at the radar caused
by the reflection. The antenna intercepts a portion of power in an amount given
by the product of the three factors.

2.2 Target Tracking

Tracking can be described as the processing of measurements obtained from targets

in order to maintain estimates of their states. There exist several good books, for
instance [2, 1, 3], where sensor models, target models and estimation theory are
thoroughly described. Target tracking is an essential requirement for surveillance
systems. Sensor data is collected, which besides reflections from the target also
consists of noise (e.g., clutter, background noise, and thermal noise).

In this section target tracking will be described, both the classical method and
a recent proposed method called track before detect (TBD) which is used in this
Master’s thesis.

V
id

eo - - - -Plots -

T
ra

ck
s

TBD

threshold cluster extract track

Figure 2.3. Signal processing in target tracking. The small boxes describes the different
steps in the classical way of tracking and the big box around them indicates that in TBD
everything is done unthresholded and simultaneously.

2.2.1 Classical Radar Detector

Basically, in the classical setting, the measurements, Figure 2.2 are thresholded to
obtain a set of plots. These plots are taken as the input to the tracking stage where
the tracks are formed, see Figure 2.3.

Detection

In the classical way of radar, detecting decisions is based on comparing the video
data to a threshold. If the envelope of the signal exceeds a predefined threshold,
a detection is made. In this way the space of all measurements is divided in two
regions ”detections” and ”no detections”. When using a threshold to determine
whether a target is present or not, two different errors can occur. The first, called
false alarm, is introduced when threshold is exceeded even though there is no target
present. A high measurement of noise can then be detected as a target. The other
one is called miss detection and occurs when the threshold is not exceeded even
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though there is a target present. A target with low signal to noise ratio can then
be missed.

The detection process is normally made in three different stages and in each of
these stages it is possible to introduce one of the two errors mentioned above. In
the first stage, detection is made on hit level. Here the energy in the range-Doppler
bins, (Figure 2.2) is compared to a threshold. Those bins with energy exceeding
the threshold are called hits.

The next step is detection on a plot level, only the bins with hits from the
previous stage are considered here. In this stage, clusters are made from hits close
to each other that probably originate from the same target. The center of the energy
in a cluster is taken as the center of the possible target. The output of this stage is
the measurements of the cells in which a target probably is. These measurements
are called plots and consist of range, elevation, bearing, and doppler speed.

The last decision is made on track level. When a predefined number of plots is
associated with the same track, a target is declared present. In this way the errors
are defined on track level as

false alarm: A target is declared present when there is no target. The false alarm
probability is denoted by PFA.

miss detection: The energy reflected by the target does not exceed the threshold
level and is not detected. The probability of miss detection PMD = 1 − PD

where PD is the probability of detection.

Forming Tracks

The next step in the chain is to make tracks from the plots. Because of the errors
introduced in the detection previously, some of the plots are not correct. A common
used term for plots originating from other than targets, is clutter (waves, trees,
birds etc). This means that we have to decide which of the plots that should be
put together as tracks. This procedure is referred to as data association.

Data Association

The problem is to determine which track a measurement should belong to. There
exist several different methods which have been discussed in the literature, (Bar-
Shalom and Fortman 1988, Bar-Shalom and Li 1993, Blackman 1986, and Blackman
and Popoli 1999). Issues that have to be thought of are for example, how to initiate
and terminate tracks and update already existing tracks. A classical association
method is nearest neighbor, which uses only the closest observation to any given
state to perform the measurement update step. Other more advanced algorithms
exist that for example use the statistical properties of clutter to avoid that kind
of measurements from false alarms. The most general technique is the multiple

hypothesis tracking, [15].
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Filtering

The process of extracting information from a (dynamic) system is generally referred
to as filtering. The objective is to construct an estimate of the target state. The
output of the tracking filter is the probability density function (pdf) p(sk|Zk) of the
target state sk, where Zk contains all the measurements up to time k. From p(sk|Zk)
an estimate ŝk is made, which contains e.g., position, velocity, and acceleration of
the target. For further details see Chapter 3.

2.2.2 Track Before Detect

The use of threshold detection clearly separates the functions of detection and
tracking as shown in Figure 2.3. The decision whether a target is present or not is
only based on information from single scans. For weak objects the decision of the
threshold soon turns into an impossible balancing act between false alarm and no
detection. Modern types of stealthy targets such as recently developed fighters and
missiles, call for a different approach to detection.

To overcome this problem, a method called track before detect (TBD) has re-
cently been proposed. In TBD the detection problem is done using the track output
over multiple scans. The detection decision will be made at the end of the process-
ing chain, i.e., when all information has been used and integrated over time, [5, 4].
Although it is called track before detect, the tracking and detection processes oc-
cur simultaneously. In this way, the energy of a (weak) target is integrated and
correlated over time and position. The concept will lead to a better performance
when detecting and tracking weak targets. TBD also implicitly solves the problem
with data association.
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Chapter 3

Estimation Theory

This chapter provides the background and the basic theory of recursive Bayesian
estimation. The problem is to sequentially estimate the state of a dynamic system
using a sequence of noisy measurements from the system. A discrete time system
will be considered. The state vector contains all relevant information required to
describe the system. In this application with TBD that could be e.g., velocity and
position of a target. The measurement vector on the other hand, will contain noisy
observations that are related to the state vector, for instance range and distance
to the target, see Section 2.1.

3.1 Bayesian Estimation

Two models will be needed to describe the dynamical system, a dynamical model
(3.1a) and measurement model (3.1b). The first one describes the system dynamics
and the second describes the relation between the measurements and the state
vector. If the models are available in probabilistic form, the solution is given by
recursive Bayesian estimation, Jazwinski (1970).

A recursive filter consists mainly of two stages, a prediction and an update
step. The prediction stage predicts the next pdf using the system model. Because
of the system noise this will make the predicted pdf broadened and deformed.
The update stage will use the latest measurement to tighten the pdf using Bayes’
theorem 1 which enables us to update knowledge about the state with the new
received information.

Consider the nonlinear discrete-time state space system

sk+1 = f(sk, wk), k ∈ N, (3.1a)

zk = h(sk, vk), k ∈ N, (3.1b)

where sk ∈ R
n is the state of the system at a certain time k. zk ∈ R

m is the
measurement model, often nonlinear. The system noise wk and measurement noise

1Bayes 1763. For Bayes’ theorem see Appendix A

13
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vk are introduced to deal with the inaccuracy due to modeling and measurements.
These are characterized by the probability densities pw(w) and pv(v). Also let

Zk = {z0, . . . , zk} (3.2)

be the stacked vector of observations up to time k. Given observations up to time
k, Section (3.2) we want to find the optimal estimate sk ∈ R

n. If p(sk|Zk−1) is
assumed to be known, the update of the pdf by the measurement zk can be derived
as

p(sk|Zk) =
p(Zk|sk)p(sk)

p(Zk)
=

p(zk, Zk−1|sk)p(sk)

p(zk, Zk−1)

=
p(zk|sk, Zk−1)p(Zk−1|sk)p(sk)

p(zk|Zk−1)p(Zk−1)

=
p(zk|sk)p(Zk−1|sk)p(sk)

p(zk|Zk−1)p(Zk−1)
=

p(zk|sk)p(sk|Zk−1)

p(zk|Zk−1)
, (3.3)

where Bayes’ rule, the Markov property and the definition of Zk = {Zk−1, zk} have
been used. Derivation of the time update equation can be done, if assuming that
the pdf , p(sk|Zk), is known, then

p(sk+1, sk|Zk) = p(sk+1|sk, Zk)p(sk|Zk) = p(sk+1|sk)p(sk|Zk). (3.4)

Intergrating both sides with respect to sk yields

p(sk+1|Zk) =

∫

Rn

p(sk+1|sk)p(sk|Zk) dsk. (3.5)

Summarizing, the time-update and the measurements-update for the pdf are given
by

p(sk+1|Zk) =

∫

Rn

p(sk+1|sk)p(sk|Zk) dsk, (3.6a)

p(sk|Zk) =
p(zk|sk)p(sk|Zk−1)

p(zk|Zk−1)
. (3.6b)

The equations (3.6a) and (3.6b) form the basis for the optimal Bayesian solution.
This recursive propagation of the porterior density is only a conceptual solution in
the sense that it in general cannot be determined analytically. Only in a few special
cases were the system is linear and Gaussian the Kalman filter can be applied. In
reality though, the system is often nonlinear and non-Gaussian. The choice is then
either to linearize the system and apply the Kalman filter. This would lead to the
extended Kalman filter (EKF), [3]. Another approach is to find a way to handle
nonlinearities. The particle filter is such an approach.

3.1.1 Kalman Filter

A widely used method for Bayesian estimation is the Kalman filter, Kalman 1960,
Kailath 2000, B.D.O Anderson 1979. The Kalman filter assumes that the posterior
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density at every time step is Gaussian and hence can be completely characterized
by two parameters, the mean and the covariance. If we assume the model to be
linear with additive Gaussian noise, the optimal recursive estimation is given by
the Kalman filter. Such a system is described as

sk+1 = Fksk + Gkwk, k ∈ N, (3.7a)

zk = Hksk + vk, k ∈ N, (3.7b)

where Fk and Hk are known matrices defining the linear functions and

wk ∼ N (0, Qk), vk ∼ N (0, Rk), s0 ∼ N (x̂0, P0).

Kalman showed that when Zk is given, sk and sk+1 are Gaussian distributed ac-
cording to

p(sk|Zk) ∼ N (ŝk|k, Pk|k), (3.8a)

p(sk+1|Zk) ∼ N (ŝk+1|k, Pk+1|k), (3.8b)

where

ŝk|k = ŝk|k−1 + Pk|k−1H
T
k S−1

k (zk − Hkŝk|k−1), (3.9a)

Pk|k = Pk|k−1 − Pk|k−1H
T
k S−1

k HkPk|k−1, (3.9b)

Sk = Rk + HkPk|k−1H
T
k , (3.9c)

ŝk+1|k = Fkŝk|k, (3.9d)

Pk+1|k = FkPk|kFT
k + WkQkWT

k , (3.9e)

with initial values ŝ0|−1 = ŝ0 and P0|−1 = P0. The Kalman filter recursively com-
putes the mean and the covariance of the Gaussian posterior. Note that if the
system is linear and Gaussian the optimal solution is given by the Kalman filter.
Figure 3.1 shows a Kalman approximation of a non-Gaussian pdf .

3.1.2 Particle Filter

One approach to the nonlinear non-Gaussian estimation problem is to use a particle
filter [3, 18, 9]. The main idea with particle filter is to represent the required
posterior density function by a set of random samples with associated weights and
to compute estimates based on these samples and weights. The only approximation
then is the number of particles used, see Figure 3.2.

Monte Carlo Integration

To approximate the integrals in the Bayesian solution we will look at something
called Monte Carlo (MC) methods. MC methods (simulation-based methods) are
an alternatives to deterministic methods. They aim to approximate integrals on
the form

I =

∫

g(s)p(s) ds, (3.10)
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Figure 3.1. True pdf and Kalman approximation. The Kalman approximation of the
true pdf is completely described by its mean and its covariance. Thus it can not describe
a non-Gaussian density.
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Figure 3.2. True pdf and Particle Filter approximation. The key idea with the particle
filter is that it should approximate the true pdf with a particle cloud. The cloud will evolve
with time as measurements become available. The level of probability is proportional to
the density of the cloud.

where s ∈ R
n and p(s) are suppose to be interpreted as the underlying probability

density such that

∫

p(s) ds = 1, p(s) > 0 ∀s. (3.11)
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If it is possible to draw N samples {si}N
i=1 according to p(s), then, the integral can

then be approximated by the sum

Î =
1

N

N∑

i=1

g(si). (3.12)

The samples {si}N

i=1 automatically come from regions of the state space that are
important for the integration result.

Importance Sampling

It is generally not possible to sample directly from the distribution p(s). Still, if
we let π(s) be a distribution from which samples can be generated, a weighting of
these will make the MC estimation possible. An importance weight can be defined
for each sample from π(s) as

q̃(si) =
p(si)

π(si)
. (3.13)

The density function π(s) is usually referred to as importance function. With this
new expression, the integral in (3.10) can be written as

I =

∫

g(s)
p(s)

π(s)
π(s) ds =

∫

g(s)q(s)p(s) ds, (3.14)

which accordning to (3.12) can be approximated by

Î =
1

N

N∑

i=1

g(si)q̃(si), (3.15)

where {si}N
i=1 are samples according to π(s). If the normalizing factor of the density

p(s) is unknown, a normalization of the importance weights has to be done

Î =
1
N

∑N
i=1 g(si)q̃(si)

1
N

∑N
j=1 q̃(si)

=

N∑

i=1

g(si)q(si), (3.16)

where the normalizing weights are given by

q(si) =
q̃(si)

∑N
j=1 q̃(sj)

. (3.17)

Sequential Monte Carlo

In the case of importance sampling, all the importance weights have to be recalcu-
lated as a new measure becomes available. Let Sk = {sj}k

j=1 represent all target
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states up to time k. p(Sk|Zk) is then the joint posterior density at time k, which
can be approximated by

p(Sk|Zk) =

N∑

i=1

qi
k(Sk − Si

k), (3.18)

where the normalized weights are chosen according to importance sampling and the
samples are drawn from an importance density π(Sk|Zk). That is, the importance
weights are

qi
k ∝ p(Si

k|Zk)

π(Si
k|Zk)

. (3.19)

If the importance density is assumed to be on the form

π(Sk|Zk) = π(sk|Sk−1, Zk)π(Sk−1|Zk−1)., (3.20)

it is possible to evaluate the importance weights recursively as new measurements
become available. To derive the update equation for the weights, the pdf p(Sk|Zk)
is expressed in terms of p(Sk−1), p(zk|sk), and P (sk|sk−1):

p(Sk|ZK) =
p(zk|Sk, Zk−1)p(Sk|Zk−1)

p(zk|Zk−1)

=
p(zk|Sk, Zk−1)p(sk|Sk−1,Zk−1

)p(Sk−1|Zk−1)

p(zk|Zk−1)

=
p(zk|sk)p(sk|sk−1)

p(zk|Zk−1)
p(Sk−1|Zk−1)

∝ p(zk|sk)p(sk|sk−1)p(Sk−1|Zk−1). (3.21)

Inserting (3.21) and (3.20) into (3.19), the recursive update of the weights can be
written

qi
k ∝ p(zk|si

k)p(si
k|si

k−1)p(Si
k−1|Zk−1)

π(si
k|Si

k−1, Zk)π(Si
k−1|Zk−1)

= qi
k−1

p(zk|si
k)p(si

k|si
k−1)

π(si
k|Si

k−1, Zk)
. (3.22)

If π(sk|Sk−1, Zk) = π(sk|sk−1, zk) this result in that not all {Si
k−1}N

i=1 and Zk−1

have to be stored, but only the latest states {si
k}N

i=1. The weight update equation
will thus be

qi
k ∝ qi

k−1

p(zk|si
k)p(si

k|si
k−1)

π(si
k|si

k−1, zk)
. (3.23)

The posterior filtered density can then be approximated by

p(sk|Zk) ≈
N∑

i=1

qi
kδ(sk − si

k), (3.24)
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Algorithm 1 Particle Filter Algorithm

1: Initialization

Set k = 0, generate N particles {si
0}N

i=1 according to the initial distribution
p0(s0).

2: Measurement update

Compute the weights, q̃i
k = p(zk|si

k) and normalize

qi
k =

q̃i
k

N
j=1 q̃

j

k

, i = 1, . . . , N.

3: Resample

Generate N new particles, {s̆i
k}N

i=1 by resampling with replacement N times

from {Si
k}N

i=1, where Prob(s̃i
k = sj

k) = qj
k.

4: Time update

Predict new particles, i.e., si
k+1 = f(s̆i

k, wi
k), i = 1, . . . , N., where wi

k is drawn
from the process noise with pdf pw(wk).

5: Increase k and continue from step 2.

with weights from (3.23). It can be shown that when N → ∞ the approximation
in (3.24) approaches the true posterior density p(sk|Zk).

The point-estimate for the particle filter can be calculated as

ŝMMSE
k = arg min E{(ŝ − s)2|Zk} (3.25)

which is denoted as the minimum mean square estimate (MMSE). It can be shown
that the solution is given by the conditional mean

ŝMMSE
k = E(sk|Zk) =

∫

skp(sk|Zk) dsk ≈
N∑

i=1

qi
ksi

k. (3.26)

The uncertainty region can be calculated as

Pk =

∫

(sk − ŝMMSE
k )(sk − ŝMMSE

k )T p(sk|Zk) dsk

≈
N∑

i=1

qi
k(sk − ŝMMSE

k )(sk − ŝMMSE
k )T . (3.27)
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Chapter 4

A Time Efficient
Implementation of a Track
Before Detect Application

4.1 Introduction

Critics of the particle filters hangs on to their argument that the method it is far too
computationally intensive. However, since research really took of in this field the
computational power has been multiplied many times. Today particle filters are,
though it is a new field of research, used in several industrialized applications and, as
computers and methods improve a boosting effect is expected, sooner or later. This
chapter is dedicated to investigate the complexity i.e., the computational time for
a TBD application. Suggestions of improvements as well as results and conclusions
will be presented. Although this is done based on simulations in matlab, it is a
fact that most of the improvements can be used in general.

Roughly the particle filter process can be divided into three main algorithm
steps

• Time update - Prediction

• Measurement update - Calculation of weights

• Resampling.

For a non time optimized implementation of a particle filter (PF) for TBD ap-
plications, the relative computational time is distributed among these steps as in
Figure 4.1 From this it follows that a natural approach to this problem would be
to initially focus on decreasing the computational time of the measurement update
step. If this is carried out successfully the resample step should be dealed with next.
In this paper no effort will be put on the time update step since its contribution
to the total computational time is relatively very small.

21
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Figure 4.1. Relative time spent on the three main steps, in a non timeoptimized imple-
mentation of a particle filter in matlab.

If a time improvement is made based on a approximation or a different algo-
rithm, it must also be taken into account whether this affects the quality of the
estimations or not. A useful definition of quality for this purpose is also discussed.

4.2 System Setup

Consider the general and nonlinear discrete time system

sk+1 = f(sk,mk, wk), k ∈ N (4.1)

Prob{mk = i|mk−1 = j} = Πij (4.2)

zk = h(sk,mk, vk), k ∈ N (4.3)

where

• sk ∈ R
n is the state of the system

• mk ∈ N is the modal state of the system

• zk ∈ R
p are the measurements

• wk is the process noise

• vk is the measurement noise

• f is the system dynamic function
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• h is the measurement function

• Π is the Markov transition matrix

4.2.1 Target Model

The predicted state of the target moving in the x − y plane is given from the
dynamic target model

sk+1 = f(sk,mk, wk). (4.4)

sk =







xk

yk

ẋk

ẏk







. (4.5)

Let T be the update time, and the system dynamics is defined as

f(sk,mk) =







1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1







sk. (4.6)

The process noise wk is assumed to be white Gaussian noise and the process noise
input model is given by

g(sk,mk) =







1
2 ( 1

3amaxx)T 2 0
0 1

2 ( 1
3amaxy)T 2

1
3amaxxT 0

0 1
3amaxyT







wk (4.7)

with maximum accelerations amaxx, amaxy. This provides the posterior target state

sk+1 =







1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1







sk +







1
2 ( 1

3amaxx)T 2 0
0 1

2 ( 1
3amaxy)T 2

1
3amaxxT 0

0 1
3amaxyT







wk (4.8)

Furthermore mk indicates whether there is a target present or not. The probability
of transition from absent to present i.e., ”birth of target” Prob{mk = 1|mk−1 =
0} = Pb and probability of transition from present to absent i.e., ”death of target”
Prob{mk = 0|mk−1 = 1} = Pd and the transitional Markov matrix including all
modal state transitions can be written as

Π =

(
1 − Pb Pb

Pd 1 − Pd

)

. (4.9)

The Markov transition matrix describes the probabilities of jumps from one mode
to another, see Figure 4.2.
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Figure 4.2. Markov transition state graph.

4.2.2 Measurement Model

At each discrete time k the sensor is providing a new set of measurements zk. These
measurements are the power levels in Nr × Nd × Nb sensor cells. According to the
measurement model in the single target TBD application, it consists of either a
target and noise or noise only

zk = vk, mk = 0, (4.10a)

zk = h(sk, vk), mk = 1. (4.10b)

In the first case the target is absent and therefore measurements consist of nothing
but noise. In the second case there is a target present and its existence will affect the
power level in each sensor cell. The power measurements per range-Doppler-bearing
cell are defined by

zijl
k = |zijl

A,k|2 (4.11)

where zijl
A,k is the complex amplitude of the target which is

zA,k = AkhA(sk) + nk (4.12)

where

Ak = Ãkeiφk φk ∈ (0, 2π) (4.13)

and nk is complex Gaussian noise defined by

nk = nIk + inQk (4.14)

where nIk and nQk are independent, zero mean white Gaussian noise with variance
σ2

n and related to vk as

vk = |nIk + nQk|2. (4.15)

hAk is the reflection form that is defined for every range-Doppler-bearing cell by

hijl
Ak(sk) = e−

(ri−rk)2

2R
Lr−

(dj−dk)2

2D
Ld−

(bl−bk)2

2B
Lb , (4.16)
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where i = 1, ....., Nr, j = 1, ....., Nd and l = 1, ....., Nb with

rk =
√

x2
k + y2

k (4.17a)

dk =
xkẋk + ykẏk
√

x2
k + y2

k

(4.17b)

bk = arctan

(
yk

xk

)

(4.17c)

R, D and B are related to the size of a range, a Doppler and a bearing cell. Lr,
Ld and Lb represent constants of loss.

These measurements, conditioned on sk, are now exponentially distributed

p(zk|sk) =







∏

ijl∈D

1

µ
ijl
t

e
− 1

µ
ijl
t

z
ijl

k

, mk = 1,

∏

ijl∈D

1
µn

v
e−

1
µv

z
ijl

k , mk = 0,

(4.18)

where

µijl
v = E[(zijl

k |sk,mk = 0)]

= E[|nIk + inQk|2]
= E[n2

Ik + n2
Qk]

= 2σ2
n. (4.19)

µijl
t = E[(zijl

k |sk,mk = 1)]

= E[|Ãkeiφkhijl
Ak(sk) + nIk + inQk|2]

= E[(Ãkhijl
Ak(sk) cos(φk) + nIk)2 + (Ãkhijl

Ak sin(φk) + nQk)2]

= Ã2
k(hijl

Ak(sk))2 + 2σ2
n

= Phijl
Pk(sk) + 2σ2

n (4.20)

with

hijl
Pk(sk) = (hijl

Ak(sk))2

= e−
(ri−rk)2

R
Lr−

(dj−dk)2

D
Ld−

(bl−bk)2

B
Lb (4.21)

which describes the power contribution of a target in every range-Doppler-bearing
cell, where rk, dk, and bk are given from target state sk through (4.17).
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4.3 Computational Complexity of the
TBD Application

Comparing different TBD implementation settings based on computational com-
plexity is a complicated issue, since this is due to the system architecture, memory
management and programming language etc. Although only one function is re-
placed, an analysis of the whole system must be done to find out whether it really
affects the total complexity considerably. Therefore the complexity is not calcu-
lated in number of flops etc., instead the computational time for each function
is measured to gain knowledge about the complexity of the system. The value of
the absolute time is depending on the computer capacity as well as the things
mentioned above, hence it follows that it is of no interest except as a comparison
between the different settings.

4.4 The Quality of the Estimation

As an indication of the quality of the estimations the number of effective particles

Neff will be considered, see Section 4.6, it is of interest since it gives a hint, whether
an improvement in a time perspective affects the approximation of the pdf p(sk|Zk)
in such a way that the number of particles must be increased. This would cause
a larger computational load and might therefore take away the gain in time. The
RMSE values of the state variables will also be considered. For M number of
Monte Carlo runs the RMSE is calculated as

RMSEk =

√
√
√
√ 1

M

M∑

i=1

||sk − ŝi
k||2, (4.22)

where the estimated state of the target at time k is denoted ŝi
k.

4.5 Measurement Update

A natural way to a faster implementation of the TBD application starts with a
faster measurement update step, see Figure 4.1. This section will provide a faster
measurement update step based mainly on the approximation that most of the
sensor cells can be excluded when the likelihood is calculated. Previous definitions
of complexity and quality will be used, a few words will also be said about the
detection performance, although it will not be deeply investigated.
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4.5.1 Theory

When a particle filter is used to solve the filtering problem from (4.1) and (4.3),
the weight for each particle is achieved by first calculating the likelihood

p(zk|sk) =







∏

ijl∈D

1

µ
ijl
t

e
− 1

µ
ijl
t

z
ijl

k

, mk = 1,

∏

ijl∈D

1
µn

v
e−

1
µv

z
ijl

k , mk = 0,

(4.23)

and then by normalizing

qn
k =

p(zk|sn
k )

∑N
n=1 p(zk|sn

k )
. (4.24)

An implementation of this is presented in Algorithm 2.

Algorithm 2 Measurement update - Calculation of weights

1: Calculate the estimated range, Doppler and bearing from
rk =

√

x2
k + y2

k,

dk = xkẋk+ykẏk√
x2

k
+y2

k

,

bk = arctan
(

yk

xk

)
.

2: for n = 1 : N
if mn

k = 0
µn

0 = 2σ2
n.

else

µn
0 = Pke−

(ri−rn
k

)2

R
Lr−

(dj−dn
k

)2

D
Ld−

(bl−bn
k

)2

B
Lb + 2σ2

n.
end if.

p(zk|sn
k ) = 1

µn
0
e
− 1

µn
0

zk
.

end for.
3: qk =

p(zk|s
n
k )

N
n=1 p(zk|sn

k
)
.

In one iteration the likelihood for one particle is calculated based on the contri-
bution from all cells, this means that the number of iterations equals the number
of particles.

The power from a target (if one present) is distributed to cell ijl ∈ D according
to the exponentially function hPk times the power of the target Pk. However the
shape of hPk provides an opportunity that with a slighter approximation only a
relatively small number of cells will have to be taken into account. This approxima-
tion will be formulated as: The contribution from a target will only be considered
for those cells ijl ∈ D where hijl

Pk is larger than a certain threshold hth see Figure
4.3. Denote this group of cells as S ⊂ D, and for particle n in state sn

k as S
n ⊂ D.

In other words, assume that it is not likely that a target present in a certain
state affects all cells considerable. Now look at the likelihood function, and that it
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Figure 4.3. The group of cells, S, in the vicinity of a targets location, that are assumed
to be considerably affected. The size of S is determined by threshold hth

can be written as

p(zk|sk) =







∏

ijl∈D
pt(z

ijl
k |sk), mk = 1,

∏

ijl∈D
pv(zijl

k |H0), mk = 0.

(4.25)

pt(z
ijl
k |sk) is the probability density function of a target and noise in cell ijl, given

there is a target in state sk and pv(zijl
k |H0) is the probability density function in

cell ijl, when there is no target present and the power level in the cell is only due
to measurement noise. Now use the approximation that a target only affects the
cells in its surroundings S

p(zk|sk) =







∏

ijl∈S
pt(z

ijl
k |sk)

∏

ijl∈D∩S
pv(zijl

k |H0), mk = 1,

∏

ijl∈D
pv(z

ijl
k |H0), mk = 0,

(4.26)

where D∩S is the group of cells where the contribution from a target in state sk is
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neglected. The weights are calculated by normalizing the likelihood, which means
that we are only interested in the ratio of the likelihood between all states {sn

k}N
n=1

i.e., the relative size of the weights, therefore expand (4.26)

p(zk|sk) =







∏

ijl∈S
pt(z

ijl
k |sk)

∏

ijl∈D∩S
pv(z

ijl
k |H0), mk = 1,

∏

ijl∈S
pv(zijl

k |H0)
∏

ijl∈D∩S
pv(zijl

k |H0), mk = 0,

(4.27)

and introduce the likelihood ratio see [3]

p sk
H0

(zk|sk) =
p(zk|sk)

p(zk|H0)
=







∏

ijl∈S

pt(z
ijl

k
|sk)

pv(zijl

k
|H0)

, mk = 1

1, mk = 0

(4.28)

and normalize to get

qn
k =

p sk
H0

(zk|sn
k )

∑N
n=1 p sk

H0

(zk|sn
k )

. (4.29)

This provides the opportunity to a more time efficient implementation, see Algo-
rithm 3. Now the loop can be performed over the limited cells S for all particles in
the same iteration. The number of iterations are equal to the number of cells in S

and independent of how many particles that are used.

4.5.2 Simulations and Results

A single target model will be used with a known SNR value of 10 dB. Measurements
are simulated based on that a target appears at time k = 6 at a range of 89.6 km
flying with a constant velocity of 200 m/s directly to the sensor. At each time k,
measurements are provided from Nr×Nd×Nb = 50×16×1 sensor cells. That means,
only one bearing cell is considered in this example. Initially, particles are uniformly
distributed in the state space, in an area between [85, 90] km, [−0.22,−0.10] km/s
in the x direction and [−0.1, 0.1] km, [−0.10, 0.10] km/s in the y direction. Initially
the particles are also uniformly distributed over the two modes. As a reference
and comparison of time efficiency, a particle filter with an ordinary Measurement
Update step as the one in Algorithm 2 will be used, this setup is referred to as
Setup 1. The size of the restricted region S, where the contribution from a target
will be calculated is, as mentioned, due to the threshold hth. For a certain setup of
the constant parameters the size of region S is shown in Table 4.1. The rectangular
regions (in a range - Doppler plane) are chosen with a length and width that is
required to fulfill hi > hth, i ∈ S. Those values of hth for which simulations will be
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Algorithm 3 Measurement update - Efficient calculation of weights

1: Calculate the estimated range, Doppler and bearing from
rk =

√

x2
k + y2

k,

dk = xkẋk+ykẏk√
x2

k
+y2

k

,

bk = arctan
(

yk

xk

)
.

2: Decide which cells that should be considered as the center of S

rpos = round
(

rk−rmin

rres

)

,

dpos = round
(

dk−dmin

dres

)

,

bpos = round
(

bk−bmin

bres

)

.

where rres, dres and bres are the resolution in range, Doppler
and bearing respectively.

3: for i, j, l ∈ S

if mk = 0
µ0 = 2σ2

n.
else

µ0 = Pke−
(rposi

rres−rk)

R
Lr−

(dposj
dres−dk)

D
Ld−

(bposl
bres−bk)

B
Lb + 2σ2

n.
end if

pijl
sk
H0

(zijl
k |sk) =

1
µ0

e
−

1
µ0

z
ijl
k

1
µv

e
−

1
µv

z
ijl
k

.

end for
4: p sk

H0

(zk|sk) =
∏

ijl∈S
pijl

sk
H0

(zijl
k |sk).

5: qk =
p sk

H0
(zk|sk)

N
n=1 p(zk|sn

k
)
.

Note! pijl
sk
H0

(zijl
k |sk) =

[

pijl
sk
H0

(zijl
k |s1

k), . . . , pijl
sk
H0

(zijl
k |sn

k )

]

.

performed are written in boldface letters. These settings are referred to as Setup
2, Setup 3, and Setup 4 respectively.

Time Efficiency

Figure 4.4 shows time spent on one iteration for the different setups, and how it
is distributed between the three particle filter steps. This is calculated as a mean
value of a simulation that runs for 30 time steps. From Setup 1 to Setup 2 one
might expect a likelihood function that is Nr×Nd×Nb

size(S) = 50×16
9×5 ≈ 18 times faster,

because of the cells that are excluded in the likelihood calculation. Results from
simulations shows however that it is in reality 6 times faster. This is mainly due
to the fact that the likelihood is calculated under two hypotheses and that it is
finally given as a product of those ratios received in each iteration, but also because
additional effort are put on things as calculating sets of subscripts. Still, with such
a slight approximation, see Table 4.1, it is a noticeable difference in computational
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Table 4.1. Size of sub areas S ⊂ D for different values of the threshold hth. In the range
- Doppler plane a rectangular region is chosen with a length and width that is required
to fulfill hi > hth, i ∈ S.

hth size(S), (r × d × b) i∈S
hi

j∈D
hj

Setup

0.0001 5 × 9 × 1 0.99988 2
0.001 3 × 9 × 1 0.99921
0.01 3 × 7 × 1 0.99432 3
0.1 3 × 5 × 1 0.84725
0.2 1 × 3 × 1 0.55892
0.7 1 × 1 × 1 0.28224 4
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Figure 4.4. Computational time for different setups of the likelihood calculation, and
how it is distributed between the three particle filter steps: (a) N = 1000 particles and (b)
N = 10000 particles. Note! The computational time for the Time Update step is hardly
visible because it is relatively low compared to the other steps.

time. From Setup 2 to Setup 3, the likelihood function is approximately as expected
9×5
7×3 ≈ 2 times faster, and a comparison of Setup 2 and Setup 4 shows that this

ratio also approximately equals the theoretical value of 9×5
1 = 45.

Tracking Performance

From Setup 1 to Setup 2 and Setup 3 there is no discernible difference in Neff

or RMSE, see Figure 4.5 and Figure 4.6, but neither are the approximations big,
again see Table 4.1. In Setup 4 however, where the likelihood is calculated based
on one sensor cell only, the approximation takes effect in the Neff , but also in
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Figure 4.6. RMSE over 100 Monte Carlo runs, N = 1000 particles: (a) RMSE in position,
(b) RMSE in velocity.

estimating the position. This is due to the fact the likelihood function is no longer
calculated based on a comparison between the shapes of two surfaces, but instead
as a comparison between two scalar values, which easily results in an offset.
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Detection Performance

Apart from the problem of tracking a target there is also the problem of deciding
whether a target is present or not. This problem is called the detection problem
see [4, 25]. In a single target TBD application this can be done by calculating the
mean value of the modal state for all particles, the probability of target existence,
Probex

k . At each time step k it is given as

Probex
k =

1

N

N∑

n=1

mn
k , (4.30)

and whenever this value is larger than a certain threshold τ , a target is assumed
to be detected

Probex
k > τ. (4.31)

The choice of the threshold τ is far from trivial, it is a balancing act between
so called false alarms i.e., exceeding of the threshold when no target is present
and the risks of no detections i.e., the value falls bellow the threshold although a
target is present. This problem also occurs in classical tracking. The probability of
false alarm is also very low which means that a lot of simulations must be done
to get a somehow reliable result. This cannot be done within a reasonable frame
of time, because in a meaningful investigation the inefficient measurement update
step should be compared with the efficient ones.

However, in Figure 4.7, Probex
k is presented as a mean value from 25 Monte

Carlo runs, where target strengths are chosen corresponding to SNR values of
3 dB and 5 dB. The number of particles is set to 5000, k = 1, . . . , 25, and target
appears in frame k = 6 and disappears in frame k = 20.

In both SNR = 3 dB and SNR = 5 dB, Setup 1, Setup 2, and Setup 3 are
quite determined that there is no target present from k = 1, . . . , 5. In SNR = 5 dB
all three of them needs just a few frames to observe the presence of a target,
and the probability remains high until k = 20 when target disappears, while in the
SNR = 3 dB they are a bit indecisive on the existence. Setup 4 has larger problems
to decide about the absence, most likely due to the fact that single peaks in noise
will be interpreted as targets. However from these runs nothing can be said about a
threshold that would be in favor of the ”inefficient” likelihood in comparison with
the two more efficient ones, Setup 2, and Setup 3. A loss in detection performance
should also be reflected in a problem of tracking the target, which from results in
Section 4.5.2 does not occur.
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Figure 4.7. Probability of existence.

4.6 The Effect of Resampling

4.6.1 Theory

Resampling means that all particles and their normalized importance weights
{s̃i

k, qi
k}N

n=1 are replaced with a new set of particles with uniformed weights {si
k, N−1}N

n=1.
This is obtained by drawing N samples from {s̃i

k, qi
k}N

n=1, where qi
k is the proba-

bility of getting particle s̃i
k. The selection of sj

k = s̃i
k is schematically shown in

Figure 4.8. CSW is the cumulative sum of weights.
The resampling step in the particle filter is applied to avoid degeneracy. The

degeneracy characteristics can be described as the problem that with time most of
the importance weights will get a value of negligible size, see [11]. This means that
our approximation p(sk|Zk) will be described with few or only one particle because
of its dominating weight and we will spend most of the computational time on
particles who’s contribution to the approximation of p(sk|Zk) is marginal or none.
A way of measure this degeneracy is to calculate the Neff

Neff =
1

∑N
n=1(q

i
k)2

. (4.32)

Neff can vary from 1 to N , where Neff = 1 means that the p(sk|Zk) is approx-
imated with one particle only and Neff = N that all particles have the same
importance weight and therefore contributes equally. So as soon as the Neff gets
below a certain threshold Nth the resampling is required. The resample will how-
ever be performed in all iterations, since it follows from results later on, that the
computational time for the resample step only takes about 5% or less of the total
time. This under the assumption that an efficient one is used. In other applications
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Figure 4.8. The selection of s
j

k from s̃i
k is performed by a random number ũ ∼ U(0, 1),

where the probability of selecting s̃i
k is qi

k.

it might be useful to study for which value of the threshold Nth the resample could
be excluded and replaced with a recursive updating of the weights {qi

k}N
n=1. A

straight on pseudocode for a simple random resample is presented in Algorithm 4

Algorithm 4 Simple Random Resampling

1: Create a CSW {cn}N
n=1 from {q̃n}N

n=1.
2: for j = 1 : N

Draw a sample from a uniform distribution ũ ∼ U(0, 1).
i = 1.
while u > ci

i = i + 1.
end while
sj

k = s̃i
k.

qj
k = N−1.

end for

However this resampling method is very time demanding, approximately it has
a complexity of O(N2). This soon provides a limited maximum number of particles
that can be chosen for the particle filter implementation i.e., the TBD application.
This simple random resample algorithm can though, easily be modified to a more
efficient one that has the complexity of O(N) see Algorithm 5.

This algorithm will be considered in the simulations, but other even more time
efficient ones are suggested, such as stratified resampling [10] [22], residual resam-

pling [23] and systematic resampling [22] [24] etc. However the simple random

resampling will also be replaced with the systematic resampling, since it is found
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Algorithm 5 Efficient Simple Random Resampling

1: Draw N samples from a uniform distribution {ũn
k}N

n=1 ∼ U(0, 1).
2: Normalize and create a CSW, {uk}N

l=1.
3: Create a CSW {cn}N

n=1 from {q̃n}N
n=1.

4: Set i = 1.
5: for j = 1 : N

while uj > ci

i = i + 1.
end while
sj

k = s̃i
k.

qj
k = N−1.

end for

favorable in both resampling quality and computational complexity, see [21]. A
pseudocode for the systematic resampling algorithm is presented in Algorithm 6.

Algorithm 6 Systematic Resampling

1: Create a CSW {cn}N
n=1 from {q̃n}N

n=1.
2: Draw one sample from ũ ∼ U(0, 1).

3: Generate ordered uniform numbers uk = (k−1)+ũ

N
.

4: Set i = 1.
5: for j = 1 : N

while uj > ci

i = i + 1.
end while
sj

k = s̃i
k.

qj
k = N−1.

end for

4.6.2 Simulations and Results

In this section simulations will be performed for three different resample algorithms,
simple random, efficient simple random and systematic resampling. The aim is to
get a good overview of how time is distributed between the three particle filter
steps when a time efficient resample method is chosen. The quality of the estimates
from the particle filter, such as Neff and RMSE will also be presented, these are
indicators of resampling quality, the relation is complex and lots of other factors
influence the particle filter estimates as well, this is not investigated in this study.
However one should be able to determine that no deterioration of the quality of
the estimates should occur, as a result of a more time efficient resample algorithm.

The same target and sensor model as in Section 4.5.2 are used, and the Mea-
surements are generated based on the same scenario. From Setup 1 to Setup 2 ,and



4.6 The Effect of Resampling 37

3 in Section 4.5.2 no noticeable differences in quality was observed, therefore the
likelihood will be calculated as in Setup 3 since it is the most time efficient one.
The resample methods will be referred to as in Table 4.2.

Table 4.2. Three PF with different resample methods. The measurement update step in
Setup 3, see Table 4.1, will be used to calculate the weights.

Resampling Method size(S), (r × d × b) Setup
Simple Random 3 × 7 × 1 3A
Efficient Simple Random 3 × 7 × 1 3B
Systematic 3 × 7 × 1 3C

First simulations are performed to measure the computational time for the
different resample steps only, see Figure 4.9. The weights are generated by drawing
N samples from a uniform distribution U(0, 1) and then normalized to sum to
one. The number of particles are increased in steps of 250 and in each step the
time is calculated as a mean value from 100 runs. Notice the grade on the vertical
axis, as expected there is a magnificent difference in calculation time between the
simple random with the complexity of O(N2) and efficient simple random and
systematic resampling. These two are both of complexity O(n). Nevertheless it is
apparent that systematic resampling is a more time efficient one. This since only
one random sample needs to be drawn in systematic resampling, compared to N
samples in efficient simple random resampling. Furthermore, Figure 4.10 shows how
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Figure 4.9. Computational effort as a function of the number of particles for three
different resample methods, weights are generated by drawing N samples from a uniform
distribution.
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Figure 4.10. Total computational time for one iteration in a particle filter for TBD,
using three different resample methods: (a) N = 1000 particles, (b) N = 10000 particles.

the main computational load moves from the Resample step to the Measurement
Update step. One might not be surprised that a straight on Resample step as the
simple random resampling was replaced with a great gain of time, since it is of
complexity O(N2). However, results from this section states that it should not be
considered for a time efficient particle filter implementation. Although the outcome

5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time [k]

N
ef

f / 
N

Setup 3A
Setup 3B
Setup 3C

Figure 4.11. Number of effective particles
Neff

N
, N = 1000.



4.7 Conclusions 39

0 5 10 15 20 25 30
10

20

30

40

50

60

70

80

90

100

110

R
M

S
E

 −
 P

os
iti

on
 [m

]

Time [k]

Setup 3A
Setup 3B
Setup 3C

(a)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

R
M

S
E

 −
 V

el
oc

ity
 [m

/s
]

Time [k]

Setup 3A
Setup 3B
Setup 3C

(b)

Figure 4.12. RMSE over 100 Monte Carlo runs, N = 1000 particles: (a) RMSE in
position, (b) RMSE in velocity.

of the particle filter estimations are an indirect way of measuring the quality of the
resample step, one can still see from Figure 6.4, that the particle filter behaves
somewhat equivalent, independent of which resample step that is applied, neither
are there any reasons to suspect a degeneracy trend by looking at the Neff in Figure
4.11. However the quality of the resampling steps can be further investigated and
the definition of quality for this purpose extended.

4.7 Conclusions

In this section the goal was to decrease the computational time for a particle filter
for TBD, so that large off line Monte Carlo simulations could be run within a
reasonable frame of time, but also to investigate a real time feasibility. It is shown
that a great gain of time can be made without affecting the performance of the
particle filter, see Figure 4.13. From Setup 1 to Setup 3C most of the contribution
(99.5%) from an expected target is considered when calculating the likelihood,
in other words, the effectiveness is made with a very little approximation, and
still results in a ≈ 15 times faster implementation. However, even more efficient
implementation can be done by using a larger approximation, this of course finally
affects the outcome of the estimations, but it is shown that a minimum number of
cells, as few as one, can be used with a somewhat maintained quality of the particle
filter. The key to a faster implementation turned out to be the calculation of the
likelihood, the measurement update step. Although a great gain of time is made in
this step more work should be done, since it is still this part that mainly restricts
an even more time efficient implementation.
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Figure 4.13. The computational time for one iteration in three different particle filters
given in relative measures, with respect to Setup 1, the non optimised particle filter
implementation that this paper started from. Setup 3C is an implementation with the
Systematic Resampling and a restricted likelihood in the measurement update step, where
99.5% of the expected ”contribution” from a target is considered. Setup 4 is the same as
Setup 3C but with only one cell considered in the likelihood calculation, that is 28.2% of
the contribution.



Chapter 5

Estimation of the radar cross
section (RCS)

5.1 Introduction

In this chapter an algorithm will be presented that estimates the amount of power
received by the radar originating from a target. This is done by including the radar

cross section (RCS) properties of a target into the state vector. The RCS property
is in proportion to the area of a target that is exposed to the sensor, so over time
a fluctuating characteristic can be due to a turning or manoeuvring target, see
Section 2.1.2. The algorithm will be applied on simulated radar measurements.
Monte Carlo simulations will be used on a target with a constant RCS value to
determine the performance of detection and tracking, and finally results from a
single run will be presented to test the ability to capture a fluctuating behaviour.
Measurements will be generated for a considerably high number of sensor cells, and
therefore we will make use of the time efficient methods investigated in Chapter 4
to maintain a real time feasibility.

5.2 System Setup

Consider the general and nonlinear discrete time system

sk+1 = f(sk,mk, wk), k ∈ N (5.1)

Prob{mk = i|mk−1 = j} = Πij (5.2)

zk = h(sk,mk, vk), k ∈ N (5.3)

where

• sk ∈ R
n is the state of the system

• mk ∈ N is the modal state of the system

41
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• zk ∈ R
p are the measurements

• wk is the process noise

• vk is the measurement noise

• f is the system dynamic function

• h is the measurement function

• Π is the Markov transition matrix

5.2.1 Target Model

The predicted state of the target moving in the x − y plane is given from the
dynamic target model

sk+1 = f(sk,mk, wk). (5.4)

The power observed by the radar is proportional to the RCS properties of the target
according to

P =
Pt Gt

4πR2
× RCS

4πR2
× Ae

where Pt is the transmitted power, Gt is the antenna gain and Ae is the ef-
fective antenna aperture. If one assume that the range measurement boundaries
R = {Rmin . . . Rmax} and that R ≫ Rmax − Rmin this can be written as

P = ρ × RCS (5.5)

where ρ is due to radar constants. Now the RCS can be included in the state space
vector

sk =









xk

yk

ẋk

ẏk

RCSk









. (5.6)

The system dynamics is defined as

f(sk,mk) =









1 0 T 0 0
0 1 0 T 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









sk. (5.7)
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The process noise wk is assumed to be white Gaussian noise and the process noise
input model is given by

g(sk,mk) =









1
2 ( 1

3amaxx)T 2 0 0
0 1

2 ( 1
3amaxy)T 2 0

1
3amaxxT 0 0

0 1
3amaxyT 0

0 0 σRCST









wk (5.8)

with maximum accelerations amaxx, amaxy and variance σ2
RCS . This provides the

posterior target state

sk+1 =









1 0 T 0 0
0 1 0 T 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









sk +









1
2 ( 1

3amaxx)T 2 0 0
0 1

2 ( 1
3amaxy)T 2 0

1
3amaxxT 0 0

0 1
3amaxyT 0

0 0 σRCST









wk

5.2.2 Measurement Model

At each discrete time k the sensor is providing a new set of measurements zk. These
measurements are the power levels in Nr × Nd × Nb sensor cells. According to the
measurement model in the single target TBD application, it consists of either a
target and noise or noise only, as in (4.10)

zk = vk, mk = 0, (5.9a)

zk = h(sk, vk), mk = 1. (5.9b)

In the first case the target is absent and therefore measurements consist of nothing
but noise. In the second case there is a target present and its existence will affect
the power level in each sensor cell. In this investigation a considerably number of
sensor cells will be taken into account, therefore the likelihood ratio from (4.28)
will be used to maintain a real time feasibility,

p sk
H0

(zk|sk) =







∏

ijl∈S

p(zijl

k
|sk)

p(zijl

k
|H0)

, mk = 1

1, mk = 0

(5.10)

where

p(zijl
k |sk) =

1

µijl
t

e
− 1

µ
ijl
t

z
ijl

k

, (5.11)

and

p(zijl
k |H0) =

1

µijl
v

e
− 1

µ
ijl
v

z
ijl

k . (5.12)
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Furthermore,

µijl
v = E[(zijl

k |sk,mk = 0)]

= E[|nIk + inQk|2]
= E[n2

Ik + n2
Qk]

= 2σ2
n. (5.13)

µijl
t = E[(zijl

k |sk,mk = 1)]

= E[|Ãkeiφkhijl
Ak(sk) + nIk + inQk|2]

= E[(Ãkhijl
Ak(sk) cos(φk) + nIk)2 + (Ãkhijl

Ak sin(φk) + nQk)2]

= Ã2
k(hijl

Ak(sk))2 + 2σ2
n

= Phijl
Pk(sk) + 2σ2

n (5.14)

with

hijl
Pk(sk) = (hijl

Ak(sk))2

= e−
(ri−rk)2

R
Lr−

(dj−dk)2

D
Ld−

(bl−bk)2

B
Lb (5.15)

which describes the power contribution of a target in every range-Doppler-bearing
cell, where rk, dk, and bk are given from target state sk through (4.2.2). Notice
that Pk is time dependent and also conditioned on sk as Pk = ρ × RCSk.

5.3 Simulations and Results

This section will present results from Monte Carlo runs, where the power reflected
from a target received at the radar is estimated according to the suggested method
provided in this chapter. Tracking is done on a single target scenario. Where the
target appears at k = 6, at a distance of 89.6 km, flying with a constant velocity
of 200 m/s towards the sensor. In the first two cases the RCS value is constant,
causing a received power at the sensor of 10 Pu and 5 Pu, the measurement noise
level 2σ2

n = 1 Pu, hence it follows that the signal to noise ratio is 10 dB and 7 dB
since

SNR = 10 log

(
Pk

2σ2
n

)

dB

(5.16)

In a third case the RCS value is time varying, which should correspond to the
characteristics of a manoeuvring target, based on the knowledge that the power
received at the radar changes in relation with the area of the object exposed to the
sensor. Furthermore, the measurement space is divided into Nr ×Nd ×Nb = 17600
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cells, a considerably number, therefore the efficient method from Chapter 4 will be
used to calculate the weights, with a restricted region S of 3× 5× 5 cells (range×
Doppler×bearing). Initially particles are uniformly distributed in an area between
[85, 90] km, [−0.34,−0.1] km/s in the x direction, and [−1, 1] km,[−0.2, 0.2] km/s in
the y direction, they are also uniformly distributed over the two modes. Analysis of
results and conclusions are based on 100 Monte Carlo runs. More constants used in
the particle filter setting and for simulating measurements are presented in Table
5.1, and 5.2.

Table 5.1. Particle filter settings

Constant Value

Number of particles N 10000
Process noise amaxx 10 m/s2

amaxy 10 m/s2

σ2
RCS 1 Pu

Table 5.2. Constants used for generating measurements

Constant Value

Number of range cells Nr 100
Number of Doppler cells Nd 16
Number of bearing cells Nb 11
Measurement space boundaries:
Range [70, 90] km
Doppler [−0.34,−0.1] km/s
Bearing [−17.45,−17.45] mrad
Signal to noise ratio SNR 10 dB/7 dB/Fluctuating
Update time T 1 s

Tracking and Detection Performance

At k = 6 when the target appears, the mode probability is rapidly rising, see Figure
5.1 b, and the filter is well aware of the existence. Although the target is picked up
good the filter is initially a bit indecisive in the estimation of the power received
from the target, Figure 5.1 a. However, with time the filter learns from the data and
produces an output that is closing in on the true target state. The error in position
converges to a level of about 20 m depending on the SNR, a level well below the
size of a range cell, Figure 5.2 a.
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Figure 5.2. RMSE performance

An example of a target with a time varying RCS characteristic

In this section the particle filter will be applied on a set of measurements Zk, that is
generated based on a target scenario with time varying RCS characteristic. A target
appears at a distance of about 89 km, initially moving straight towards the sensor,
after 20 s it begins a left turn, and exposes its belly to the sensor. The manoeuvre
is accomplished in 8 seconds, and then it is again moving straight forward but now
with its side to the sensor, see Figure 5.3 a. Initially as the target is moving face
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Figure 5.3. Scenario used for generating measurements. No attempt is made to model
a realistic target amplitude in the relation to the trajectory, however, one should be able
to see if the principal idea of the algorithm works with a fluctuating target.

first onto the sensor it causes a received power of 3 Pu. During the turn it is rising
to a peak of 7 Pu, and when the turn is accomplished it is back at a lower level at
4 Pu, Figure 5.3 b.

Now, if the particle filter described in this chapter is applied on this example,
we should be able, according to the investigation of its possibility to estimate the
RCS characteristics, combined with the knowledge of position and velocity, to get
a descent overview of the situation.

Initially particles are uniformly distributed, see Figure 5.4. As soon as the target
appears at k = 6 the filter is determined about its presence, see mode probability in
Figure 5.6. However, it takes a few scans before particles are well gathered around
the target. But once they are gathered, they stay there throughout the trajectory.
The estimated trajectory is also presented in Figure 5.5 a, where the position and
velocity direction is shown for every third timestep.

5.4 Conclusions

This chapter suggested a method to estimate the power originating from a target,
simply by putting the RCS characteristic of a target into the state vector. Good
results was achieved first when measurements from more than one bearing angle was
taken into account. A more extensive investigation of whether this is necessary to
maintain the observability, might contribute to this assumption. Furthermore, the
algorithm should be applied on a multi target scenario to investigate its ability to
perform in this situation, one could start off from two targets as the one presented
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Figure 5.4. Distribution of particles at four different time steps.

in [7]. In the target model it is neglected that the power received by the radar
changes in relation with the distance to the target. This can be implemented but
would cause a nonlinear target model. The simplification might not however, give an
unrealistic model or have a big impact on the result, since we are only considering a
limited range of [70, 90] km. It is also shown that it is possible to observe fluctuating
characteristics, this provides an interesting opening where it can be combined with,
for example, the manoeuvring state of a target to improve the tracking performance,
or with an extended target situation, see Chapter 6.
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Figure 5.5. Particle filter outputs, Compare with Figure 5.3.
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Chapter 6

Tracking of Extended
Targets

6.1 Introduction

In previous sections it has been assumed that each scan of measurement data
consists of one reflection originating from a ”point” target. This model might not
be correct in all situations. The body of a target might due to its extension, reflect
the radar signal from different points of its structure from time to time. There is also
the possibility of multiple reflections originating from the same target at the same
time. If this is taken into account in our model, it provides an opportunity to gain
some knowledge about, not only position and velocity, but also its physical structure
and orientation. The basic idea is to create the compound pdf of a measurement
originating from a target as

p(zk|sk) =

∫

EXT

p(zk|s̃k)p(s̃k|sk)ds̃,

where p(s̃k|sk) is the pdf of a source s̃k given a target in state sk, and p(zk|s̃k) is
the pdf of a measurement zk arising from source s̃k. EXT is the extension of a
target, length, area, or volume depending on our model.

The extended target model can be applied in cases where the radar is of such
a resolution, that we expect a target to occupy more than one sensor cell, and
where depending on the extension, a point target model most probably leads to
divergence. A general but crude solution in filtering problems with unmodeled
parts, is to increase the process noise to maintain robustness of the filter.

In practice the divergence can be avoided by increasing the amount of process
noise, to a level where the reflections originating from different parts of the body
will be compensated with an uncertainty in the prediction of the target. However,
now using an incorrect target model we can not expect an optimal estimate of the
states.

51
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The extended target model, on the other hand, should be well adaptable to
measurements originating from a point target, since the length would be estimated
to what is considered a point. The extended model is no longer useful to detect a
body size or orientation, but the principle can be used, for example, to detect a
group of targets in a tight formation splitting up. Following sections will provide
an extended target particle filter ETPF, based on a scenario that each scan of
measurement data consists of one reflection, originating from a random point of an
extended target body.

Previous work has been done on plot basis, see [26]. However, in these sections
an ETPF will be used on raw measurement data, the TBD approach. We will
state the problem of measurements originating from an extended target, derive
the Bayesian solution, and implement it as a particle filter. Results from Monte
Carlo simulations as well as openings for further developments will be discussed in
concluding chapters.

6.2 System Setup

As before, the problem lies in estimating the target state sk, based on all avail-
able measurements up to time k, z1 . . . zk, with knowledge about the target model
evolving according to

sk+1 = f(sk,mk, wk), k ∈ N, (6.1)

Prob{mk = i|mk−1 = j} = Πij , (6.2)

and the measurement model

zk = h(sk,mk, vk), k ∈ N. (6.3)

6.3 Target Model

The reflection from a target is distributed along its body due to its extension,
physical structure, and orientation. Let’s introduce the pdf of a source s̃k given a
target state sk as p(s̃k|sk). The shape of p(s̃k|sk) can be modified, depending on
the amount of information of a target that in an initial stage is available. In a case
where the target is unknown p(s̃k|sk) can, for example, be approximated with a
normal or uniform distribution, along the estimated extension. In this approach
the reflection point s̃k will be generated as

s̃kγ
= sk + G(sk)HX , γ = 1 . . . NNOR, (6.4)

where G(sk) is a vector or matrix of coefficients that is due to the dimensional
extension of a target, and HX can consist of one or several stochastic distributions.
NNOR are the number of sources i.e., number of reflections from a target achieved
from a target at each time k. NNOR can also be a stochastic variable, varying from
time to time. However, as mentioned, in this setting one reflection is expected,
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NNOR = 1. Any possible input and initial knowledge of a target, concerning its
extension, physical structure, or orientation will be used in G(sk)HX . In this appli-
cation the target is modeled as a 1D stick pointing at the radar. Hence, it follows
that sk consists of

sk =









xk

yk

ẋk

ẏk

Lk









, (6.5)

where Lk is the spatial extension in range or x direction. The dynamics that pro-
vides the posterior target state are similar to the one in Chapter 5,

sk+1 =









1 0 T 0 0
0 1 0 T 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1









sk +









1
2 ( 1

3amaxx)T 2 0 0
0 1

2 ( 1
3amaxy)T 2 0

1
3amaxxT 0 0

0 1
3amaxyT 0

0 0 σlT









wk.

Moreover, s̃k will be generated from sk as

s̃k = sk +









Lk

2
0
0
0
0









U(−1, 1), (6.6)

where, in this case, x̃k, ỹk, are the reflection point on the body of a target. The re-
flections are uniformly distributed in the x direction and bounded to the estimated
length Lk.

6.4 Measurement Model

As before, each set of measurements achieved at time step k, consists of a target
and noise or noise only,

zk = vk, mk = 0, (6.7a)

zk = h(sk, vk), mk = 1. (6.7b)

In this setting it is assumed, that if a target exists, there is one reflection achieved
at the radar due to its presence, NNOR = 1. The reflection can originate from
anywhere along its body. Hence it follows that the likelihood function is given as a
compound pdf by the convolution

p(zk|sk) =

∫

EXT

p(zk|s̃k)p(s̃k|sk) ds̃ (6.8)
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p(zk|s̃k) is the pdf of a measurement zk arising from the source s̃k, and p(s̃k|sk) is
pdf of a source s̃k given a target in state sk. Under some assumptions the integral
can be replaced by analytically combining the two probability density functions,
and the weights can be calculated as usual directly from p(zk|sk). However, in a
more general approach the integral (6.8) can be approximated numerically with

p(zk|sk) =
1

M

M∑

j=1

p(zk|s̃j
k). (6.9)

where M is the number of drawings, this is the same approximation as the one
used in (3.12). The complexity of the measurement update step will approximately
increase with a factor times M . Therefore the likelihood ratio is used again, intro-
duced in (4.28),

p s̃k
H0

(zk|s̃k) =
p(zk|s̃k)

p(zk|H0)
=







∏

ijl∈S

p(zijl

k
|s̃k)

p(zijl

k
|H0)

, mk = 1,

1, mk = 0,

(6.10)

where

p(zijl
k |s̃k) =

1

µijl
t

e
−

z
ijl
k

µ
ijl
t , (6.11)

and

p(zijl
k |H0) =

1

µijl
v

e
−

z
ijl
k

µ
ijl
v , (6.12)

with

µijl
t = P

NNOR∑

γ=1

e−
(ri−rkγ

)2

R
Lr−

(dj−dkγ
)2

D
Ld−

(bl−bkγ
)2

B
Lb + 2σ2

n, (6.13)

and

µijl
v = 2σ2

n. (6.14)

Furthermore,

rkγ
=

√

x̃2
kγ

+ ỹ2
kγ

, (6.15a)

dkγ
=

x̃kγ
˙̃xkγ

+ ỹkγ
˙̃ykγ

√

x̃2
kγ

+ ỹ2
kγ

, (6.15b)

bkγ
= arctan

(
ỹkγ

x̃kγ

)

. (6.15c)
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6.5 Simulations

The tracking of the extended target is done with three different particle filters, a
point target PF and two ETPF’s. One of the ETPF is well tuned in and at this level
of process noise a point target particle filter certainly leads to divergence, this might
be reason enough to choose an ETPF instead of a point target PF, on measurements
from a radar where ”extended” targets are expected. However, in a second ETPF
the amount of process noise is increased to a level where a point target PF does
not diverge to state that a point target PF is outperformed in every aspects by
an ETPF. Finally the ETPF will be applied on measurements with different SNR
values. All filters are applied on ”extended” target measurements and results and
conclusions are based on 100 Monte Carlo runs.

6.5.1 Constants

During simulations constants has been used as in Table 6.1 and Table 6.2. Mea-
surements are generated based on that from time k = 6, there is one reflection orig-
inating from a target, and over time reflections are uniformly distributed along the
extension of its body. Target appears at a distance of 9.6 km and moves with a con-
stant velocity of 10m/s towards the sensor. Initially particles are uniformly distrib-
uted in the state space, in an area between [9.45, 9.65] km, [−0.034,−0.005] km/s
in the x direction, and [−0.05, 0.05] km, [−0.01, 0.01] km/s in the y direction, over
a target length of [5, 30] m, and they are also uniformly distributed over the two
modes.

Table 6.1. Particle filter settings.

Constant Point target PF ETPF1 ETPF2

Number of particles N 1000 1000 1000
Number of drawings
used in (6.9) M 10 10 10
Process noise amaxx 20 m/s2 2 m/s2 20 m/s2

amaxy 2 m/s2 2 m/s2 2 m/s2

σ2
l - 1.5 m 1.5 m

6.6 Results

Figure 6.2 shows estimated position and extension of a target at four different scans.
As soon as a target appears in scan 6.2 a it is picked up by the ETPF. It is though
indecisive about its length and position, due to the fact that only one reflection
is achieved, considered originating from a target. Already in scan 6.2 b we have a
decent estimate of the length, and in scan 6.2 c particles are well gathered around
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Table 6.2. Constants used for generating measurements.

textbfConstant

Number of range cells Nr 500
Number of doppler cells Nd 16
Number of bearing cells Nb 1
Measurement space bounderies:
Range [9, 10] km
Doppler [−0.034,−0.005] km/s
Bearing -
Signal to noise ratio SNR 10 dB/7 dB
Length of target L 20 m
Update time T 1 s
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Figure 6.1. Estimated length and number of effective particles.

the true center of the target. Notice that from scan to scan particles are centered
and the target is estimated without particles ”jumping” after the reflection point.
In Figure 6.1a it is shown how well the two ETPF performs in estimating the
length. After about 5 scans the filters are already quite certain. As expected the
ETPF1 setting produces a better estimate, due to the fact that a low value of amaxx

is preventing particles from ”jumping” after reflection points and consider those as
the center of a target. In ETPF2 a higher value of amaxx causes the filter to estimate
deviating reflections as an accelerating behavior (The target model in (6.1) evolves
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according to a constant velocity model, however, acceleration is possible in relation
to the process noise.). The same reasoning can be used to explain why ETPF2 stays
at a level of about one meter below the true target length.

Now consider Figure 6.3, initially ETPF2 appears to converge as good as ETPF1

or even better, this can be explained with the quite limited number of particles that
are used, causing a bias in the scan of target appearance k = 6, see Figure 6.2 a.
This bias will be eliminated faster when using a higher process noise, since we
are less certain in the prediction of our particles, but with time a lower process
noise makes a visible difference in estimating both position and velocity. However,
besides the fact that ETPF1 and ETPF2 are able to estimate the length, they are
both outperforming the point target PF in every aspect of estimation accuracy see
Figure 6.3.

As expected, it also appears a clear degeneracy trend in Neff for the point
target PF, see Figure 6.1b (For an explanation of the Neff see Section 4.6). In
mode transition at k = 6 there is a plain dip in Neff for all filters , initially no
target is present and particles are uniformly distributed, bounded by the state
space limits, leaving only a few particles in the vicinity of a targets appearance.
Furthermore, before resampling the average number of particles in mode ”target
present” mk = 1, is only N times transition probability ”birth of target” Pb. In
this case 10% of the total number of particles. A simple solution to this problem
would be to considerably increase the number of particles. However, this leads to
an unnecessary large number of particles in the mode with the highest probability
and of course, a time inefficient implementation. An alternative and recent solution
is presented in [8]. Based on that the number of particles in each mode is fully
controlled by the designer and independent of the actual transition probability,
without distorting or violating the Markov property.

6.7 Conclusions

In this chapter the problem of estimating a target with a spatial extent was con-
sidered. Once again a particle filter was used to solve the filtering problem. The
proposed algorithm modeled the target as a 1D stick with a spatial extent in range.
It is shown that an extended target model outperforms the point target model on
measurements from a sensor where target has occupied more that one sensor cell.
Although improvements in tracking accuracy is an important issue it might not be
the main reason to chose a ETPF. The filter could do a even better job to capture
features and identify targets. In order to do this the ”stick” could be replaced with
a 2D area or a volume.
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Figure 6.2. The position and length of a target are estimated using an extended target

particle filter (ETPF). Although only one reflection is originating from a target at each
scan, the filter manage to get a decent estimate of both the length and position in just a
few scans. Notice how the particles are well gathered around the center of the estimated
target and not ”jumping” after the reflection point.



6.7 Conclusions 59

0 10 20 30 40 50 60
0

2

4

6

8

10

12

Time [k]

R
M

S
E

 −
 P

os
iti

on
 [m

]

SNR=10dB

ETPF
1

ETPF
2

Point Target PF

(a)

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Time [k]

R
M

S
E

 −
 V

el
oc

ity
 [m

/s
]

SNR=10dB

ETPF
1

ETPF
2

Point Target PF

(b)

0 10 20 30 40 50 60
1

2

3

4

5

6

7

8

Time [k]

R
M

S
E

 −
 X

 p
os

iti
on

 [m
]

SNR=10dB

ETPF
1

ETPF
2

Point Target PF

(c)

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Time [k]

R
M

S
E

 −
 X

 v
el

oc
ity

 [m
/s

]

SNR=10dB

ETPF
1

ETPF
2

Point Target PF

(d)

0 10 20 30 40 50 60
0

2

4

6

8

10

12

Time [k]

R
M

S
E

 −
 Y

 p
os

iti
on

 [m
]

SNR=10dB

ETPF
1

ETPF
2

Point Target PF

(e)

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Time [k]

R
M

S
E

 −
 Y

 v
el

oc
ity

 [m
/s

]

SNR=10dB

ETPF
1

ETPF
2

Point Target PF

(f)

Figure 6.3. ETPF’s and point target PF performance for (a),(c), and (e) position, and
(b),(d), and (f) velocity. 100 Monte Carlo runs.
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Figure 6.4. ETPF performance for (a),(c), and (e) position, and (b),(d), and (f) velocity
for two differnt SNR values. 100 Monte Carlo runs.



Chapter 7

Concluding Remarks

7.1 Conclusions

This Master’s thesis has investigated the use of particle filters on radar measure-
ments, in a track before detect (TBD) approach. The work was divided into two
major problems, a time efficient implementation and new functional features. The
suggestions to improvements of the implementation showed to be many times faster,
which indicates that there are openings for a real time feasibility, even for particle
filters with an initially high computational demand. The goal was also to estimate
the radar cross section (RCS), as well as the physical extension of a target. It is
shown that it is possible to capture these characteristics, easily by modifying or
extending our dynamical model, and that particle filters are a simple, yet good
solution to the filtering problem arising from this. Furthermore, the estimates of
the RCS and the extent of a target showed on good accuracy for high signal to
noise ratio as well as for low.

7.2 Further Studies

In the efficient implementation an extensive complexity analysis of the particle filter
should be done, in order to state that the investigated methods can be applied with
a successful outcome in general. This can be done by using the equivalent flop mea-
sure, introduced in [17]. The quality of the estimates must be further investigated
and the definition for this purpose extended. In particular the affect in detection
performance. In the case where the power originating from a target was estimated,
good results was achieved first when more than one bearing angle was taken into
account. A study of whether this is necessary to maintain the observability of the
system might contribute to this assumption. The ability to observe fluctuating
characteristics provides an interesting opening that it can be combined with, for
example, the manoeuvring state of a target to improve the tracking performance,
or with an extended target situation. The extended target particle filter (ETPF)
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should be applied on manoeuvring target measurements. Future work should also
investigate its ability to capture features, and identify targets. In order to do this
the 1D ”stick” can be replaced with a target model of multidimensional extension.
Moreover, all models should be further developed in a multi target context, see [7].



Appendix A

Bayes’ Rule

Let x and y denote two stochastic variables with probability density functions p(x)
and p(y) respectively. The joint density can be written as

p(x, y) = p(x|y)p(y), (A.1)

or equivalent as
p(x, y) = p(y|x)p(x). (A.2)

Combining (A.1) and (A.2), and solving for the conditional probability p(x|y) yields

p(x|y) =
p(y|x)p(x)

p(y)
. (A.3)

This expression is usually referred to as Bayes’ rule or Bayes’ theorem. The de-
nominator p(y) can be obtained by marginalizing out x in (A.2)

p(y) =

∫

Rn

p(x, y)dx =

∫

Rn

p(y|x)p(x)dx. (A.4)
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[22] G. Kitagawa
Monte Carlo filters and smoothers for non-Gaussian nonlinear state space mod-
els.
Journal of Computational and Graphical Statistics, 5(1):1-25, 1996.

[23] J.S. Liu and R. Chen.
Sequential Monte Carlo methods for dynamic systems.
Journal of the American Statistical Association, 93(443):1032-1044, 1998.

[24] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp.
A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian track-
ing.
IEEE Proceedings on Signal Processing, 50(2):174-188, 2002, 1998.

[25] H.V. Poor.
An introduction to signal detection and estimation.
springer-Verlag, New York NY, 1994.

[26] J. Vermaak, N. Ikoma and S.J. Godsill.
Extended Object Tracking using Particle Techniques.
Aerospace 2004

67


