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Abstract

A Bayesian approach to positioning and tracking applications naturally leads to a
recursive estimation formulation. The recently invented particle filter provides a
numerical solution to the non-tractable recursive Bayesian estimation problem. As
an alternative, traditional methods such as the extended Kalman filter, which is
based on a linearized model and an assumption on Gaussian noise, yield approxi-
mate solutions.

In many practical applications, signal quantization and algorithmic complexity
are fundamental issues. For measurement quantization, estimation performance is
analyzed in detail. The algorithmic complexity is addressed for the marginalized
particle filter, where the Kalman filter solves a linear subsystem subject to Gaussian
noise efficiently.

The particle filter is adopted to several positioning and tracking applications
and compared to traditional approaches. Particularly, the use of external database
information to enhance estimation performance is discussed. In parallel, funda-
mental limits are derived analytically or numerically using the Cramér-Rao lower
bound, and the result from estimation studies is compared to the corresponding
lower bound. A framework for map-aided positioning at sea is developed, featuring
an underwater positioning system using depth information and readings from a
sonar sensor and a novel surface navigation system using radar measurements and
sea chart information. Bayesian estimation techniques are also used to improve
position accuracy for an industrial robot. The bearings-only tracking problem is
addressed using Bayesian techniques and map information is used to improve the
estimation performance. For multiple-target tracking problems data association is
an important issue. A method to incorporate classical association methods when
the estimation is based on the particle filter is presented. A real-time implementa-
tion of the particle filter as well as hypothesis testing is introduced for a collision
avoidance application.
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Östring has given valuable programming help during these years. Dr. Jonas El-
bornsson has been of great help in proof-reading and discussing quantization issues.
In addition, I would like to thank the following colleagues for proof-reading vari-
ous parts of the thesis and for giving valuable comments and suggestions; Thomas
Schön, Erik Wernholt, Dr. Mikael Norrlöf, Jonas Jansson and Dr. Ola Härkeg̊ard.

I would like to thank Saab Bofors Underwater Systems; Per-Ola Svensson and
Elias Fransson for providing sonar data from a torpedo system, and Björn Jo-
hansson, Anna Falkenberg and Tobias Karlsson for providing underwater terrain
information. Björn Gabrielsson provided assistance and fruitful discussions in un-
derwater navigation. Erik Svensson helped with sea chart transformations. Thanks
also to Volvo Car Corporation; Fredrik Lundholm and Lena Westervall, for pro-
viding measurement data and hardware to test the developed collision mitigation
algorithm on.

I would like to thank my employer Saab Bofors Dynamics for encouraging me
to engage in graduate studies and for allowing crucial leave of absence during
my thesis work. The financial support from the VINNOVA Center of Excellence
ISIS (Information Systems for Industrial Control and Supervision) at Linköping
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1

Introduction

In this thesis, several positioning and target tracking applications are discussed. Po-
sitioning is basically the concept of finding the own platform’s kinematic state, i.e.,
position and velocity, whereas target tracking refers to the state of an observed ob-
ject. In Figure 1.1, an Air-to-Sea scenario is depicted, where the tracking platform
is an aircraft and the target a ship. In order to find the aircraft’s kinematic state,

Tracking platform

Tracked object
(target)

Figure 1.1: An Air-to-Sea tracking application. The tracking platform
is equipped with a positioning system, where the relative target range is
measured, for instance using a radar sensor.
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4 Chapter 1 Introduction

an accurate positioning or navigation system is used. Usually, inertial sensors such
as gyros and accelerometers are used. Another important source of information is
the global positioning system (GPS). To find the target’s position, measurements
from tracking sensors are used. The aircraft can for instance be equipped with a
radar sensor, measuring relative range to the target. Another common sensor is
an infrared (IR) vision device, which is a passive sensor, so in principle only the
direction not the range to the target is measured.

Usually, the sensor measures only part of the quantities that are of interest.
Hence, there is a need to estimate the part not directly measured. Estimation
methods are also used in order to decrease the influence of noise. In many prac-
tical applications there is a need for on-line computation. Therefore, recursive
estimation methods are used. Depending on the method chosen, issues such as
estimation performance and real-time aspects are important.

In Section 1.1, the main problems discussed in the thesis are defined and the
problem formulation is given in Section 1.2. In Section 1.3, an outline of the thesis
is given. A summary of the contributions is presented in Section 1.4.

1.1 Topics

In this section, the main problem areas discussed in the thesis are introduced with
references to individual papers in Part II.

1.1.1 Estimation Theory and Analysis

In practice, many estimation problems rely on on-line solutions, hence recursive
methods are necessary. Traditional estimation methods for linear systems subject
to Gaussian noise are based on the Kalman filter (KF), [47, 48] or for nonlinear
systems the extended Kalman filter (EKF), [4, 37, 47]. In recent years, the growth
in computational power has made computer intensive statistical methods feasible.
Instead of approximating the system using linearization, the estimation problem is
solved directly using Monte Carlo techniques, [26]. The main breakthrough came
with the seminal paper on particle filtering, [36]. These methods are described
in Chapters 2–3. In this thesis the particle filter will be analyzed and applied
frequently, where the EKF is used as a comparison.

Estimation methods are often implemented in dedicated hardware in digital

signal processors (DSPs) or on a desktop computer. Often, the resolution in the
calculations is sufficient, so quantization effects can be neglected. However, the
sensor may in many cases produce data that is quantized. Many sensors deliver data
that is naturally quantized such as radar range, vision devices, and cogged wheels
to measure angular speeds etc. Since cheap low-quality sensors have appeared on
the market and in many consumer products, quantization effects may be an issue in
many applications. Also, the increased use of distributed sensors in communication
networks with limited bandwidth illustrates the need for many low-quality sensors.
This motivates the study of how quantization affects estimation performance. In
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(a) Signal quantization.

Instruction Flops

PA := Pt|t(At)T pk2 + (k − 1)kp

M := AtPA + Qt kp2 + (k − 1)p2 + p2

...
...

T5 := FtPt|t(Ft)T 2k3 + 2(k − 1)k2

(b) Algorithmic computation complexity using
floating-point operations (flops), where p and k

are matrix dimensions.

Figure 1.2: Two theoretical aspects: signal quantization and computa-
tional complexity of an algorithm by computing the number of operations.

Figure 1.2 (a), signal quantization is depicted. In [103, 104], these effects are
studied, where an analogy with sampling theory is developed for quantization.
Measurement quantization for filtering and estimation is described in Paper A.

In many practical applications, real-time performance is important. Hence, ef-
ficient algorithms for recursive estimation are essential. In dedicated hardware,
traditional algorithms can be analyzed by counting the number of floating-point

operations (flops) for each instruction in the algorithms. In Figure 1.2 (b), an ex-
ample of an algorithm and the number of flops for each code line is given. When
computer intensive algorithms are used, new issues arise, since part of the com-
putational complexity is related to other aspects than just basic operations. In
Paper B, the algorithmic computational complexity of a particle filtering algorithm
is analyzed.

An important aspect of any estimation method is its estimation performance.
This can be analyzed using the Cramér-Rao lower bound (CRLB), [21, 66, 74], ana-
lytically (if possible) or numerically. In simulation studies, it can also be compared
to the actual performance in terms of the root mean square error (RMSE).

1.1.2 Positioning

The concept of finding the own platform’s (aircraft, ship, car, etc.) kinematic
state, i.e., position and velocity is often referred to as positioning. This can be
based on information from inertial sensors, such as gyros and accelerometers us-
ing dead-reckoning. The global positioning system (GPS) is an alternative sensor,
where information from a satellite system is used for positioning. Another method
is to compare information from a distance measuring equipment (DME), for in-
stance a range measuring radar sensor, with known environment information from
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(c) Tool positioning.

Figure 1.3: Positioning: (a) Surface navigation using a radar sensor and
a sea chart database, (b) underwater (UW) navigation using a sonar sensor
and a depth database, and (c) tool positioning for an industrial robot using
accelerometer information at the end-effector.

databases, i.e., terrain information, sea charts etc. The advantage of this method
compared to GPS is that it is insensitive to jamming. In [1, 13, 38, 98] several
solutions for a Bayesian terrain aided aircraft navigation problem are proposed. In
Figure 1.3, three different positioning applications from the thesis are illustrated.
In Figure 1.3 (a) a ship is positioned by comparing information from a sea chart
with measured distance from a radar. With a rough model of the dynamics of
the ship, the position is found using an estimation algorithm. In Figure 1.3 (b),
a similar positioning method is applied to underwater (UW) positioning. Instead
of a radar sensor, an active acoustic sonar sensor is used. The measured distance
to the sea floor is compared to the depth from a depth database. In Figure 1.3
(c), a positioning system for an industrial robot is presented using accelerometer
information. Traditionally, industrial robot positioning is based on an accurate
model together with measurements from motor angles. Using external information
from an accelerometer mounted at the end-effector, positioning can be improved.
These applications are presented in Paper C and Paper D. A framework with many
positioning applications and models, is given in [38].

1.1.3 Target Tracking

In target tracking the aim is to estimate the kinematic state of an observed object.
Target tracking has been an active research area for many years. There exist several
good books; for instance [9, 10, 14, 15, 89], where sensor models, target models,
and estimation theory are thoroughly described. Tracking models and sensors are
also described thoroughly in [75, 76], where the most common types are presented.

Common sensors are radar and IR sensors. If the relative range to the target
is measured, it is easier to estimate the target position. If a passive sensor such as
the IR-sensor is used, no explicit range information is measured. Hence, it may be
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Figure 1.4: Bearings-only target tracking: Air-to-Air, Air-to-Sea and Sea-
to-Sea.

troublesome to compute the position of the target. By maneuvering the observer,
it may be possible to gain observability in both range and range rate. This is often
referred to as passive ranging or bearings-only tracking, [15, 42, 89]. In Figure 1.4,
passive ranging for Air-to-Air and Air-to-Sea applications using an IR-sensor is
illustrated. A Sea-to-Sea bearings-only application for a torpedo is also depicted
in Figure 1.4, where a passive acoustic sonar sensor is used. How to incorporation
hard constraints using terrain information is discussed in for instance [49]. In [81],
littoral tracking, i.e., tracking of targets on land and in sea near the boundary
region between them is discussed for a joint tracking and classification problem.
These bearings-only applications are discussed in Paper E.

For target tracking applications, modern systems are capable of handling mul-
tiple targets. Hence, there will be several measurements available so a data associ-
ation problem arises, i.e., which measurement to associate with a certain estimated
target state. As a result, techniques based on traditional estimation methods have
been developed, [9, 15, 87]. When simulation based methods are used, new asso-
ciation methods must be introduced, see for instance [43], or the problem must be
formulated in such a manner that classical methods can be used. In Paper F, a
tracking application is discussed for multiple targets using the particle filter.

Since the dynamics of the tracked object is not fully known, for instance its input
signal (maneuver) is completely unknown, this will affect which models and noise
description to use. A particular type of particle filter is discussed in a maneuvering
target application using hard-constraints on system states in Paper G.

In active safety systems for cars, estimation of position and velocity for other
vehicles is important. In Figure 1.5, a radar-based tracking system is presented.
With an accurate estimate of obstacles and other vehicles, collision avoidance or
collision mitigation algorithms can be improved. This is discussed in Paper H,
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Figure 1.5: A radar-based automotive tracking system for collision miti-
gation.

where a late braking system based on a hypothesis test using Bayesian estimation
is discussed.

1.2 Problem Formulation

The purpose of this thesis is to focus on recursive Bayesian estimation using the
particle filter, for positioning and target tracking applications. Related problems
such as multiple target tracking and sensor fusion are also considered. Positioning
systems based on map information together with data from tracking sensors are
used to construct positioning systems. Problems with quantized data, real-time
performance, and complexity analysis of different methods are fundamental topics.
The estimation performance is mainly discussed in terms of the Cramér-Rao lower
bound, which is computed analytically or numerically and compared to the actual
performance from simulations.

1.3 Outline

Part I contains an overview of estimation theory related to the applications and the
theory presented in the thesis. Part of the material has previously been published
in [49]. Part II consists of a collection of papers.

1.3.1 Outline of Part I

The objective is to give a short introduction to topics covered by the thesis.
In Chapter 2, common methods in estimation theory are described. Mainly,

the maximum likelihood method and the Bayesian method are discussed. In par-
ticular, the Bayesian approach for nonlinear dynamic systems is discussed. Several
sub-optimal approaches based on Kalman filter theory and multiple models are
presented. Fundamental performance limits are discussed in terms of the CRLB.

In Chapter 3, several numerical methods for the estimation and filtering problem
are described. Grid-based and stochastic methods for numerical integration are
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discussed. Different solutions to recursive estimation problems are presented as
variations to the particle filter method.

In Chapter 4, a summary of the thesis is presented.

1.3.2 Outline of Part II

Part II of the thesis consists of the following publications:

Paper A: Filtering and Estimation for Quantized Sensor Information
Classical quantization theory is revisited with the main focus on the measurement quan-
tization. In particular, band-limited noise, moment-based estimation, and dithering noise
are discussed. Theoretical performance limits using the Cramér-Rao lower bound are com-
puted. The recursive filtering solution is given by adopting the particle filter for quantized
sensor information.

Edited version of the paper:

R. Karlsson and F. Gustafsson. Filtering and estimation for quantized sensor
information. Submitted to IEEE Transactions on Signal Processing.

Parts of the paper in:

R. Karlsson and F. Gustafsson. Particle filtering for quantized sensor infor-
mation. In Proceedings of the 13th European Signal Processing Conference,
Antalya, Turkey, September 2005. Submitted as invited paper.

Preliminary version published as Technical Report LiTH-ISY-R-2674, Department of Elec-
trical Engineering, Linköping University, Linköping, Sweden.

Paper B: Complexity Analysis of the Marginalized Particle Filter
The computational complexity of the marginalized particle filter is analyzed by counting
different operations and estimate their influence on the calculation time.

Edited version of the paper:

R. Karlsson, T. Schön, and F. Gustafsson. Complexity analysis of the marginal-
ized particle filter. To appear in IEEE Transactions on Signal Processing.

Preliminary version published as Technical Report LiTH-ISY-R-2611, Department of Elec-
trical Engineering, Linköping University, Linköping, Sweden.

Paper C: Surface and Underwater Navigation using Particle Filters
A framework for two positioning applications at sea is presented. Surface navigation based
on range measurements from a radar sensor together with information from a sea chart
and an underwater positioning system using sonar measurements and a depth database.
The positioning is performed using the particle filter and fundamental limits are derived
analytically in terms of the Cramér-Rao lower bound.

Edited version of the paper:

R. Karlsson and F. Gustafsson. Surface and underwater navigation using
particle filters. Submitted to IEEE Transactions on Signal Processing.

Parts of the paper in:
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R. Karlsson, F. Gustafsson, and T. Karlsson. Particle filtering and Cramér-
Rao lower bound for underwater navigation. In Proceedings IEEE Conference
on Acoustics, Speech and Signal Processing, Hong Kong, April 2003.

R. Karlsson and F. Gustafsson. Particle filter for underwater terrain navi-
gation. In IEEE Statistical Signal Processing Workshop, pages 526–529, St.
Louis, MO, USA, October 2003. Invited paper.

R. Karlsson and F. Gustafsson. Using the particle filter as mitigation to GPS
vulnerability for navigation at sea. In Proceedings of IEEE Statistical Signal
Processing Workshop, Bordeaux, France, July 2005. Submitted as invited
paper.

R. Karlsson and F. Gustafsson. A system and method for surface naviga-
tion using radar and sea map. Swedish patent application. Patent pending
SE-0400264-8, February 2004.

Preliminary version published as Technical Report LiTH-ISY-R-2649, Department of Elec-
trical Engineering, Linköping University, Linköping, Sweden.

Paper D: Bayesian State Estimation of a Flexible Industrial Robot
Positioning of an industrial robot using motor angle measurements together with ac-
celerometer information at the end-effector is discussed. The EKF and the particle filter
are implemented, and performance is compared to the Cramér-Rao lower bound numeri-
cally. Sensitivity analysis and modeling issues are discussed.

Edited version of the paper:

R. Karlsson and M. Norrlöf. Bayesian state estimation of a flexible industrial
robot. Submitted to IEEE Transactions on Control Systems Technology.

Parts of the paper in:

R. Karlsson and M. Norrlöf. Bayesian position estimation of an industrial
robot using multiple sensors. In Proceedings of the IEEE Conference on
Control Applications, Taipei, Taiwan, September 2004.

R. Karlsson and M. Norrlöf. Position estimation and modeling of a flexible
industrial robot. In Proceedings of the 16th IFAC World Congress, Prague,
Czech Republic, July 2005. To appear.

Preliminary version published as Technical Report LiTH-ISY-R-2677, Department of Elec-
trical Engineering, Linköping University, Linköping, Sweden.

Paper E: Recursive Bayesian Estimation – Bearings-Only Applications
The bearings-only estimation is addressed in several applications involving Air-to-Air,
Air-to-Sea, and Sea-to-Sea scenarios. Simulations and experimental data are used. The
comparison involves the particle filter, the marginalized particle filter, and the RPEKF
filter bank. Issues such as terrain induced constraints and initialization are discussed.

Edited version of the paper:

R. Karlsson and F. Gustafsson. Recursive Bayesian estimation – bearings-
only applications. Accepted for publication in IEE Proceedings on Radar,
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Sonar, and Navigation. Special issue on target tracking: Algorithms and Ap-
plications.

Parts of the paper in:

R. Karlsson and F. Gustafsson. Range estimation using angle-only target
tracking with particle filters. In Proceedings of American Control Conference,
volume 5, pages 3743–3748, Arlington, Virginia, USA, June 2001. Invited pa-
per.

R. Karlsson. Simulation Based Methods for Target Tracking. Linköping Stud-
ies in Science and Technology. Licentiate Thesis No. 930, Linköping Univer-
sity, Linköping, Sweden, February 2002.

Paper F: Monte Carlo Data Association for Multiple Target Tracking
The data association problem that arises for a multiple target tracking problem is discussed.
When particle filter methods are used instead of extended Kalman filter, new association
methods must be developed. A JPDA algorithm is proposed for the particle filter. For many
practical applications, the number of particles must be adjusted to reduce computational
complexity. This is discussed in terms of a controller for the number of particles.

Edited version of the paper:

R. Karlsson and F. Gustafsson. Monte Carlo data association for multiple
target tracking. In IEE International Seminar on Target Tracking: Algo-
rithms and Applications, pages 13/1–13/5, Enschede, The Netherlands, Oc-
tober 2001.

Paper G: Auxiliary Particle Filters for Tracking a Maneuvering Target
The auxiliary particle filter is adopted for the maneuvering target tracking case, with hard
constraints on system states. In a simulation study it is compared to the IMM filter.

Edited version of the paper:

R. Karlsson and N. Bergman. Auxiliary particle filters for tracking a maneu-
vering target. In Proceedings of the 39:th IEEE Conference on Decision and
Control, pages 3891–3895, Sydney, Australia, December 2000.

Paper H: Model-based Statistical Tracking and Decision Making for
Collision Avoidance Application
Collision mitigation by braking is based on accurate estimates of other vehicles or obsta-
cles. Experimental data is used to model the measurement relation and brake system, and
different assumptions are compared in a simulation study using the particle filter and the
EKF. The braking criterion is discussed in terms of hypothesis testing for these methods.

Edited version of the paper:

R. Karlsson, J. Jansson, and F. Gustafsson. Model-based statistical tracking
and decision making for collision avoidance application. In Proceedings of
American Control Conference, Boston, MA, USA, June 2004.

Preliminary version published as Technical Report LiTH-ISY-R-2599, Department of Elec-
trical Engineering, Linköping University, Linköping, Sweden.



12 Chapter 1 Introduction

Papers not Included:

The following paper has contributions from many authors and is therefore not included
in the thesis.

Particle Filters for Positioning, Navigation and Tracking

F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karls-
son, and P-J Nordlund. Particle filters for positioning, navigation and track-
ing. IEEE Transactions on Signal Processing, 50:425–437, February 2002.

1.4 Contributions

The main contributions in the thesis, in order of appearance in Part II, are:

• Analysis of quantization effects in the measurement relation and some quan-
tization theory results. The adoption of the particle filter to measurement
quantization.

• Computational complexity analysis of the marginalized particle filter.

• A framework for positioning at sea using information from a distance mea-
suring equipment, featuring an underwater navigation system, and a novel
surface navigation system, with analytic Cramér-Rao lower bound calcula-
tions.

• A model-based Bayesian approach for position estimation for a flexible indus-
trial robot including modeling, performance analysis, model simplification,
and sensitivity analysis.

• A framework for particle filter-based passive ranging incorporating terrain
induced constraints in the estimation.

• Data association using the joint probabilistic data association (JPDA) al-
gorithm for the particle filter is proposed. A controller for the number of
particles is introduced to reduce computational complexity.

• Extension and implementation of a multiple model auxiliary particle filter,
using hard constraints for an air traffic control application.

• A collision avoidance algorithm based on a particle filter hypothesis test as
well as stochastic integration for an EKF is proposed and a real-time imple-
mentation is presented.



2

Estimation – Theory and
Methods

The following discrete-time state space description represents a very general dy-
namic system

xt+1 = f(xt, wt), (2.1a)

yt = h(xt, et), (2.1b)

where the state vector xt ∈ R
n represents the unknown states or parameters at

discrete-time index t, assuming a sample time T . The observation, yt ∈ R
m, is often

a nonlinear mapping of the current state. Inaccuracies in the system model and
in the measurement relation are described by the stochastic processes wt and et.
The system states can also be constrained to a subset of the state-space. The main
objective in this chapter is to estimate the state, xt, using ordered observations up
to and including time t, Yt = {y1, y2, . . . , yt} = {yi}t

i=1.

In Section 2.1, two different estimation paradigms are discussed: the Fisherian
maximum likelihood (ML) method and the Bayesian maximum a posteriori (MAP)
method. The Bayesian approach is discussed in Section 2.2. In Section 2.3, Kalman
filter theory is presented. Estimation techniques related to multiple models are
given in Section 2.4. In Section 2.5, fundamental performance limits using the
Cramér-Rao lower bound (CRLB) are discussed.

13
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2.1 Estimation Paradigms

Estimation techniques are often categorized as Fisherian or Bayesian, [90]. Here
the Fisherian maximum likelihood (ML) method and the Bayesian maximum a

posteriori (MAP) method are briefly presented. The ML method was first intro-
duced in [31, 32]. In [2], a detailed historical background is given. The Bayesian
paradigm, is based on Bayes’ theorem, [11, 44, 90]. In the Bayesian framework,
everything unknown is considered as a random variable, whereas for the Fisherian
approach, the parameters are considered fixed but unknown. In special cases, the
ML and the MAP estimator produce the same estimates, even if the approaches
are conceptually different.

Bayes’ theorem for a probability density function (pdf) with two stochastic vari-
ables x and y gives

p(x|y) =
p(y|x)p(x)

p(y)
, (2.2)

where p(x|y) is the pdf for x given y. Similar, for a set of observations Yt,

p(x|Yt) =
p(Yt|x)p(x)

p(Yt)
∝ p(Yt|x)p(x).

For random parameters the point-estimate is found by minimizing the expected
value given the observations Yt

x̂MMS
t = arg min

x
E
(
(x̂− x)2|Yt

)
, (2.3)

which is denoted the minimum mean square (MMS) estimate. It can be shown
that the solution is given by the conditional mean

x̂MMS
t = E (x|Yt) =

∫

x p(x|Yt) dx. (2.4)

In [9], this is shown if the conditional expected value is assumed differentiable,
since

∂

∂x̂
E
(
(x̂− x)2|Yt

)
= 2(x̂− E (x|Yt)) = 0 ⇒ x̂ = E (x|Yt) .

The ML method is a statistical method, where a likelihood function is con-
structed, and the estimate is chosen to maximize a likelihood criterion. If the
state vector or parameter vector is given by x ∈ R

n, the construction of the likeli-
hood function is based on the observations up to present time, Yt. The likelihood
function is constructed by combining likelihoods for different times assuming inde-
pendence

`(x|Yt) =

t∏

i=1

p(yi|x). (2.5)
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The point estimate of the parameter vector, or state vector, is given by the argu-
ment that maximizes the likelihood function. The theory relies on the fact that,
asymptotically, the ML estimate converges almost surely to the true value, under
fairly general conditions, [74]. In [66], the following definitions are used for the
MAP and the ML method

x̂MAP = argmax
x

p(x|Yt), (2.6)

x̂ML = argmax
x

p(Yt|x). (2.7)

Example 2.1 (MAP and ML estimation) Consider independent noisy mea-
surements of a parameter x.

yi = x+ ei, ei ∼ N(0, σ2), i = 1, 2, . . . , t.

• The MAP method: If the prior p(x) is assumed Gaussian, N(x0, σ
2
0), then

p(x|Yt) ∝ p(Yt|x)p(x) =

t∏

i=1

e−
(yi−x)2

2σ2 e
− (x−x0)2

2σ2
0 .

Maximization yields the MAP estimate as

x̂MAP = argmax
x

p(x|Yt) =
σ2x0 + σ2

0

∑t
i=1 yi

tσ2
0 + σ2

.

• The ML method: The likelihood is given by

p(yi|x) = pe(yi − x) =
1√
2πσ

e−
(yi−x)2

2σ2 .

The ML estimate is given by maximizing the expression

x̂ML = arg max
x

t∏

i=1

p(yi|x) =
1

t

t∑

i=1

yi.

Note that for σ0 → ∞, the ML and MAP estimates coincide.

Another interesting aspect of MMS and MAP estimation is for the Gaussian
case, where it can be shown that x̂MMS = x̂MAP . A common technique for state
estimation is the least squares (LS) method. The idea is to minimize the mean

square error (MSE), which for a nonlinear function can be formulated as

x̂LS = argmin
x

t∑

i=1

(yi − h(x))
2
. (2.8)

For an overview of different LS-methods and recursive LS-methods, see [47].
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Another important issue is when the likelihood function can be decomposed as

`(x,Y) = p(Y|x) = p1(g(Y), x)p2(Y). (2.9)

Hence, it is then clear that the ML estimate depends only on the function g(Y)
and not the complete data set Y. The function g(Y) is referred to as the sufficient

statistic for x, [66]. For a Gaussian pdf, the sufficient statistic is given by the mean
and covariance.

2.2 Bayesian Estimation

The problem of estimating a parameter or the state of a nonlinear stochastic system
using noisy measurements as observations has been an active research area for many
years. In [44], nonlinear and linear problems are discussed. For the special case,
with a linear system with additive Gaussian noise, the Kalman filter, [4, 47, 48],
yields the finite dimensional recursive solution.

In the Bayesian theory, everything unknown is considered as a stochastic vari-
able. This leads to a description, where the initial or prior distribution is assumed
to be known. Using the observations, the estimate can then later be revised by
computing the posterior density. The general theory for nonlinear filtering with
possible non-Gaussian noise distribution is described thoroughly in [3, 44, 96].

Many discrete-time recursive estimation problems can be formulated using the
system presented in (2.1). Given the observations up to time t, Yt, an estimate,
x̂t|t ∈ R

n, can be calculated from

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt) dxt, (2.10a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (2.10b)

for instance as the MMS-estimate. The Bayesian estimation formulation consists
of the time update (2.10a) and the measurement update (2.10b) equations. These
equations can be derived using the Markov property, Bayes’ theorem and standard
calculations from probability theory. The measurement update comes from

p(xt|Yt) =
p(Yt|xt)p(xt)

p(Yt)
=
p(yt,Yt−1|xt)p(xt)

p(yt,Yt−1)
=
p(yt|xt,Yt−1)p(Yt−1|xt)p(xt)

p(yt|Yt−1)p(Yt−1)

=
p(yt|xt)p(Yt−1|xt)p(xt)

p(yt|Yt−1)p(Yt−1)
=
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (2.11)

In the first equality, Bayes’ theorem is used and in the second Bayes’ theorem in
combination with the definition Yt = {Yt−1, yt}. Finally, the Markov property,
i.e., p(yt|xt,Yt−1) = p(yt|xt), and Bayes’ theorem give the result.

The time update equation is given from the following calculations

p(xt+1, xt|Yt) = p(xt+1|xt,Yt)p(xt|Yt) = [Markov] = p(xt+1|xt)p(xt|Yt). (2.12)
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Integration of both sides with respect to the state xt yields,

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt) dxt. (2.13)

Often a simplified model with additive noise is assumed

xt+1 =f(xt) + wt, (2.14a)

yt =h(xt) + et, (2.14b)

where the following relations can be calculated

p(xt+1|xt) = pwt(xt+1 − f(xt)), (2.15a)

p(yt|xt) = pet(yt − h(xt)). (2.15b)

For the case when additive noise is not assumed, the pdf can be computed locally
as shown in the sequel. The analysis and implementation of nonlinear filters are
heavily based on expressions involving gradients of scalar functions or vector valued
functions. The gradient and Jacobian matrix are defined as:

∇xg(x) =






∂g
∂x1

...
∂g

∂xn




 , g : R

n 7→ R, (2.16a)

∇xg
T (x) =






∂g1

∂x1
. . . ∂gm

∂x1

...
...

∂g1

∂xn
. . . ∂gm

∂xn




 , g : R

n 7→ R
m. (2.16b)

Also, the Laplacian for the scalar function g(x, y) with x ∈ R
n, y ∈ R

m is defined
as

∆x
yg(x, y) = ∇y(∇xg(x, y))

T , g : R
n × R

m 7→ R. (2.17)

For the case when additive noise is not assumed, the following theorem from
[44] is applicable.

Theorem 2.1 Let X and Y be two random vectors, with Y = g(X). Suppose
that the inverse g−1 exists, and both g and g−1 are continuously differentiable.
Then

pY (y) = pX(g−1(y)) ·
∣
∣det

(
∇y(g−1(y))T

)∣
∣ , (2.18)

where
∣
∣det

(
∇y(g−1(y))T

)∣
∣ denotes the absolute value of the Jacobian determinant.

Proof See [44]. 2
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By applying Theorem 2.1, as suggested in [44], the transition pdf and likelihood
pdf for the more general case in (2.1) are given as

p(xt+1|xt) = pwt+1

(
f−1(xt, xt+1)

)
·
∣
∣det

(
∇xt+1(f

−1)T
)∣
∣ , (2.19a)

p(yt|xt) = pet

(
h−1(yt, xt)

)
·
∣
∣det

(
∇yt(h

−1)T
)∣
∣ , (2.19b)

using the invertability

wt = f−1(xt, xt+1), (2.20a)

et = h−1(yt, xt). (2.20b)

2.3 Kalman Filters

In general, there does not exist a finite dimensional solution to the Bayesian es-
timation problem in (2.10). However, for the case of a linear system subject to
Gaussian noise the solution can be formulated recursively using the Kalman fil-

ter (KF). This is discussed in Section 2.3.1. For nonlinear problems, the system can
be linearized before applying the Kalman filter. The linearization is done around
the estimated state. This is referred to as the extended Kalman filter (EKF) and
discussed in Section 2.3.2. Instead of first linearizing the system in order to apply
the Kalman filter, the estimation problem can be approximated directly. The pdfs
given in (2.10) are then solved numerically. This can be done using deterministic or
stochastic methods. The solution using stochastic integration leads to the particle

filter formulation, which will be discussed in detail in Chapter 3.

2.3.1 The Kalman Filter

If a linear system with additive Gaussian noise is assumed, there exists a finite
dimensional solution to the Bayesian time update and measurement update equa-
tions (2.10), given by the Kalman filter (KF), [47, 48]. Since the system is linear
and Gaussian, the update formula will remain Gaussian, and since a Gaussian dis-
tribution can be described by its first two moments (mean and covariance), the
update equations will consist of mean and covariance updates only. Many books
describing different aspects of the Kalman filter exist. Much of the classical theory
is described in [4, 47]. Consider a linear-Gaussian time-varying state space model:

xt+1 = Ftxt +Gu,tut +Gw,twt, (2.21a)

yt = Htxt + et. (2.21b)

The input signal is denoted ut, the process noise wt and the measurement noise et,
with Cov (wt) = Qt and Cov (et) = Rt respectively, and with cross covariance St.
This is summarized as:

E









wt

et

x0




(
wT

s eT
s xT

0 1
)



 =





Qt,sδt,s St,sδt,s 0 0
ST

t,sδt,s Rt,sδt,s 0 0
0 0 Π0 0



 , (2.22)
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where

δt,s =

{

1, t = s,

0, t 6= s.
(2.23)

If the initial state x0 and process noise wt and measurement noise et are Gaussian
variables, then given the cumulative set of observations, Yt,

xt+1|Yt ∼ N(x̂t+1|t, Pt+1|t), (2.24a)

xt|Yt ∼ N(x̂t|t, Pt|t), (2.24b)

Consider first the case of un-correlated noises, St = 0. The time and mea-
surement updates in the Kalman filter are given in Algorithm 2.1. The case of
correlated noise, i.e., St 6= 0, can be handled using a Gram-Schmidt orthogonaliza-
tion process, [47, p.326].

Algorithm 2.1 Kalman filter (KF)

Assume that x̂0|−1 = x0 and P0|−1 = Π0.
Time update:

x̂t+1|t = Ftx̂t|t +Gu,tut, (2.25a)

Pt+1|t = FtPt|tF
T
t +Gw,tQtG

T
w,t, (2.25b)

Measurement update:

x̂t|t = x̂t|t−1 +Kt(yt −Htx̂t|t−1), (2.26a)

Pt|t = Pt|t−1 −KtHtPt|t−1, (2.26b)

where

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t +Rt

)−1
. (2.27)

2.3.2 The Extended Kalman Filter

Many estimation problems are nonlinear, but the noise model is assumed Gaussian.
The main idea is to linearize the system and apply the Kalman filter. This approach
is referred to as the extended Kalman filter (EKF), [4, 47], or Schmidt extended
Kalman filter.

Consider the following system

xt+1 = f(xt) + g(xt)wt, (2.28a)

yt = h(xt) + et, (2.28b)
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where wt and et are considered Gaussian with zero mean and covariances Qt and
Rt respectively, and initial uncertainty Π0, i.e.,

E









wt

et

x0 − x̄0




(
wT

s eT
s (x0 − x̄0)

T 1
)



 =





Qt,sδt,s 0 0 0
0 Rt,sδt,s 0 0
0 0 Π0 0



 .

(2.29)

The system can also be time-varying, but that is not explicitly stated here for
notational simplicity. Use the following approximations

f(xt) ≈ f(x̂t|t) + Ft(xt − x̂t|t), (2.30a)

h(xt) ≈ h(x̂t|t−1) +Ht(xt − x̂t|t−1), (2.30b)

g(xt) ≈ g(x̂t|t) = Gt, (2.30c)

where

F T
t = ∇xf

T (x)
∣
∣
x=x̂t|t

, HT
t = ∇xh

T (x)
∣
∣
x=x̂t|t−1

. (2.31)

Combining the system and the approximations now gives

xt+1 = Ftxt +
(
f(x̂t|t) − Ftx̂t|t

)

︸ ︷︷ ︸

known at time t

+Gtwt, (2.32a)

yt −
(
h(x̂t|t−1) −Htx̂t|t−1

)

︸ ︷︷ ︸

known at time t − 1

= Htxt + et. (2.32b)

This is a linear state-space model for xt. Applying the Kalman filter yields

x̂t+1|t = Ftx̂t|t +
(
f(x̂t|t) − Ftx̂t|t

)
= f(x̂t|t), (2.33a)

x̂t|t = x̂t|t−1 +Kt

(
yt − (h(x̂t|t−1) −Htx̂t|t−1) −Htx̂t|t−1

)

= x̂t|t−1 +Kt

(
yt − h(x̂t|t−1)

)
. (2.33b)

The covariance recursion and Kalman gain are given by the Kalman filter. To
summarize, the EKF is given in Algorithm 2.2.

2.4 Multiple Models

Many estimation problems involve rapid changes in the system dynamics. In for
instance target tracking applications, this can be due to the unknown target ma-
neuver sequence. To achieve an accurate estimate, several models can be used,
each adopted to describe a specific feature. One important issue for a multiple
model or filter application, is to reduce the number of hypotheses. This can be
done using pruning or merging (mixing) techniques. The estimate is constructed
either by mixing or switching between the models, [10, 37].
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Algorithm 2.2 Extended Kalman filter (EKF)

Time update :

x̂t+1|t = f(x̂t|t), (2.34a)

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t , (2.34b)

Measurement update :

x̂t|t = x̂t|t−1 +Kt

(
yt − h(x̂t|t−1)

)
, (2.35a)

Pt|t = Pt|t−1 −KtHtPt|t−1, (2.35b)

where

Kt = Pt|t−1H
T
t

(
HtPt|t−1H

T
t +Rt

)−1
, (2.36a)

F T
t = ∇xf

T (x)
∣
∣
x=x̂t|t

, HT
t = ∇xh

T (x)
∣
∣
x=x̂t|t−1

. (2.36b)

Briefly summarizing the multiple model approach using merging techniques,
assume N different models/filters approximating the density p(x) by mean x̂(i)

and covariance P (i). The merging is then performed according to

p(x) =

N∑

i=1

γ(i)
N(x; x̂(i), P (i)) ≈ N(x; x̂, P ),

N∑

i=1

γ(i) = 1, (2.37)

where

x̂ =
N∑

i=1

γ(i)x̂(i), (2.38a)

P =

N∑

i=1

γ(i)
(

P (i) + (x̂(i) − x̂)(x̂(i) − x̂)T
)

. (2.38b)

The term
∑N

i=1 γ
(i)(x(i) − x̂)(x(i) − x̂)T is referred to as the spread of the mean.

In this thesis two different techniques are used. The interacting multiple model

(IMM) described in Section 2.4.1 and the range parameterized extended Kalman

filter (RPEKF) described in Section 2.4.2. In Section 2.4.3, several other multiple
model methods are briefly discussed.

2.4.1 Interactive Multiple Models

In [16], a filtering algorithm for linear discrete-time filters with Markovian coef-
ficients is given. The suboptimal filter is called the interacting multiple model

(IMM). The presentation here is based on material from [10, p. 463-464].
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Assume that N different models at time t are used, denoted M(i)
t , where the

probability for each model is γ
(i)
t = Prob(M(i)

t |Yt). The pdf at time t is given by
the total probability theorem using N different models as

p(xt|Yt) =
N∑

j=1

p(xt|M(j)
t ,Yt) Prob(M(j)

t |Yt)
︸ ︷︷ ︸

γ
(j)
t

. (2.39)

Applying Bayes’ theorem to the first factor in (2.39) using Yt = {yt,Yt−1} gives

p(xt|M(j)
t ,Yt) ∝ p(yt|M(j)

t , xt)p(xt|M(j)
t ,Yt−1). (2.40)

Applying the total probability theorem to the last factor in (2.40) gives

p(xt|M(j)
t ,Yt−1) =

N∑

i=1

p(xt|M(j)
t ,M(i)

t−1,Yt−1) Prob(M(i)
t−1|M

(j)
t ,Yt−1)

︸ ︷︷ ︸

γt−1|t−1(i,j)

≈
N∑

i=1

p
(

xt|M(j)
t ,M(i)

t−1, {x̂
(l)
t−1|t−1, P

(l)
t−1|t−1}N

l=1

)

γt−1|t−1(i, j)

=

N∑

i=1

p(xt|M(j)
t ,M(i)

t−1, x̂
(i)
t−1|t−1, P

(i)
t−1|t−1)γt−1|t−1(i, j). (2.41)

The approximation in (2.41) is due to the fact that the models summarize the his-
tory through the estimates and covariances. The mixing probabilities are expressed
using Bayes’ theorem as

γt−1|t−1(i, j) = Prob(M(i)
t−1|M

(j)
t ,Yt−1)

∝ Prob(M(j)
t |M(i)

t−1,Yt−1)
︸ ︷︷ ︸

p(i,j)

Prob(M(i)
t−1|Yt−1)

︸ ︷︷ ︸

γ
(i)
t−1

, (2.42)

where p(i, j) in practice is used as a design parameter. Condensing (2.41) by
approximating the Gaussian mixture with a single Gaussian gives

p(xt|M(j)
t ,Yt−1) =

N∑

j=1

N

(

xt; E
(

xt|M(j)
t , x̂

(i)
t−1|t−1

)

,Cov (·)
)

γt−1|t−1(i, j)

≈ N

(

xt;

N∑

i=1

E

(

xt|M(j)
t , x̂

(i)
t−1|t−1

)

γt−1|t−1(i, j),Cov (·)
)

= N

(

xt; E

(

xt|M(j)
t ,

N∑

i=1

x̂
(i)
t−1|t−1γt−1|t−1(i, j)

)

,Cov (·)
)

,

where Cov (·) denotes the covariance for each expression.
The IMM method is summarized in Algorithm 2.3, where also all covariance

matrices are explicitly given.
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Algorithm 2.3 Interactive Multiple Model (IMM), [10]

1: Calculate the mixing probabilities, using the probability that mode M(i) is in
effect at t−1 given that model M(j) is in effect at time t conditioned upon the
measurements Yt−1.

γt−1|t−1(i, j) = Prob(M(i)
t−1|M

(j)
t ,Yt−1),

=
1

c̄(j)
Prob(M(j)

t |M(i)
t−1,Yt−1)

︸ ︷︷ ︸

p(i,j)

Prob(M(i)
t−1|Yt−1)

︸ ︷︷ ︸

γ
(i)
t−1

,

i, j = 1, . . . , N,

c̄(j) =

N∑

i=1

p(i, j)γ
(i)
t−1, j = 1, . . . , N.

2: Calculate the initial mixing condition for j = 1, . . . , N filters

x̂
(j),0
t−1|t−1 =

N∑

i=1

x̂
(i)
t−1|t−1γt−1|t−1(i, j),

Dt−1(i, j) = x̂
(i)
t−1|t−1 − x̂

(j),0
t−1|t−1,

P
(j),0
t−1|t−1 =

N∑

i=1

γt−1|t−1(i, j)
(

P
(i)
t−1|t−1 +Dt−1(i, j)D

T
t−1(i, j)

)

.

3: Calculate x̂
(j)
t|t , P

(j)
t|t for j = 1, . . . , N , with likelhood functions

`
(j)
t = p(yt|M(j)

t , x̂
(j),0
t−1|t−1, P

(j),0
t−1|t−1).

4: Mode probability update for j = 1, . . . , N

γ
(j)
t = Prob(M(j)

t |Yt) =
1

c
p(yt|M(j)

t ,Yt−1) Prob(M(j)
t |Yt−1)

=
1

c
`
(j)
t

N∑

i=1

p(i, j)γ
(i)
t−1 =

1

c
`
(j)
t c̄(j),

c =

N∑

j=1

`
(j)
t c̄(j).

5: Estimate and covariance combination

x̂t|t =

N∑

j=1

γ
(j)
t x̂

(j)
t|t , Pt|t =

N∑

j=1

γ
(j)
t

(

P
(j)
t|t + (x̂

(j)
t|t − x̂t|t)(x̂

(j)
t|t − x̂t|t)

T
)

.
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In Example 2.2, a radar tracking application is presented using the IMM method
with two filters. One filter is used to handle straight paths accurately, whereas the
other is used to manage maneuvers. Due to the nonlinearities in the measurement
equation an EKF is used for the estimation.

Example 2.2 (The IMM method for two models) In Figure 2.1, the IMM
algorithm is presented graphically for the special case, where only 2 models are
used. Consider a radar tracking system, where the distance and angle to the target
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Figure 2.1: Schematic overview of the IMM algorithm for 2 models.

are measured from a ground based system placed in the origin. The following
Cartesian model with state vector xt = (X Y Ẋ Ẏ )T , where X,Y are the Cartesian
position coordinates and Ẋ, Ẏ are the velocity components. The discrete-time
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model and measurement relation are given as

xt+1 =







1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1






xt +







T 2

2 0

0 T 2

2
T 0
0 T






wt,

yt = h(xt) =

(√

X2
t + Y 2

t

arctan( Yt

Xt
)

)

+ et, et ∼ N

((
0
0

)

,

(
102 0
0 0.0012

))

.

The true trajectory is generated as a straight path, followed by a maneuver between
t = 20 − 40 and then continuing on a straight path. In the IMM filter, the two
models are tuned to maneuver and non-maneuver, using different values on the
process noise covariance matrix, Qt = Cov (wt), (low variance for straight path
and high variance for maneuver). The probability to change between the models
is 0.05. In Figure 2.2 (a), the scenario, true trajectory, measurements, and IMM
estimates are given and in Figure 2.2 (b), the probabilities from the IMM filter
(maneuver or non-maneuver) are presented.
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Figure 2.2: The IMM-2 filter estimates and probabilities.

In Paper G, the IMM filter is used in a maneuvering target tracking application.

2.4.2 The Range Parameterized Extended Kalman Filters

Passive ranging or estimation of range and velocity using only a passive sensor,
such as the IR sensor, is a difficult problem. The main idea is to maneuver the
own platform in such a way that relative range and velocity can be estimated. In
practice, this means that maneuvers have to be performed to out-maneuver the un-
known target. An accurate navigation system is also assumed based on information
from reliable sensors with small errors, so the own trajectory and movement can be
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accurately estimated. Several approaches exist to estimate the range using a single
tracking filter. As described in [92, 95, 97] a modified spherical/polar coordinate
system is preferred to a traditional Cartesian system. The approach in this section
is to study a multiple model method to estimate the unknown range and velocity.
A special method called the range parameterized extended Kalman filter (RPEKF)
is used, which consists of a bank of EKFs, each tuned to a certain range. The
presentation in this section follows the development in [55]. The RPEKF method
described in [8, 73] consists of a bank of extended Kalman filters in Cartesian
coordinates, initialized to different range assumptions for the angle-only tracking
application. In [85], the filter bank is expressed in modified polar coordinates.

For a particular EKF the performance is dependent on the coefficient of varia-

tion, CR, [85]. To have comparable performance for each filter, the same CR value
should be used on each interval. Approximatively, this is given as σ(i)/r(i), i =
1, . . . , NF , where r(i) and σ(i) are the range and standard deviation for the differ-
ent filters. In Figure 2.3, the range intervals are depicted for a predefined interval
(rmin, rmax). The intervals and the CR are given as

r(i) =
rmin

2
(ρi + ρi−1), ρ =

(rmax

rmin

)1/NF
, (2.43a)

CR =
σ(i)

r(i)
=

2(ρ− 1)√
12(ρ+ 1)

, (2.43b)

Therefore, the variance for each interval is given as σ(i) = r(i)CR. The RPEKF
PSfrag replacements

rmin
rmaxrminρ

i−1 rminρ
i

r(i)

Figure 2.3: RPEKF range intervals.

uses the likelihood from each EKF, to recursively update its probability according
to

γ
(i)
t = p(yt|i)γ(i)

t−1. (2.44)

The prior distribution is assumed uniform, i.e., γ
(i)
0 = 1/NF , i = 1, . . . , NF . How-

ever, if other information is available it could be used to enhance the performance.
Under a Gaussian assumption, the likelihood is given from the EKF as

p(yt|i) ∝
1

√

det(S
(i)
t )

e
− 1

2

“

yt−h(x̂
(i)

t|t−1
)
”T “

S
(i)
t

”−1“

yt−h(x̂
(i)

t|t−1
)
”

, (2.45a)

S
(i)
t = H

(i)
t P

(i)
t|t−1(H

(i)
t )T +Rt, (2.45b)

(

H
(i)
t

)T

= ∇xh
T (x)

∣
∣
x=x̂

(i)

t|t−1

, (2.45c)
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Figure 2.4: The RPEKF structure.

where Rt is the measurement noise covariance matrix. The measurement update
for each filter is given by the Kalman filter equations. The combined estimate and
covariance can now be expressed using (2.38)

x̂t|t =

NF∑

i=1

γ
(i)
t x̂

(i)
t|t , (2.46a)

Pt|t =

NF∑

i=1

γ
(i)
t

(

P
(i)
t|t + (x̂

(i)
t|t − x̂t|t)(x̂

(i)
t|t − x̂t|t)

T
)

, (2.46b)

where P
(i)
t|t is the covariance and x̂

(i)
t|t the estimate for the different range filters i =

1, . . . , NF . In Figure 2.4, the RPEKF idea is summarized. If the filter probability is
less than a predefined threshold or if some other criterion, such as if the estimated
range in a filter is outside the (rmin, rmax) interval, the filter is removed from further
calculations.

In paper E, the RPEKF is applied to several bearings-only applications.

2.4.3 Other Multiple Model Methods

In this thesis only the previously described IMM and RPEKF methods are used in
the applications. As mentioned, other important multiple model methods exist. A
few of them are described below.

The adaptive forgetting through multiple models (AFMM), [5], is an example
of an estimation technique using multiple models/filters. Instead of mixing the
individual estimates, it is computed by jumping between the models. By applying
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a change detector between different models, the switching can be implemented
differently.

The general multiple model idea is often based on the Gaussian sum (GS)
approximation, described in [4, 96]. The GS method approximates the pdf with a
sum of Gaussian densities.

A similar method as the IMM is given by the generalized pseudo-Bayesian

(GPB) method. The GPB approach merges the mixture after the measurement
update, whereas for the IMM method merging is applied after the time update of
the weights rather than after the measurement update. In [37], these methods are
described in more detail.

The unscented Kalman filter (UKF), [45, 46], uses the unscented transform
for state estimation. Unlike the EKF the system is not linearized, instead the
posterior density is approximated by a Gaussian density. Combination of different
approaches, such as IMM-EKF, IMM-UKF etc. exist.

In [37, 89] several of the methods presented in this section are described in
detail. In Section 3.2.5 several of these methods are discussed in the particle filter
framework.

2.5 Cramér-Rao Lower Bound

It is often important to know the theoretical performance of an estimator or filter
given a model structure. An often used performance bound is given by the Fisher

information matrix (FIM), which gives a bound on the second order moment. This
bound is often referred to as the Cramér-Rao lower bound (CRLB). In this section,
the CRLB is presented for static and dynamic systems.

In Paper A and Paper C theoretical CRLB limits are presented. In most of the
other papers the performance in terms of CRLB is evaluated numerically.

2.5.1 Cramér-Rao Lower Bound for a Static System

For an unbiased estimator, E (x̂) = x, the CRLB, [21, 66, 74], is given by

Cov (x− x̂) = E
(
(x− x̂)(x− x̂)T

)
� J−1(x), (2.47a)

J(x) = E (−∆x
x log p(y|x)) , (2.47b)

where J(x) denotes the FIM for the measurement y regarding the stochastic param-
eter x. The Laplacian operator is defined in (2.17). An equivalent representation
of the information is, [66],

E
(
∇x log p(y|x)(∇x log p(y|x))T

)
= E (−∆x

x log p(y|x)) . (2.48)

The gradient and Jacobian are defined in (2.16). Particularly, a Gaussian likelihood
p(y|x), with measurement covariance R, gives

J(x) = HT (x)R−1H(x), (2.49)
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where

HT (x) = ∇xh
T (x). (2.50)

For the case with multiple independent measurements y(i), i = 1, . . . ,M , the infor-
mation is given as

J(x) =

M∑

i=1

J (i)(x), (2.51)

due to the additivity of information, where J (i) is the information for measure-
ment i.

2.5.2 Cramér-Rao Lower Bound for a Dynamic System

In this section, a CRLB bound for the filtering case is presented. The theoretical
posterior CRLB for a dynamic system is analyzed in [13, 26, 100, 102]. Here, the
following model is considered:

xt+1 = f(xt, wt), (2.52a)

yt = h(xt) + et. (2.52b)

From [13], the posterior CRLB is

Cov
(
xt − x̂t|t

)
= E

(
(xt − x̂t|t)(xt − x̂t|t)

T
)
� Pt|t, (2.53)

where Pt|t can be retrieved from the recursion

P−1
t+1|t+1 = Q−1

t + Jt+1 − ST
t

(

P−1
t|t + Vt

)−1

St, (2.54)

assuming that Qt is invertible and where

Vt = E
(
−∆xt

xt
log p(xt+1|xt)

)
, (2.55a)

St = E
(
−∆xt+1

xt
log p(xt+1|xt)

)
, (2.55b)

Q−1
t = E

(

−∆xt+1
xt+1

log p(xt+1|xt)
)

, (2.55c)

Jt = E
(
−∆xt

xt
log p(yt|xt)

)
. (2.55d)

For linear dynamics with additive Gaussian noise

xt+1 = Ftxt + wt, (2.56)

the following holds

Vt = FtQ
−1
t F T

t , St = −F T
t Q

−1
t , (2.57)
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where Cov (wt) = Qt. If Qt is not full rank, instead of using the above information
form, the CRLB can be expressed with a Kalman filter recursion for the covariance
matrix.

In Paper A and Paper C theoretical CRLB limits are presented. If the model
is too complicated the CRLB can be calculated numerically. Also, the square root
of the trace of the CRLB matrix can be compared to the root mean square error

(RMSE),

RMSE(t) =




1

NMC

NMC∑

j=1

‖xtrue

t − x̂
(j)
t ‖2

2





1/2

, (2.58)

where xtrue

t is the true state at time t and x̂
(j)
t the estimate from the chosen

estimator in Monte Carlo simulation j.



3

Numerical Methods for
Bayesian Estimation

In this chapter, the main objective is to study methods to solve the untractable
recursive Bayesian estimation problem. The solution is based on numerical inte-
gration. First a deterministic grid-based integration method is discussed and then
a stochastic integration method is introduced. The main part of the chapter is
devoted to recursive Bayesian estimation based on the particle filter (PF) method.

In Section 3.1 deterministic and stochastic numerical integration are discussed
as a motivation for the recursive solution of the Bayesian estimation problem using
the particle filter presented in Section 3.2.

3.1 Numerical Integration

Several different approaches exist for solving integrals numerically. Many methods
are based on deterministic integration, where the integral is approximated by a
Riemann sum, others rely on stochastic simulation. Sometimes the method is only
applicable to integration on R, whereas other methods are more general.

31
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3.1.1 Grid-Based Integration

The grid-based approximation for a general integral in R
n is defined as

∫

Rn

g(xt) dxt ≈
N∑

i=1

g(x
(i)
t )∆n, (3.1)

using a regular grid, where ∆n represents the volume and where {x(i)
t }N

i=1 is the
set of samples. The approximation error is dependent on the grid size, ∆, hence in
principle on the dimension of the state space.

In [72], the Bayesian approach is investigated for a discrete-time nonlinear sys-
tem. The Bayesian time update and measurement update are solved using an
approximative numerical method, where the density functions are piecewise con-
stant on regular regions in the state space. Applying this grid-based integration to
the general Bayesian estimation problem in (2.10), using the model with additive
noise as in (2.14) yields the following approximation

p(x
(i)
t |Yt) = γ−1

t pet(yt − h(x
(i)
t ))p(x

(i)
t |Yt−1), (3.2a)

p(x
(i)
t+1|Yt) =

N∑

j=1

pwt(x
(i)
t+1 − f(x

(j)
t ))p(x

(j)
t |Yt)∆

n, (3.2b)

where the normalization factor γt is given by

γt =

N∑

i=1

pet(yt − h(x
(i)
t ))p(x

(i)
t |Yt−1)∆

n. (3.3)

The mean estimate is approximated as

x̂t|t = E (xt|Yt) ≈
N∑

i=1

x
(i)
t p(x

(i)
t |Yt)∆

n. (3.4)

In [12, 98], a nonlinear and non-Gaussian two-dimensional navigation estimation
problem is solved using a grid-based integration of the Bayesian equations. Perfor-
mance analysis in terms of the Cramér-Rao lower bound is presented in [12, 13].
Several implementation issues and how to use an adaptive grid size are also dis-
cussed in [12]. In [1], the navigation system is analyzed with a higher order state
space model, incorporating drift terms in the filter. To avoid a higher dimension
grid-based implementation, which is troublesome, the particle filter method is used.

In [99], the nonlinear and non-Gaussian problem is analyzed using grid-based
integration as well as Monte Carlo integration for prediction and smoothing. Sev-
eral nonlinear systems are compared using different techniques.

3.1.2 Stochastic Integration

Instead of using a deterministic numerical integration method, integrals can often
be more efficiently solved using stochastic integration or the related Monte Carlo
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method. Here, the focus is on the method denoted importance sampling (IS), [91],
since it constitutes an important part of the particle filter. Many more methods
exist, see for instance [13, 35, 49, 91]. The problem consists of approximating
the expected mean of a function, using the underlying probability density p(·).
The main idea is to use a proposal density, q(·), from which samples can easily be
produced. Using this proposed density, the expected mean of an arbitrary function,
g(·), can be written as

E (g(X)) =

∫

g(x)p(x) dx =

∫

g(x)
p(x)

q(x)
q(x) dx. (3.5)

Hence, the mean value of g(x) is calculated by computing the mean of g(x)p(x)/q(x)
with samples from the density q(x). Approximating the integral and calculating
the mean value gives

E (g(X)) ≈ 1

N

N∑

i=1

p(x(i))

q(x(i))
︸ ︷︷ ︸

γ(i)

g(x(i)), (3.6)

where {x(i)
t }N

i=1 are independent identically distributed (i.i.d.) samples from q(·)
and the importance weights are defined as γ(i) = p(x(i))/q(x(i)). In an example
in [91, p. 80], it is shown that it may actually be favorable to generate samples
from a pdf other than that of interest.

A brief theoretical motivation is given for the case of perfect sampling. Assume
N independent samples drawn from a pdf p(x). Define

ĝ
N

=
1

N

N∑

i=1

g(x(i)), (3.7)

as an estimate of the mean of a function g(x), with

I = E (g(x)) =

∫

Rn

g(x)p(x) dx. (3.8)

The estimate is asymptotically unbiased and the sum converges almost surely to
the true value

Prob
(

lim
N→∞

ĝ
N

= I
)

= 1, (3.9)

by the strong law of large numbers. Moreover, [34], if

σ2 = Var (g(x)) =

∫

Rn

(g(x) − I)2p(x) dx =

∫

Rn

g2(x)p(x) dx − I2 < +∞, (3.10)

then by the central limit theorem the approximation error converges in distribution,
that is

lim
N→∞

√
N(ĝ

N
− I) ∼ N(0, σ2). (3.11)
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The error of the estimate of the stochastic integration, e = ĝN − I , is of the order
O(N−1/2), so the rate of convergence is independent of the state dimension, see for
instance [13, 24, 89]. However, note that the constant in the convergence increases
with the state dimension.

The particle filter method in Section 3.2 approximates the pdf from (2.10), using
importance sampling with a certain proposal density. The main idea is that the
sampled pdf will approach the true pdf if the number of samples is large enough.

3.2 Particle Filters

In estimation problems the task is to estimate unknown quantities from noisy
observations, often with prior knowledge available. Therefore, it is natural to use a
Bayesian approach. Many engineering problems are by nature recursive and require
on-line solutions. For linear systems with a Gaussian noise assumption it is possible
to derive a finite dimensional solution for the estimate. This recursive expression is
given by the famous Kalman filter, [4, 47, 48]. For partially observed linear systems,
the hidden Markov model (HMM), gives the solution. For many practical problems,
linear models or the assumption of Gaussian noise, are not plausible. Therefore,
there is a need for accurate recursive state estimation techniques for nonlinear and
non-Gaussian problems. Monte Carlo techniques have been a growing research
field lately due to improved computer performance. The seminal paper [36] marks
the onset of a rebirth for algorithms based on sequential Monte Carlo simulation
techniques for solving the Bayesian estimation problem. However, similar ideas
have been discussed in [39, 40], where the conditional mean and covariance were
calculated using importance sampling for recursive Bayesian estimation.

Sequential Monte Carlo methods, or particle filters, [26, 36, 89], provide general
solutions to many problems, where linearizations and Gaussian approximations are
intractable or would yield too low performance. Non-Gaussian noise assumptions
and incorporation of constraints on the state variables can also be performed in a
natural way.

Several versions of the particle filter exist. In Section 3.2.1, the original sam-

pling importance resampling (SIR), [36], particle filter is presented and in Sec-
tion 3.2.2, the sequential importance sampling (SIS) method is described. The
auxiliary particle filter (APF), [86], presented in Section 3.2.3, is a candidate for
heavy tailed noise or very informative measurements. If a linear-Gaussian sub-
structure is present, the marginalized particle filter (MPF) or Rao-Blackwellized
PF [6, 19, 20, 27, 28, 84, 93], can be used, as discussed in Section 3.2.4. All these
particle filters are used in Part II, both for increased performance as well as for
reduction of the computational complexity.

3.2.1 Sampling Importance Resampling

The particle filter theory presented in this section is inspired by [13, 27, 86, 89].
Consider the nonlinear discrete-time system from (2.1). The nonlinear prediction
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density p(xt+1|Yt) and filtering density p(xt|Yt) for the Bayesian inference,[44], are
given in (2.10), and repeated below for convenience.

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt) dxt, (3.12a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (3.12b)

The particle filter provides an approximative solution to the discrete-time recur-
sive Bayesian estimation problem by updating an approximative description of the
posterior filtering density. The particle filter approximates the probability density

p(xt|Yt) by a large set of N particles {x(i)
t }N

i=1, where each particle has an assigned

relative weight, γ
(i)
t , such that all weights sum to unity. The location and weight

of each particle reflect the value of the density in that region of the state space.
The particle filter updates the particle locations and the corresponding weights
recursively with each new observation.

Often the normalization factor in (3.12b), p(yt|Yt−1), is unknown. However, in
the methods presented this factor is not necessary, since it is sufficient to evaluate

p(xt|Yt) ∝ p(yt|xt)p(xt|Yt−1), (3.13)

where the likelihood p(yt|xt) is calculated from (2.1) using the known measurement
noise density pet as described in Section 2.2.

The main idea in the particle filter is to approximate p(xt|Yt−1) with samples,
according to

p(xt|Yt−1) ≈
1

N

N∑

i=1

δ(xt − x
(i)
t ), (3.14)

where δ is the delta-Dirac function. Inserting (3.14) into (3.13) yields a density
to sample from. Details are given in Section 3.2.2. This is the original estimation
idea. However, this approach leads to divergence, where almost all of the parti-
cles have zero weight. By introducing a selection or resampling step as proposed
in [36] this can be handled. Mainly due to the resampling step and the increased
computer capacity, there has lately been an increased research activity in the se-
quential Monte Carlo field. The resampling idea, from [36], is often referred to as
Bayesian bootstrap or sampling importance resampling (SIR) and the algorithm is
given in Algorithm 3.1. Note that it is possible and sometimes even preferable to
generate more samples in the state update (step 4), and then resample back to N
particles.

The point-estimate and the uncertainty region for the particle filter can be
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Algorithm 3.1 Sampling Importance Resampling (SIR)

1: Set t = 0, generate N samples {x(i)
0 }N

i=1 from the initial distribution px0(x0).

2: Compute the weights γ
(i)
t = p(yt|x(i)

t ) and normalize, i.e.,

γ̃
(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t , i = 1, . . . , N .

3: Generate a new set {x(i?)
t }N

i=1 by resampling with replacement N times from

{x(i)
t }N

i=1, where Prob(x
(i?)
t = x

(j)
t ) = γ̃

(j)
t .

4: Predict (simulate) new particles, i.e., x
(i)
t+1 = f(x

(i?)
t , w

(i)
t ), i = 1, . . . , N , where

w
(i)
t is drawn from the process noise with pdf pwt(wt).

5: Increase t and continue from step 2.

calculated as

x̂MMS
t|t = E (xt|Yt) =

∫

xt p(xt|Yt) dxt ≈
N∑

i=1

γ
(i)
t x

(i)
t , (3.15)

Pt|t =

∫

(xt − x̂MMS
t|t )(xt − x̂MMS

t|t )T p(xt|Yt) dxt

≈
N∑

i=1

γ
(i)
t (x

(i)
t − x̂MMS

t|t )(x
(i)
t − x̂MMS

t|t )T . (3.16)

There are of course alternatives to the MMS point-estimate. One such candidate
is to use a MAP-estimate, where the point-estimate is calculated using the particle
with highest weight.

In many practical applications the system presented in (2.1) can be simplified.
A common model uses additive noise with known pdfs, pwt and pet according to

xt+1 = f(xt) + wt, (3.17a)

yt = h(xt) + et. (3.17b)

This structure simplifies the evaluation of the particle filter. The time update
and the calculation of importance weights are given in (3.18) for each particle
i = 1, . . . , N .

x
(i)
t+1 = f(x

(i?)
t ) + w

(i)
t , (3.18a)

γ
(i)
t = p(yt|x(i)

t ) = pet(yt − h(x
(i)
t )). (3.18b)

If the noise is not additive Theorem 2.1 may be applicable. As seen in (3.18b) the
importance weights are sensitive to extreme outliers. If the possibility of outliers
is not reflected in the probability density used to calculate the weights, there is a
risk of ending up with all weights close to zero. To avoid this, these measurements
can be discarded. In Example 3.1, the time-update (step 4) in the SIR method is
demonstrated.
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Example 3.1 (Particle filter pdf) In Figure 3.1, the initial particle cloud from
a Gaussian prior together with the importance weights are shown. Using the state
equation for the time update, the particle cloud is spread out according to the
figure.
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Figure 3.1: The filtering pdf p(xt|Yt) (left) and the predicted pdf
p(xt+1|Yt) (right) calculated from the particle cloud after step 4 in the SIR
algorithm.

The computational burden depends on the number of particles and on the
resampling, which is a bottle-neck when it comes to parallelization. Fortunately,
the resampling step can be efficiently implemented using a classical algorithm for
sampling N ordered i.i.d. variables, [13, 27, 88]. The i.i.d sampling method is
presented in Algorithm 3.2.

Algorithm 3.2 Sampling of ordered U(0, 1) variables, [88, p. 96]

1: Sample ū(i) ∼ U(0, 1), for i = 1, . . . , N .

2: Set u(N) =
N√
ū(N).

3: Compute u(i) = u(i+1) i√
ū(i), for i = N − 1, . . . , 1.

In [13, p. 128], a very compact Matlab implementation of Algorithm 3.2 is given.
The resampling method is illustrated in Figure 3.2. The main idea is that particles
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1

}
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γ̃
(i)
t

N

Figure 3.2: A graphical interpretation of the particle filter resampling
method. Assume N ordered uniform variables u(k), k = 1, . . . , N . The

normalized importance weight γ̃
(i)
t for particle i has a value that in this case

is large enough to include two samples of the ordered uniform variables.

Hence, the corresponding particle x
(i)
t is duplicated.

with small weights are likely to be discarded and particles with large weights are
copied, where the number of copies reflects the probability of the particle. This
can be done by iterating over the ordered uniform samples u(j), j = 1, . . . , N
and comparing the cumulative sum of importance weights up to the current index.

For example, in Figure 3.2 particle x
(i)
t is duplicated. Another approach is to

utilize deterministic resampling, e.g., to calculate the number of particles to be

copied by using N (i) = bNγ̃(i)
t c, which could be somewhat faster. Also, instead of

using Algorithm 3.2 an efficient sort function can be used. In [41], four different
resampling schemes are compared with respect to their computational complexity
and performance.

The main idea behind particle filtering seems rather straight forward and simple.
However, one reason why it has been successful is that the empirical density, built
up by the samples, converges to the true density if the number of particles is large
enough. The fact that the error is independent of the state dimension makes the
particle filter tractable for high dimensional problems, whereas for deterministic
integration methods, the error is dependent on the grid-size. Further discussions
are given in [22, 27], where convergence results are discussed. The upper bound
on the variance of the estimation error is c · O(N−1), where c is a constant. Note
that this constant depends on the state dimension. In [89], this is discussed further
in terms of the paper by [23], where it is shown that the dependence of the state
dimension is basically linear. Another important issue is how many samples that
are needed. The aim in [17] is to calculate bounds for the number of samples
needed.

For many applications using the particle filter, depletion or sample impoverish-
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ment may occur, i.e., the effective number of samples is reduced. This means that
the particle cloud will not reflect the true density, since only a few of the particles
will contribute to the approximation of the density. Several different methods are
proposed in the literature to reduce this problem. By introducing an additional
noise to the samples the depletion problem can be reduced. This technique is
called jittering in [30], but a similar approach was introduced in [36] under the
name roughening. In [28], the depletion problem is handled by introducing an
additional Markov Chain Monte Carlo (MCMC) step to separate the samples.

3.2.2 Sequential Importance Sampling

The particle filter presented in Section 3.2.1 is based on importance sampling. In
this section the recursive update is derived. This leads to a particle filter that is
often referred to as sequential importance sampling (SIS), [27].

Recall the IS method in Section 3.1.2. Consider the following notation Xt

representing the set of state vectors for different times up to and including t, that

is Xt = {x0, x1, . . . , xt}. Recall the IS-method in Section 3.1.2. If the samples X
(i)
t

were drawn from the proposal density q(Xt|Yt), then the importance weights can
be calculated as

γ
(i)
t ∝ p(X

(i)
t |Yt)

q(X
(i)
t |Yt)

. (3.19)

The complete posterior density can then be rewritten using Bayes’ theorem, the
definition of conditional probability, and the Markov property inherent in the state
space model.

p(Xt|Yt) =
p(yt|Xt,Yt−1)p(Xt|Yt−1)

p(yt|Yt−1)

=
p(yt|xt)p(xt|Xt−1,Yt−1)p(Xt−1|Yt−1)

p(yt|Yt−1)

=
p(yt|xt)p(xt|xt−1)

p(yt|Yt−1)
p(Xt−1|Yt−1). (3.20)

Ignoring the normalization factor

p(Xt|Yt) ∝ p(yt|xt)p(xt|xt−1)p(Xt−1|Yt−1). (3.21)

Assume that the proposal density is chosen such that

q(Xt|Yt) = q(xt|Xt−1,Yt)q(Xt−1|Yt−1). (3.22)

Inserting (3.21) and (3.22) into (3.19), the weights are recursively updated as

γ
(i)
t ∝ p(yt|x(i)

t )p(x
(i)
t |x(i)

t−1)p(X
(i)
t−1|Yt−1)

q(x
(i)
t |X(i)

t−1,Yt)q(X
(i)
t−1|Yt−1)

=
p(yt|x(i)

t )p(x
(i)
t |x(i)

t−1)

q(x
(i)
t |X(i)

t−1,Yt)
γ

(i)
t−1. (3.23)
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Particularly, the choice of q(x
(i)
t |X(i)

t−1,Yt) = p(x
(i)
t |x(i)

t−1), gives the following update

γ
(i)
t ∝ p(yt|x(i)

t ) γ
(i)
t−1. (3.24)

Different particle filter methods use a selection or resampling step to avoid
divergence. As pointed out in [27] the variance of the importance weights can only
increase over time. Therefore, if nothing is done to adjust the particle cloud, it is
impossible to avoid divergence or that the empirical density does not reflect the
true one. The choice of resampling is often done by using a predefined criterion. An
often suggested method is to study the effective sample size, Neff, [13, 27, 68, 77].
The method relies on the calculation of how many samples in the particle cloud
that actually contribute to the support of the probability density approximation. It
is impossible to evaluate the expression analytically for Neff, but an approximation
is given by

N̂eff ≈ 1
∑N

i=1(γ
(i)
t )2

. (3.25)

If the effective number of samples is less than a predefined threshold, i.e., N̂eff <
Nth, resampling should be applied. Note that, 1 ≤ N̂eff ≤ N , where the upper
bound is attained when all particles have the same weight and the lower bound
when all probability mass is at one particle. Sometimes the resampling step in
the particle filter presented in Section 3.2.2 is omitted and just imposed when it
is needed to avoid divergence in the filter. The SIS method with resampling is
summarized in Algorithm 3.3. A related method was originally developed in [78].
Note that the SIR method can be interpreted as SIS, where resampling is always
performed. In that case all weights are set equal.

Algorithm 3.3 Sequential Importance Sampling (SIS), [27]

1: Set t = 0, generate N samples {x(i)
0 }N

i=1 from the initial distribution px0(x0).

Initialize the importance weights γ̃
(i)
−1 = 1/N , i = 1, . . . , N .

2: Compute the importance weights γ
(i)
t = p(yt|x(i)

t )γ̃
(i)
t−1 and normalize, i.e.,

γ̃
(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t , i = 1, . . . , N .

3: If resampling is applied, then generate a new set {x(i?)
t }N

i=1 by

resampling with replacement N times from {x(i)
t }N

i=1, with probability

Prob(x
(i?)
t = x

(i)
t ) = γ̃

(i)
t and set γ

(i)
t = 1

N ; otherwise let {x(i?)
t } = {x(i)

t },
i = 1, . . . , N .

4: Predict (simulate) new particles, i.e., x
(i)
t+1 = f(x

(i?)
t , w

(i)
t ), i = 1, . . . , N ,

where w
(i)
t is drawn from the process noise with pdf pwt(wt).

5: Increase t and continue from step 2.
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3.2.3 The Auxiliary Particle Filter

In [86], the auxiliary particle filter (APF) was proposed as an alternative particle
filtering method. The idea is to increase the influence of particles with a large
future likelihood, assuming that the estimate is not needed until after the next
measurement. This is done by using an extra index to each particle, so the origin of
the particle can be traced, while the likelihood at the next time step is evaluated.
The effect is that those particles that were successful can be re-simulated and
therefore the probability that the particle cloud moves in the desired direction is
increased.

The APF extends the state xt by predicting the state conditional upon parti-

cle k. At time t, the particle set {x(i)
t }N

i=1 and the corresponding weights γ̃
(i)
t form

the following approximations of the prediction and the filter densities

p(xt+1|Yt) =

N∑

i=1

p(xt+1|x(i)
t )p(x

(i)
t |Yt), (3.26a)

p(xt+1|Yt+1) ∝ p(yt+1|xt+1)

N∑

i=1

p(xt+1|x(i)
t )p(x

(i)
t |Yt), (3.26b)

where Yt is the set of cumulative measurements up to and including time t. By
defining

p(xt+1, k|Yt+1) ∝ p(yt+1|xt+1)p(xt+1|x(k)
t )p(k|Yt), k = 1, . . . , N, (3.27)

samples can be drawn from this joint density and then discard the index, to produce
a sample from the empirical filtering density as required. The index k is referred
to as an auxiliary variable. Consider the joint density of particle k at time t and
the state at time t+ 1. Bayes’ theorem gives

p(xt+1, k|Yt+1) ∝ p(yt+1|xt+1, k)p(xt+1, k|Yt) = p(yt+1|xt+1)p(xt+1|k,Yt)

= p(yt+1|xt+1)p(xt+1|x(k)
t )p(k|Yt)

= p(yt+1|xt+1)p(xt+1|x(k)
t )p(k|Yt). (3.28)

Approximating this expression by replacing xt+1 with the expected mean

µ
(k)
t+1 = E

(

xt+1|x(k)
t

)

,

in the first factor gives

p(xt+1, k|Yt+1) ∝ p(yt+1|µ(k)
t+1)p(xt+1|x(k)

t )p(k|Yt). (3.29)

Marginalization over xt+1 yields

p(k|Yt+1) ∝ p(yt+1|µ(k)
t+1)p(k|Yt). (3.30)
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Algorithm 3.4 Auxiliary Particle Filter (APF), [86]

1: Set t = 0, and generate N samples {x(i)
0 }N

i=1 from p(x0), set µ
(k)
t = x

(k)
t ,

γ̃
(j)
0 = 1/N , k(j) = j, j = 1, . . . , N .

2: Compute µ
(k)
t+1 = E

(

xt+1|x(k)
t

)

.

3: Generate new indices k(j) by sampling N times from

p(k|Yt+1) ∝ γ̃
(k)
t p(yt+1|µ(k)

t+1) and predict (simulate) the particles, i.e.,

x
(j)
t+1 = f(x

(k(j))
t , w

(j)
t ), j = 1, . . . , N with different noise realizations.

4: Compute the likelihood weights γ
(j)
t =

p(yt+1|x(j)
t+1)

p(yt+1|µ(k(j))
t+1 )

for j = 1, . . . , N and nor-

malize, i.e., γ̃
(j)
t = γ

(j)
t /

∑M
j=1 γ

(j)
t .

5: Perform an optional resampling of the set {x(i)
t+1}N

i=1, using the probability

weights. If resampling is chosen then reset γ̃
(j)
t = 1

N , j = 1, . . . , N .
6: Increase t and continue from step 2.

Sampling from the density (3.28) can now be performed by resampling with re-

placement from the set {x(i)
t }N

i=1, where the index is chosen proportional to (3.30).
The resampled candidates are then predicted using the system model. To summa-
rize, the APF algorithm is given in Algorithm 3.4. The APF method is discussed
in Paper G for a maneuvering target tracking application.

3.2.4 The Marginalized Particle Filter

In Section 3.2.1, the pdf p(xt|Yt) was approximated recursively using the particle
filter for the whole state vector xt. However, if the system has a linear-Gaussian
sub-structure, this can be exploited to obtain a more efficient estimator. In practice
this is done by marginalizing out the linear variables from p(xt|Yt). Denote the
linear states with xl

t and the nonlinear states xp
t , with X

p
t = {xp

i }t
i=0 and Xt =

{xk
t ,X

p
t }. Hence,

p(Xt|Yt) = p(Xp
t , x

k
t |Yt) = p(xk

t |Xp
t ,Yt)p(X

p
t |Yt), (3.31)

where p(xk
t |Xp

t ,Yt) is given by a Kalman filter and where p(Xp
t |Yt) is given by a

particle filter. This marginalization idea is sometimes referred to as Rao-Black-
wellization, see e.g., [6, 7, 20, 26, 27, 84, 93, 94].

Several different model structures can be analyzed using marginalization, [93].
Here, linear dynamics with a nonlinear measurement relation is considered. Using
the notation xp

t for the states that are estimated using the particle filer and xk
t for

the states that are estimated using the Kalman filter, the model will thus be

xp
t+1 = Ap

tx
p
t +Ak

t x
k
t + wp

t , (3.32a)

xk
t+1 = F p

t x
p
t + F k

t x
k
t + wk

t , (3.32b)

yt = ht(x
p
t ) + et, (3.32c)
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where

wp
t ∼ N(0, Qp

t ), (3.32d)

wk
t ∼ N(0, Qk

t ), (3.32e)

et ∼ N(0, Rt). (3.32f)

All noise signals are considered white and independent. In Algorithm 3.5, the
MPF is summarized for the model given in (3.32). For a detailed derivation of this
algorithm the reader is referred to [94].

In Algorithm 3.5, the MPF is presented for white and independent noise. If for
instance the process noise is correlated, which is common in many positioning and
target tracking applications, the algorithm must be modified. If w̄t = Gwt, then

Q̄t = E
(
w̄tw̄

T
t

)
= GQtG

T =

(
Qp

t St

ST
t Qk

t

)

. (3.38)

In order to adjust for the correlated process noise, define the scalar product of two
stochastic variables as<u, v> = E

(
uvT

)
and the norm ‖u‖ =

√
<u, u>. According

to [47] the noise can then be decorrelated by

w̃k
t = w̄k

t −<w̄k
t , w̄

p
t>‖w̄p

t ‖−2w̄p
t = w̄k

t − St(Q
p
t )

−1w̄p
t , (3.39)

where St = <w̄p
t , w̄

k
t>. Once Step 4 (b) in Algorithm 3.5 has been executed w̄p

t is
known and it is straightforward to calculate w̃k

t , and the decorrelation is complete.
Note that several permutations are possible when selecting the partition of the

state-vector, since the particle filter can include part of the xk
t states. Two relevant

aspects with respect to this partitioning are how it will affect the computational
load and the estimation performance. This is discussed in Paper B. In Paper E,
the MPF is used in a bearings-only target tracking application.
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Algorithm 3.5 Marginalized Particle Filter (MPF)

1: Initialization: For i = 1, . . . , N , initialize the particles, x
p,(i)
0|−1 ∼ pxp

0
(xp

0) and set

{xk,(i)
0|−1, P

(i)
0|−1} = {x̄k

0 , P̄0}. Let t = 0.

2: For i = 1, . . . , N , evaluate the importance weights γ
(i)
t = p(yt|Xp,(i)

t ,Yt−1)
according to the likelihood

p(yt|Xp
t ,Yt−1) = N(ht(x

p
t ), Rt) (3.33)

and normalize γ̃
(i)
t =

γ
(i)
t

PN
j=1 γ

(j)
t

.

3: PF measurement update: Resample N particles with replacement according
to,

Prob(x
p,(i)
t|t = x

p,(j)
t|t−1) = γ̃

(j)
t . (3.34)

4: PF time update and Kalman filter update

(a) Kalman filter measurement update,

x̂
k,(i)
t|t = x̂

k,(i)
t|t−1, Pt|t = Pt|t−1. (3.35)

(b) PF time update: For i = 1, . . . , N ,

x
p,(i)
t+1|t ∼ p(xp

t+1|t|X
p,(i)
t ,Yt), (3.36)

where

p(x
p,(i)
t+1 |Xp,(i)

t ,Yt) = N(Atx
p,(i)
t +Ak

t x̂
k,(i)
t|t , Ak

t Pt|t(A
k
t )T +Qp

t ).

(c) Kalman filter time update,

x̂
k,(i)
t+1|t = F k

t x̂
k,(i)
t|t + F p

t x
p,(i)
t + Lt(x

p,(i)
t+1|t −Ap

tx
p,(i)
t −Ak

t x̂
k,(i)
t|t ),

Pt+1|t = F k
t Pt|t(F

k
t )T +Qk

t − LtMtL
T
t ,

Mt = Ak
t Pt|t(A

k
t )T +Qp

t ,

Lt = F k
t Pt|t(A

k
t )TM−1

t ,

5: Set t := t+ 1 and continue from step 2.
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3.2.5 Other Particle Filter Methods

In this thesis the SIR, SIS, APF, and MPF versions of the particle filter are pre-
sented. However, there are other methods or variations that are of interest. In this
section different topics related to resampling, multiple models and sub-optimal
approximations are briefly presented.

Resampling is crucial for reducing the degeneracy problem for particle filters.
Hence, a lot of work has been invested trying to improve it. However, the introduc-
tion of the resampling step leads to a loss of diversity among the particles. In [26],
the regularized particle filter (RPF) was proposed as a solution to the problem.
A summary of the RPF is given in [82]. Instead of drawing samples from a dis-
crete approximation the samples are drawn from a continuous approximation of the
density, where the posterior filtering density is constructed using kernel functions
around the particles. The RPF uses the following approximation

p(xt|Yt) ≈
N∑

i=1

γ
(i)
t Kα(xt − x

(i)
t ), with Kα(x) =

1

αn
K(x/α), (3.40)

where K(·) is a kernel function, xt ∈ R
n and α > 0 is the kernel bandwidth. The

kernel function is a symmetric pdf with zero mean and finite variance.
In [69, 70, 71], a particle filtering approach is presented, utilizing Gaussian or

Gaussian sum (GS) approximations, [4, 96]. The Gaussian particle filter (GPF),
[70], approximates the filtering and predictive pdfs by Gaussian densities using the
particle filter methodology. In the Gaussian sum particle filter (GSPF), [71], the
filtering and prediction densities are approximated by finite Gaussian mixtures,
and the sequential update relies on a sampling based method. The idea is to
approximate the pdf, for instance

p(xt|Yt) ≈
M∑

i=1

γ
(i)
t N(xt;µi, Pi), (3.41)

where M � N and the mean (µi) and covariance (Pi) are calculated from the
particles.

Several methods involve topics related to multiple model estimation. The mul-

tiple model particle filter, [28, 83, 89], handles nonlinear filtering with switching
dynamics. In Paper F, an example of this is given using the APF. The jump

Markov linear system is discussed for a particle filter implementation in [25, 28]
and jump Markov nonlinear systems are discussed in [29]. In [18], a multiple model
particle filtering method for Markovian switching systems is presented, using an
RPF for each mode. The local linearized particle filter, [89], or EKF-PF in [101],
use an EKF for each particle to generate a Gaussian importance distribution. Sim-
ilar, the unscented particle filter (UPF), [101], using the unscented Kalman filter

(UKF), [45, 46] is adopted for particle filtering.
Usually, the PF is implemented in on-line applications, where data are processed

sequentially in order of arrival. However, sometimes the estimate is not needed until
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future measurements are available or the measurements are not ordered in time.
Smoothing, i.e., improving estimation using non-causal filtering is discussed for the
particle filter in [27, 28, 33, 67]. The out-of-sequence measurement problem, when
measurements arrive in non consecutive order, is discussed for particle filtering in
for instance [79, 80]. Several of the above modifications or algorithms are also
presented in [26, 89].



4

Summary

The focus of this thesis is on recursive Bayesian estimation methods, where the
particle filter is the main tool for solving the non-tractable Bayesian recursions.
The extended Kalman filter (EKF) and linearized multiple models are classical
methods used for comparison. In various positioning and tracking applications
different aspects are emphasized. To summarize, the particle filter method is easy
to implement for many nonlinear discrete-time systems. It can handle non-Gaussian
noise and it is easy to impose constraints. For instance, the nonlinear measurement
relation or the constraints on the state vector could be defined by a database, so
no analytic relation exist. This makes a classical Kalman filter implementation
troublesome. Performance issues are mostly discussed in terms of the Cramér-

Rao lower bound (CRLB), numerically and analytically, depending on the system
structure.

Theoretical results: In Paper A, quantization effects in the measurement rela-
tion are studied. The classical quantization theory is revisited and topics such as
moment-based estimation, band-limited noise and dithering noise are emphasized.
Static and dynamic estimation is discussed using maximum likelihood estimation
and performance is calculated using the CRLB. The particle filter is adopted to the
measurement quantization case and shown to be superior compared to a Kalman
filter assuming additive uniform noise.

In Paper B, the computational complexity of the marginalized particle filter

47
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is analyzed using the introduced equivalent flop measure. For the studied linear-
Gaussian dynamics, the state vector can be partitioned in several ways, resulting
in different computational complexity.

Positioning applications: In Paper C, a framework for positioning at sea using
a distance measuring equipment together with chart information is presented based
on particle filtering. An analytic performance bound using the CRLB is calculated
for the system. In particular two applications are studied: an underwater naviga-
tion system based on sonar measurements and a depth map and a novel surface
navigation system based on radar measurements compared to a sea chart.

In Paper D, the particle filter and the EKF are applied to an industrial robot,
with joint flexibility. The aim is to improve positioning on the tool side using sensor
fusion of motor side measurements together with accelerometer measurements at
the end-effector. Estimation performance for a simplified dynamic model in the
filter is compared to the CRLB. The aim is to use the estimates for iterative
learning control or for position related hypothesis testing.

Tracking applications: In Paper E, several bearings-only applications are stud-
ied using the particle filter and the marginalized particle filter, where the range

parameterized extended Kalman filter, is used as comparison. The tracking appli-
cations are: Air-to-Air, Air-to-Sea and Sea-to-Sea. Both extensive Monte Carlo
simulations as well as experimental data are provided. Using a sea chart, inter-
preted as an external sensor, the estimation performance can be enhanced.

In Paper F, the data association problem for a target tracking application is
studied. The aim is to incorporate classical association methods to the particle filter
framework. An association algorithm for the particle filter based on the joint prob-
abilistic data association method is proposed. In order to reduce computational
complexity the idea of a controller for the number of particles is also introduced.

In Paper G, the auxiliary particle filter is adopted to the maneuvering target
application, with hard constraints on system states. In a simulation study it is
compared to the classical particle filter and the interacting multiple model.

In Paper H, a real-time collision avoidance algorithm based on the particle filter
is proposed, using a forward looking radar and a braking algorithm based on hy-
pothesis testing. An alternative EKF based approach, using stochastic integration
in the hypothesis test, is also provided with comparable performance.
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cations. Linköping Studies in Science and Technology. Dissertations No. 579,
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Abstract

The implication of quantized sensor information on estimation and fil-
tering problems is studied. The close relation between sampling and
quantization theory was earlier reported by Widrow, Kollar and Liu
(1996). They proved that perfect reconstruction of the probability
density function (pdf) is possible if the characteristic function of the
sensor noise pdf is band-limited. These relations are here extended
by providing a class of band-limited pdfs, and it is shown that adding
such dithering noise is similar to anti-alias filtering in sampling theory.
This is followed up by the implications for Maximum Likelihood and
Bayesian estimation. The Cramér-Rao lower bound (CRLB) is derived
for estimation and filtering on quantized data. A particle filter (PF)
algorithm that approximates the optimal nonlinear filter is provided,
and numerical experiments show that the PF attains the CRLB, while
second-order optimal Kalman filter approaches can perform quite bad.

Keywords: Quantization, Estimation, Filtering, Cramér-Rao Lower
Bound.

1 Introduction

Quantization was a well studied topic in digital signal processing (DSP) some
decades ago [15], when the underlying reason was the finite computation precision
in micro-processors. Today, new reasons have appeared that motivate a revisit of
the area:

• Cheap low-quality sensors have appeared on the market and in many con-
sumer products, which open up many new application areas for embedded
DSP algorithms, where the sensor resolution is much less than the micro-
processor resolution.
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• The increased use of distributed sensors in communication networks with
limited bandwidth.

• Some sensors are naturally quantized as radar range, vision devices, cogged
wheels to measure angular speeds etc.. With increased performance require-
ments, quantization effects become important to analyze.

• The renewed interest in nonlinear filtering with the advent of the particle
filter [6] enables a tool to take quantization effects into account in the filter
design.

In these cases, one can regard the sensor readings as quantized. All sub-sequent
computations are done with floating point precision, or in fixed-point arithmetics
with adaptive scaling of all numbers, which means that internal quantization effects
can be neglected. Thus, the quantization effects studied in this paper differ from
the ones studied decades ago [15].

The first contribution of this paper is to revisit classical quantization theory
from [22, 23]. They show that quantization adds two kind of errors to the mea-
surement, the first one is a direct effect that can be modeled as additive uniform

noise (AUN), and the other one is an intrinsic alias like uncertainty, where fast
variations in the probability density function (pdf) of the measurement noise are
folded to low frequencies. The theory in [23] is extended by discussing the role of
dithering noise as a remedy to this folding effect similar to anti-alias filtering.

The second aim of this paper is to analyze the influence of quantization effects
on the following estimation and filtering problems:

1. Estimate the parameter x in the quantized measurement yi = Q (x+ ei),
where ei is measurement noise and Q (·) denotes the quantization operator.

2. Estimate the parameter x in the (nonlinear) least squares model h(x) using
quantized measurement yi = Q (h(x) + ei).

3. Estimate the state xi in the (nonlinear) dynamic model xi+1 = f(xi, wi)
using quantized measurement yi = Q (h(xi) + ei), where wi is process noise.

It will be described how to modify moment-based, likelihood-based and Bayesian
approaches to quantized information, and here the result on reconstruction and
anti-alias dithering are instrumental.

The paper is organized as follows: In Section 2, quantization as area sampling is
revisited. Section 3 presents some new results on band-limited noise and the anti-
alias equivalent for quantization is given. In Section 4, moment-based parameter
estimation is discussed. In Section 5, ML-estimation for different quantization
cases are presented and information bounds in terms of the CRLB are derived. In
Section 6, the particle filer is applied to quantized sensor information for a dynamics
system. In Section 7, the conclusions are given.
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Figure 1: Uniform quantization using a midriser quantizer with quantiza-
tion step ∆. The quantized set is given by y = Q3 (z) = {−m∆+∆

2 , . . . , (m−
1)∆ + ∆

2 }, for m = 3, i.e., 2m = 6 quantization levels.

2 Fundamental Properties of Quantized Noise

In this paper, the quantization function is restricted to the case of uniform am-
plitude quantization. In principle, it is implemented either as the midtread or the
midriser quantizer, as described in [14]. If not saturated these are given as:

Qm (z) = ∆

⌊
z

∆
+

1

2

⌋

, or (1a)

Qm (z) = ∆
⌊ z

∆

⌋

+
∆

2
, (1b)

respectively. Here, Qm (·) denotes the nonlinear quantization mapping. The b·c
operator rounds downwards to the nearest integer. To keep a unified notation with
the sign quantization Q1 (z) = sign(z), the midriser convention will be used, so
y ∈ {−m∆+ ∆

2 , . . . , (m−1)∆+ ∆
2 }, with ∆ = 2−b, using b bits, 2m = 2b levels and

2b − 1 thresholds, as illustrated in Figure 1. The sign quantization corresponds to
b = 1, m = 1 and ∆ = 2 in this notation. That is, the measurement is defined as

y =







−m∆ + ∆
2 , z < m∆,

∆
⌊

z
∆

⌋
+ ∆

2 , m∆ < z ≤ m∆,

m∆ − ∆
2 , z ≥ m∆.

(2)

The distribution of y differ from the distribution of z for three reasons:
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1. Saturation effects when |z| > m∆.

2. The direct quantization effect that can be modeled as additive uniform noise

(AUN) with variance ∆2/12.

3. Intricate pdf aliasing effects.

Saturation will be ignored for the rest of this section, where the goal is to analyze
the alias effect. For convenience, Q∞ (z) is defined as the un-saturated quantization
function.

2.1 Probability Density Function After Quantization

The nice exposition of quantization seen as area sampling from [23] is reviewed
here. Define the probability function as

pi = Prob

(

y = i∆ +
∆

2

)

, i = −m, . . . ,m− 1, (3)

and consider a stochastic signal e with pdf pe(e). If the measurement is quantized,
i.e., y = Qm (e), then

pi =

∫ (i+1)∆

i∆

pe(e) de. (4)

This integral can equivalently be expressed as convolving the noise distribution
pe(y) with a uniform distribution

pU (y) =

{
1
∆ , −∆

2 ≤ y ≤ ∆
2 ,

0, otherwise,
(5)

followed by sampling in the regular points i∆ + ∆
2 , [23]. Defining the pulse train

l(y) =
∑m−1

i=−m δ
(
y − i∆ + ∆

2

)
, the discrete pdf for y is given as

py(y) = l(y)(pe ? pU )(y) =

m−1∑

i=−m

δ

(

y − i∆ +
∆

2

)∫

pe(s)pU (y − s) ds, (6)

where ‘?’ denotes the convolution operator.

2.2 Aliasing in the Characteristic Function

The characteristic function (CF) defined as the Fourier transform (FT) of the pdf
is given as

Φy(u) = F{p(y)} = E
(
ejuy

)
=

∫ ∞

−∞
ejuyp(y) dy. (7)
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Note that the frequency axle is reversed compared to the usual definition of the
FT, but here the CF will be referred to as the FT of the pdf. Hence, with L(u) =
F{l(y)}, (6) implies that the CF for y is

Φy(u) = L ? (ΦeΦu) (u) =

∞∑

k=−∞
Φe

(

u+ k
2π

∆

)

sinc

(
∆(u+ k 2π

∆ )

2

)

, (8)

where Φu(u) = sinc(∆u/2) = sin(∆u/2)/(∆u/2). For details on characteristic
functions, see for instance [7, 19].

Table 2.2 summarizes the similarities between sampling and quantization as
given in [23]. From (8), a kind of quantization ‘aliasing’ is introduced, similar to
Poisson’s summation formula. This can be avoided if the CF is ‘band limited’.
Such an ‘anti-alias’ condition for quantization is thus

Φe(u) = 0, |u| > π/∆. (9)

In the sequel the terms band limited, anti-alias and Poisson’s summation formula
will be used for both sampling and quantization. Clearly, standard pdfs, as the
Gaussian one, do not satisfy band-limitedness. The CF for e ∈ N(0, σ2) is

Φe(u) = E
(
ejuy

)
=

∫ ∞

−∞
ejuy 1√

2πσ
e−

1
2σ2 y2

dy =

∫ ∞

−∞

1√
2πσ

e−
1

2σ2 (y2−2juyσ2) dy

= e−
(uσ)2

2

∫ ∞

−∞

1√
2πσ

e−
1

2σ2 (y−juσ)2 dy = e−
(uσ)2

2 . (10)

Note that one does not obtain a band-limited noise by simply truncating Φe(u) =

e−(uσ)2/2 for |u| > π/∆, since then the pdf will lose its positiveness.
That is, standard pdf’s imply quantization aliasing, which means that high

frequencies (fast variations) in the pdf will be interpreted as low frequencies (slow
variations).

2.3 Reconstruction of CF and pdf

It follows directly from (8) that the CF for the non-quantized measurement can be
reconstructed as

Φe(u) =
Φy(u)

sinc(∆u/2)
, (11)

if the anti-alias condition (9) is satisfied, and thus the complete pdf can be con-
structed.

2.4 Reconstruction of Moments

One useful property of the CF is that all higher order moments can be calculated
from it, [23]. This follows from the Taylor expansion Φe(u) = E

(
ejue

)
= 1 +
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Table 1: Comparison of sampling and un-saturated quantization.
Feature Sampling Quantization

Signal z(t) zk = z(kT ) yk = ∆
¨ zk

∆

˝

+ ∆
2

Stochastic
description

Covariance function Rz(τ) PDF py(y)

Fourier
characteri-
zation

Spectrum Φz(ω) = F{Rz(τ)} CF Φy(u) = F{py(y)}

Poisson’s
formula

Φz(ω) =
P∞

l=−∞ Φx
`

ω + l 2π
T

´

Φy(u) =

P∞
l=−∞ Φy

`

u + l 2π
∆

´

sinc

„

∆(u+l 2π
∆

)

2

«

Anti-alias
condition

Φx(ω) = 0, |ω| > π
T

Φy(u) = 0, |ω| > π
∆

Reconstruc-
tion

Φx(ω) =

(

Φz(ω), |ω| < π
T

0, |ω| > π
T

Φz(u) =

8

<

:

Φy(u)

sinc[∆u
2 ]

, |u| < π
∆

0, |u| > π
∆

Moment
condition

Φx(ω) = 0, |ω| > 2π
T

− ε Φy(u) = 0, |ω| > 2π
∆

− ε

Reconstruc-
tion of
moments

R

τrRx(τ) dτ = 1
jr

dr

dωr Φz(u)
˛

˛

˛

ω=0
E (xr) = 1

jr
dr

dur Φz(u)

juE (e) − 1
2!u

2
E
(
e2
)

+ . . .. Hence,

E (er) =
1

jr

dr

dur
Φe(u)

∣
∣
∣
∣
u=0

. (12)

Since the CF needs to be correct only close to the origin, aliasing is here tolerated
as long as there is no folding at u = 0. That is, a less conservative condition for
moment reconstruction is that Φe(u) = 0 for |u| > 2π/∆ − ε for some ε > 0, as
stated in [23]. In Example 1, the CF is used to compute the first even moments of
quantized Gaussian noise.

Example 1 (Moments of Q∞ (e)) Consider the case of quantized Gaussian noise.
The moment formula (12), using (10) in (8), gives for terms corresponding to
k = −2, . . . , 2 :

E
(
y2
)

=
∆2

12
+ σ2

−
(

4σ2 +
∆2

π2

)

· e−2π2 σ2

∆2 +

(

4σ2 +
∆2

4π2

)

· e−8π2 σ2

∆2 , (13)

E
(
y4
)

= 3σ4 +
∆4

80
+
σ2∆2

2

+

(

− ∆4

2π2
− 2σ2∆2 +

6∆2σ2

π2
+

3∆4

π4
+

32σ6π2

∆2

)

· e−2π2 σ2

∆2 . (14)
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The first line in each equation describe the AUN effect (k = 0), while the second line
corresponds to terms due to aliasing (k = ±1). Figure 2 illustrates the dependence
of Gaussian noise standard deviation σ for the case of ∆ = 1. As can be seen
from (13), the alias term is negligible when ∆ � σ, and the critical region is when
∆ ≈ 3σ. Another interesting thing to note is that the AUN and alias contributions
almost cancel out when ∆ � 3σ (note that 1/12 ≈ 1/π2 − 1/(4π2)). In Section 5,
the moment-based parameter estimation is discussed in more detail.

10
−2

10
−1

10
0

10
1

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

σ

E(y2) alias
E(y4) alias
E(y2)
E(y4)
σ2+∆2/12
3σ2+∆4/80+σ2∆2/2

Figure 2: First non-vanishing moments for quantized Gaussian noise, in-
cluding the alias effect for different σ using ∆ = 1.

3 Band-Limited Noise and Anti-Alias Noise

The theory in [23] is here extended with some useful results further exploiting the
relations to sampling theory. In the sequel, only band-limited noise and aliasing in
the quantization sense is discussed.

First, practical methods to obtain band-limited pdf’s are given.

3.1 Band-Limited Noise

The class of band-limited signals plays an important role in signal processing be-
cause of the possibility of perfect reconstruction of the continuous time signal from a
sampled signal. Here, the same question for quantized stochastic signals is studied:
Which class of ‘band-limited’ noise distributions can be perfectly reconstructed?

Here the following class of band-limited pdf’s is presented.



68 Paper A Filtering and Estimation for Quantized Sensor Information

Theorem 1 (Band-limited noise) A sufficient condition for a pdf to be band-
limited in the sense Φ(u) = F{p(e)} = 0 for u > π/∆ is that

Φ(u) =H ?H(u) =

∫

H(s)H∗(u− s) ds, (15)

where the complex valued function H(u) satisfies

H(u) = 0, for |u| > π

2∆
and (16a)

∫ π
2∆

− π
2∆

|H(u)|2 du = 2π. (16b)

Proof First, the support of H?H(u) is [−π/∆, π/∆], so Φ(u) is band-limited. Using the
well-known Fourier relations H?H(u) ↔ |h(e)|2 and Parseval’s formula, (16) immediately
gives

p(e) = |h(e)|2 > 0, (17a)
Z

p(e) de =

Z

|h(e)|2 de =
1

2π

Z

|H(u)|2 du = 1. (17b)

which are the two conditions posed on a pdf. This proves sufficiency. 2

3.2 Constructing Band-Limited pdfs

Theorem 1 indicates a constructive method to define noise pdfs that enable perfect
reconstruction after quantization. Take an arbitrary pdf p(e). It can be split up
as p(e) = |h(e)|2 = h(e)h∗(e). Denoting its Fourier transform with H(u), the CF
of p(e) can be written Φ(u) = H ?H(u). This problem is quite similar to spectral
analysis and the spectral factorization theorem. One major difference here is the
phase ambiguity, H(u) does not need to be minimum phase.

Assume to start with, that p(e) is a symmetric pdf. That is, it is an even
function. Hence, h(e) can be assumed real, and H(u) becomes a real function
as well. More specifically, the following steps should be performed as presented
in Algorithm 1. In the algorithm, it is the truncation step that depends on the

Algorithm 1 Band-limited approximation p̂(e) of a symmetric pdf p(e)

1: Define h(e) =
√

p(e).
2: Compute H(u) = F{h(e)}.
3: Truncate it to Ĥ(u) = H(u) for |u| < π

2∆ .

4: Inverse transform to ĥ(e) = F
−1{Ĥ(u)}.

5: Compute the normalization constant c =
(∫

ĥ2(e) de
)−1

.

6: Square the result p̂(e) = cĥ2(e).

quantization level and the square guarantees that the pdf is positive.
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Example 2 (Gaussian approximation) Algorithm 1 is here used to approxi-
mate the Gaussian standard pdf N(0, 1) with a band-limited one. The result for
different quantization levels ∆ and fixed σ = 1 is illustrated in Figure 3. Obviously,
∆ = σ gives virtually the same pdf.
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Figure 3: Band-limited Gaussian approximation (where 10−6 is added be-
fore plotting).

3.3 Anti-Alias Noise

Unfortunately, perfect anti-alias noise does not exist. The perfect anti-alias noise
with a flat CF would have H?H(u) = c1 being constant for |u| < π/∆. That would
imply that p(e) = c2sinc(πe/∆), which is neither positive nor does it integrate to
one for any constant c2.

Take any function H(u) with compact support. The first try might be a rect-
angular window, H(u) =

√
2π, so the CF becomes a Bartlett (triangular) window.

Then, p(e) = c3
sin2(πe/∆)

e2 which is positive and integrable. There are two problems
with this choice:

• The dithering noise has infinite variance, since
∫
e2c3

sin2(πe/∆)
e2 de does not

exist. This can also be seen from the moment formula (12), since the Bartlett
window is not differentiable at the origin. This means that moment-based
estimators cannot be used.

• The reconstruction formula (23) (see Section 5) includes a division with a
function that approaches zeros at the boundaries, so likelihood based methods
cannot be used.
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One can proceed by taking H(u) being a Bartlett window, and p(e) = c4sinc4(πe/∆).
Now, the CF is twice differentiable and the second moment exists. More clever
choices should make use of smoother functions H(u). Here, numerical approaches
are possible. One such is the Parks-McClellan’s remez algorithm, [15], that returns
the real, symmetric FIR filter h(ei) that best approximates the specified H(u) in a
minimax sense.

Any uniform random number generator providing random numbers vi ∈ [0, 1]
can be used to generate random numbers ei = P̂−1(vi) from p̂(e), using its cumu-
lative density function P̂ (e).

3.4 Summary

To conclude the section, the correspondences between sampling and quantization
are summarized in Table 2, as a complement to Table 2.2.

Table 2: Further similarities between sampling and quantization.
Sampling Quantization

(i). For signal modeling, the class
of band-limited signals is of in-
terest.

(ii). Perfect low-pass filtering with
cut-off frequency π/T projects
an arbitrary signal to the class
of band-limited signals.

(iii). The low-pass filter should have
flat pass-band in order not to
distort the signal, but this filter
is not realizable.

(i). For sensor modeling, the class
of band-limited pdfs is of inter-
est.

(ii). Adding dithering noise with
CF Φd(u) having cut-off fre-
quency π/∆ projects an arbi-
trary sensor noise to the class
of band-limited noises.

(iii). The perfect dithering noise
should have flat CF Φd(u), or
Φd(u) = 1/sinc(∆u/2), to en-
able simple reconstruction, but
such a noise is not realizable.

4 Moment-based Parameter Estimation

Mean estimation is based on the following signal model:

zt = x+ et + dt, (18a)

yt = Qm (zt) . (18b)

Here the signal mean x is the unknown parameter, et is the physical sensor noise
and dt denotes an optional user generated dithering noise that can be added before
quantization.
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The following example illustrates that the sample average can be a poor esti-
mator of x, and that dithering can improve the bias more than its negative effect
on the variance, so the total mean square error decreases.

Example 3 (Influence of dithering for the sample mean) Consider the sam-

ple mean x̂ = 1
N

∑N
k=1 yk for a quantized signal with ∆ = 1, where dithering noise

is added so yk = Q∞ (x+ dk). A Monte Carlo simulation using Gaussian noise
gives bias and variance in the mean as depicted in Figure 4. A good compromise
between bias and variance is achieved for σ = 0.3, which gives a good over-all root
mean square error (RMSE).
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Figure 4: Bias, standard deviation and RMSE for the sample mean of
quantized data for different noise variances in Gaussian dithering noise.

The AUN approximation is clearly insufficient for understanding the result in this
example, since the second order properties of the Gaussian and uniform dithering
noise are the same. That is, it is the alias effects that makes the difference. It is
quite easy to verify that the CF for Gaussian noise is better concentrated in the
frequency domain than for uniform noise. Example 3 used the sample average as
estimator. A moment-based estimator for x is in general a better alternative. It is
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defined as a nonlinear equation system of the form

1

N

N∑

t=1

yt ≈ E (y) = g1(x, pe, pd), (19a)

1

N

N∑

t=1

y2
t ≈ E

(
y2
)

= g2(x, pe, pd), (19b)

1

N

N∑

t=1

y3
t ≈ E

(
y3
)

= g3(x, pe, pd), (19c)

and so on. The system of equations can be used both for estimating x and unknown
parameters in the noise distribution, as for instance σ2

e .

Consider once more Example 1. A moment-based estimator [12] of the Gaussian
noise variance can be derived using either (13) or (14). Just solve one of these
equation for σ2, where the left-hand side is the observed corresponding sample
moment. Since these expressions take both the AUN and alias effect of quantization
into account, the estimate will be unbiased. If there is an unknown mean x in the
signal, then similar expressions can be derived. The CF for z ∈ N(x, σ2) can be
shown to be

Φz(u) = e−(uσ)2/2+jux. (20)

The counterparts of (13) and (14) will then yield the two equations (19a-b) in
the two unknowns, x and σ2. The nonlinear equation system will not look very
appealing, mainly because of the many alias terms. However, using dithering noise
dt, the system of equations will be simplified. In this way, the equation system will
become more attractive for numerical methods.

The design of dithering noise can be based on numeric simulation results as the
example below illustrates. However, it is clear that a deeper understanding on the
different contributing effects is needed.

Example 4 (Moments of Q∞ (x + e)) Consider again Example 1, but add a
mean x to the noise. The moment formula (12) applied to Poisson’s summation (8)
using (20) rather than (10) gives the theoretical bias and standard deviation ac-
cording to Figure 5.

The conclusion is that the moment formula (12), Poisson’s summation formula (8)
and the CF of the dithering noise provide all information needed to assess perfor-
mance of any moment based estimator. Furthermore, dithering noise simplifies the
numerical computation of the estimate.
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Figure 5: First non-vanishing moments for Qm (x+ e) including the alias
effect for different σ using ∆ = 1.

5 ML-based Parameter Estimation and Informa-

tion Bounds

The ML estimation approach is based on maximizing the likelihood x̂ = argmaxx p(yi|x).
First, it is investigated how the likelihood can be reconstructed using band-limited
dithering noise, then Cramér-Rao lower bound and likelihood estimators are de-
rived.

5.1 Reconstruction of Likelihoods

The goal in this section is to get the theoretical relation between the likelihoods

p(yi|x) ↔ p(zi|x), (21)

where the desired likelihood p(zi|x) is un-computable, and the computable likeli-
hood p(yi|x) suffers from quantization effects. Clearly, if the pdf pe is band-limited
and di = 0, the likelihood can be reconstructed using its CF as

Φzi|x(u) =
Φyi|x(u)

sinc
(

∆u
2

) , |u| < π

∆
. (22)

This is the basic idea that will be exploited in both likelihood and Bayesian esti-
mation methods in later sections.
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Another interesting question is whether there exists a counterpart to an anti-
alias filter for ML estimation. It follows from above that any dithering noise with
pdf satisfying (9) can be added to z before quantization.

Theorem 2 (Anti-alias noise) Take any band-limited noise di (for instance us-
ing Theorem 1) and add to the signal zi = x + ei + di before quantization, so
yi = Qm (x+ ei + di). Then, the likelihood function can be reconstructed as

Φzi|x(u) =
Φyi|x(u)

Φd(u)sinc
(

∆u
2

) , |u| < π

∆
. (23)

Furthermore, the moments E (yr) can be expressed as a function of pe, pd and ∆
without any alias terms if the CF for di is band-limited to 2π/∆−ε for some ε > 0.

Proof The new noise e+n has pdf pe ?pd(z) and CF Φe(u)Φd(u) which is band-limited.
In the reconstruction (22), the influence of the dithering noise has to be removed. 2

That is, the dithering noise d plays the role of an anti-alias filter that is applied
before quantization, just as a lowpass filter is applied before sampling.

Adding noise inevitably destroys information. This is in perfect analogy with
lowpass filtering used to avoid frequency aliasing. Information is thus lost, but it
is at least not mis-interpreted as false information. The same conclusion apply for
quantization. Adding a suitably designed dithering noise should increase estimation
performance on the quantized data, if proper reconstruction is applied.

The noise design includes choosing a noise that destroys as little information
as possible by adapting it to the quantization level (just as choosing the anti-alias
lowpass filter as close to the sampling frequency as possible).

5.2 Information Bounds for Parameter Estimation

In the sequel, the analysis is heavily based on expressions involving gradients of
scalar functions or vector valued functions. The gradient is defined as:

∇xg(x) =






∂g
∂x1

...
∂g

∂xn




 , g : R

n 7→ R, (24a)

∇xg
T (x) =






∂g1

∂x1
. . . ∂gm

∂x1

...
...

∂g1

∂xn
. . . ∂gm

∂xn




 , g : R

n 7→ R
m. (24b)

Also, the Laplacian for the scalar function g(x, y) with x ∈ R
n, y ∈ R

m is defined
as

∆x
yg(x, y) = ∇y(∇xg(x, y))

T , g : R
n × R

m 7→ R. (25)
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For an unbiased estimator, E (x̂) = x, the CRLB, [4, 12, 13], is given by

Cov (x− x̂) = E
(
(x− x̂)(x− x̂)T

)
� J−1(x), (26a)

J(x) = E (−∆x
x log p(y|x)) , (26b)

where J(x) denotes the Fisher information matrix (FIM) in the measurement y
regarding the stochastic variable x and ∆ is the Laplacian operator. Also note
that an equivalent representation of the information, [12], is

E
(
∇x log p(y|x)(∇x log p(y|x))T

)
= E (−∆x

x log p(y|x)) , (27)

where ∇x denotes the gradient with respect to x. Particularly, a Gaussian likeli-
hood p(y|x), with measurement covariance R, gives

J(x) = HT (x)R−1H(x), (28)

where

HT (x) = ∇xh
T (x). (29)

For the case with independent measurements y(i), i = 1, . . . ,M , the information is
given as

J(x) =

M∑

i=1

J (i)(x), (30)

due to the additivity of information, assuming that J (i) is the information for
measurement i.

Consider now the problem of estimating x from the quantized measurements
y = Qm (x+ e). Explicit expressions for the information for Gaussian noise are
derived in the sequel. The AUN assumption, which as will be shown, can be quite
misleading, is presented in (31).

Japprox(x) =
1

σ2 + ∆2

12

. (31)

The true information depends on x and includes saturation effects. From now on,
saturation effects in the quantization will be taken into account.

First, the sign quantizer is given for its simplicity, and then the general multi-
level case is treated.

5.2.1 Sign Quantizer

In this section the Fisher information for the sign quantizer is derived.

Theorem 3 Consider the sign quantizer

y = Q1 (x+ e) = sign(x + e), e ∈ N(0, σ2). (32)
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The Fisher information is

J1(x) =
e−

x2

σ2

2πσ2

1

(1 − % (−x/σ))% (−x/σ)
, (33)

where % (x)
M

= Prob (X < x) denotes the Gaussian distribution function.

Proof See Appendix A. 2

Since information is additive for independent observations, the following corollary
on estimation performance follows immediately.

Corollary 1 The Cramér-Rao lower bound (CRLB) for the sign quantizer, using
N independent observations

yi = Q1 (x+ ei) = sign(x+ ei), ei ∈ N(0, σ2
i ), (34)

i = 1, . . . , N is given by

Cov (x− x̂) �





N∑

i=1

e
− x2

σ2
i

2πσ2
i

1

(1 − % (−x/σi))% (−x/σi)





−1

. (35)

5.2.2 Multi-Level Quantization

The sign quantizer can be generalized to the multi-level quantization case.

Theorem 4 Consider the multi-level quantizer.

y = Qm (x+ e) , e ∈ N(0, σ2). (36)

The Fisher information is

Jm(x) =

(

− 1√
2πσ

e−
1
2 (−m∆−x

σ )2
)2

%
(−m∆−x

σ

)

+

m−1∑

j=−m+1

(

− 1√
2πσ

(

e−
1
2 (

(j+1)∆−x
σ )2 − e−

1
2 ( j∆

σ )2
))2

%
(

(j+1)∆−x
σ

)

− %
(

j∆−x
σ

)

+

(
1√
2πσ

e−
1
2 ( m∆−x

σ )2
)2

1− %
(

m∆−x
σ

) (37)

where % (x)
M

= Prob (X < x) denotes the Gaussian distribution function.

Proof See Appendix B. 2
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Again, since information is additive for independent observations, the following
corollary follows.

Corollary 2 The CRLB for the multi-level quantizer, using N independent ob-
servations

yi = Qm (x+ ei) , ei ∈ N(0, σ2
i ), (38)

i = 1, . . . , N is given by

Cov (x− x̂) � J−1
m (x) =






N∑

i=1

m−1∑

j=−m

(
∂pj(x)

∂x

)2

pj(x)






−1

, (39)

where pj(x) is given in (65).

5.2.3 Regression Information

Consider next the case of a multi-variable unknown parameter x. A linear regres-
sion problem with quantized measurements corresponds to the model

yi = Qm (Hix+ ei) . (40a)

The nonlinear least squares problem,

yi = Qm (hi(x) + ei) , (40b)

Hi =
d

dx
hi(x), (40c)

can be treated in parallel. The information in the quantized measurements is given
in the following theorem.

Theorem 5 Consider the regression models (40) with ei ∈ N(0, σ2
i ), i = 1, . . . , N .

Let si = Hix and si = hi(x) denote the signal part for linear and nonlinear
regression, respectively. The Fisher information for quantized measurements is
given by

J(x) =

N∑

i=1

HT
i Jm(si)Hi. (41)

Proof Follows from the chain rule, the additivity of information and calculations ac-
cording to Theorem 3 and Theorem 4, respectively. 2
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5.2.4 Illustration

The following example illustrates how the information and thus the CRLB depends
on the quantization level.

Example 5 (CRLB – Multi-level quantizer) In Figure 6, the Fisher informa-

tion Jm(x) is illustrated by plotting the lower bound J
−1/2
m (x) on the standard

deviation for different quantization levels ∆ = 2/m. Here, the midriser quantizer
with additive noise, y = Qm (x+ e) , e ∈ N(0, σ2) is used with σ = 0.1. Note that

J
−1/2
1 00(x) ≈ σ and that Jm converges to the AUN in (31) when m→ ∞.
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Figure 6: Fisher information used to compute the standard deviation lower

bound J
−1/2
m (x) as a function of x for different quantization levels ∆ = 2/m.

5.3 ML-based Estimation

The set of quantized measurements will be denoted Yt = {y(i)
t }N

i=1 and the non-

quantized set Zt = {z(i)
t }N

i=1.
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5.3.1 ML for Sign Quantization

Form the log-likelihood as

log p(Y|x) = log

N∏

i=1

p(y(i)|x) =

N∑

i=1

log p(y(i)|x) =

=N− log % (−x/σ) +N+ log(1 − % (−x/σ)), (42)

where N− and N+ denote the number of terms with y(i) = −1 and y(i) = +1
respectively, so that N− +N+ = N . Maximizing the expression by differentiation
yields

N+

N−
=

1 − %
(
−xML/σ

)

% (−xML/σ)
. (43)

Hence

%
(
−xML/σ

)
=

N−
N− +N+

=
N−
N

. (44)

Since the left hand side is a monotone and increasing function, the estimate, x̂ML,
can be found with a simple line search. For more information on sign quantizers,
see for instance [9], where the ML and CRLB for the frequency are calculated for
a sinusoidal in noise.

5.3.2 ML for Multi-Level Quantization

For several measurements, the log-likelihood is

log p(YN |x) =

N∑

i=1

log p(y(i)|x) =

m∑

j=−m

Nj log pj(x), (45)

where Nj is the number of occurrences of each y(j), so that
∑

j Nj = N . The ML
estimate is here found numerically by searching for maximum of (45). Here pj(x)
is given by (65) for the case yi = Qm (x+ ei). This is easily extended to linear and
nonlinear regression problems (40). In Example 6 the multi-level quantization is
presented.

Example 6 (Estimation – multi-level quantizer) Consider the multi-level quan-
tizer y = Qm (x+ e), with m = 3,∆ = 0.5, using the midriser convention. The
noise is assumed independent and e ∈ N(0, 0.142). In Figure 7, the CRLB and the
standard deviation for the ML-estimate using 100 Monte Carlo simulations are pre-
sented, as a function of the true value x, using N = 20 measurements. The approxi-

mation, assuming additive noise y = Qm (x+ e) ≈ x+e+n,Var (n) = ∆2

12 ≈ Var (e)
is also given, where σ2

approx = 1
N (Var (e) + Var (n)).
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Figure 7: The CRLB J
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3 (x) and ML standard deviation as a function of

the true value compared to the additive noise approximation, σapprox, when
m = 3 levels are used..

6 State Estimation and Information Bounds

For dynamic systems the following model is considered

xt+1 = f(xt, wt), (46a)

zt = h(xt) + et, (46b)

yt = Qm (zt) . (46c)

The Bayesian solution to this estimation problem is given by, [10],

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt) dxt, (47a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (47b)

where p(xt+1|Yt) is the prediction density and p(xt|Yt) the filtering density. The
problem is in general not analytically solvable. There are two fundamentally dif-
ferent ways to approach filtering of nonlinear non-Gaussian dynamic systems:

• The extended Kalman filter (EKF), [1, 11], that is the sub-optimal filter for
an approximate linear Gaussian model using the AUN assumption, or the
optimal linear filter for linear non-Gaussian systems.
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• Numerical approaches, such as the particle filter (PF) [6, 5, 16], that give an
arbitrary good approximation of the optimal solution to the Bayesian filtering
problem.

These two approaches are compared below.

6.1 Posterior CRLB

The theoretical posterior CRLB for a dynamic system is analyzed in [5, 21, 20, 2].
Here, a quantized sensor using the following model is considered:

xt+1 = f(xt, wt), (48a)

yt = Qm (h(xt) + et) . (48b)

From [2], the posterior CRLB is

Cov
(
xt − x̂t|t

)
= E

(
(xt − x̂t|t)(xt − x̂t|t)

T
)
� Pt|t, (49)

where Pt|t can be retrieved from the recursion

P−1
t+1|t+1 = Q−1

t + Jm,t+1 − ST
t

(

P−1
t|t + Vt

)−1

St, (50)

where

Vt = E
(
−∆xt

xt
log p(xt+1|xt)

)
, (51a)

St = E
(
−∆xt+1

xt
log p(xt+1|xt)

)
, (51b)

Q−1
t = E

(

−∆xt+1
xt+1

log p(xt+1|xt)
)

, (51c)

Jm,t = E
(
−∆xt

xt
log p(yt|xt)

)
. (51d)

Hence, the measurement quantization effects will only affect Jm,t, which is given
by Theorem 4. For linear dynamics with additive Gaussian noise

xt+1 = Ftxt + wt, (52)

the following holds

Vt = FtQ
−1
t F T

t , St = −F T
t Q

−1
t , (53)

where Cov (wt) = Qt.

6.2 Kalman Filter for Measurement Quantization

Consider the following linear Gaussian model with quantized observations:

xt+1 = Ftxt +Gtwt, Cov (wt) = Qt,

zt = Htxt + et, Var (et) = σ2,

yt = Qm (zt) .



82 Paper A Filtering and Estimation for Quantized Sensor Information

The quantized measurement, yt, is treated as a scalar, but the multi-variable case is
covered as long as the measurement noises et,i are independent, using measurement
update iterations in the Kalman filter. Using the AUN assumption, the optimal
filter is given by the Kalman filter by increasing the measurement covariance by
∆2

12 , i.e.,

Rt = σ2
t +

∆2

12
I, (54)

where I is the identity matrix. Remember that the AUN assumption does not
include saturation nor correlation properties from the quantization. In [24], the
finite word-length for Kalman filter implementation is discussed in more detail.

6.3 Particle Filter for Measurement Quantization

The particle filter, [6, 5, 16], here adopted to quantized measurements is given
in Algorithm 2. Note that quantization is treated formally correct by using its
theoretical likelihood in (55).

Algorithm 2 The particle filter.

1: Set t = 0. For i = 1, . . . , NPF, initialize the particles, x
(i)
0|−1 ∼ px0(x0).

2: For i = 1, . . . , NPF, evaluate the importance weights γ
(i)
t = p(yt|x(i)

t ) according
to the likelihood

p(yt|xt) = pj(xt), (55)

where pj(x) is given in Appendix B.
3: Resample NPF particles with replacement according to,

Prob(x
(i)
t|t = x

(j)
t|t−1) = γ̃

(j)
t ,

where the normalized weights are given by

γ̃
(i)
t =

γ
(i)
t

∑NPF

j=1 γ
(j)
t

.

4: For i = 1, . . . , NPF, predict new particles according to

x
(i)
t+1|t ∼ p(xt+1|t|x(i)

t ).

5: Set t := t+ 1 and iterate from step 2.

For hardware implementations, for instance on efficient resampling algorithms
and on the complexity and performance issue for quantized particle filters, see
[8, 3]. In [17, 18], the particle filter method is proposed for a sensor fusion method
involving quantization.
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6.4 Illustration

In the following example, the sign quantizer for a dynamic system is illustrated.

Example 7 (Filtering – sign quantizer) Consider the following scalar system
with a sign quantizer

xt+1 = Ftxt + wt, x0 = 0,

zt = xt + et,

yt = Q1 (zt) ,

where

Ft = 0.95, Qt = Var (wt) = 0.102, Rt = Var (et) = 0.582.

In Figure 8, the root mean square error (RMSE) for the Kalman and the particle
filter are presented using 200 Monte Carlo simulations. The measurement noise in
the Kalman filter was adjusted in the filter as described in (54). The particle filter
used the correct sign quantized likelihood according to (58) and 1000 particles.
The theoretical CRLB is also given in Figure 8, as the solution to (50), which for a
general case can be solved using a discrete algebraic Riccati solver. For the scalar
case in this example, the covariance (P ) can be derived analytically as the solution
to

P 2 + (QJ + 1 − F 2)/(JF 2)P −Q/(JF 2) = 0,

where J = J1,t = 2
πσ2 is given from (33), using x = 0.

7 Conclusions

The implication of quantization on Bayesian, likelihood based or moment-based
approaches to estimation and filtering has been studied. For all these approaches,
a deep understanding is required of how quantization change the statistics of data
used in the estimator, in particular when the quantization level is large compared
to the standard deviation of the measurement noise. It is well-known that quanti-
zation implies a kind of aliasing effect. It is explained how adding dithering noise
can make moment and likelihood reconstruction easier. An open question is what
and how much can be gained by dithering and how an optimal dithering noise
should be designed.

Further, a detailed study on the Cramér-Rao lower bound was given. Several
theoretical results and examples were presented to show that estimators utilizing
knowledge of the quantization are superior to conventional estimators, where only
the second order properties of the quantization is incorporated. Finally, a dedi-
cated particle filter was given that applies to arbitrary filtering problems, where
independent quantized measurements are given.
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Appendix

A Proof of Theorem 3

Proof The probability function for y can be calculated using

p(y = −1|x) = Prob(x + e < 0) = Prob(e < −x)

=

Z −x

−∞

1√
2πσ

e
− t2

2σ2 dt =

Z −x/σ

−∞

1√
2π

e−
t2

2 dt
M

= % (−x/σ) . (56)

Similarly,

p(y = +1|x) = Prob(x + e ≥ 0) = 1 − % (−x/σ) . (57)

Hence, the discrete likelihood can be written as

p(y|x) = % (−x/σ) δ(y + 1) + (1 − % (−x/σ))δ(y − 1), (58)
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where

δ(i) =

(

1, i = 0,

0, i 6= 0.
(59)

To calculate the CRLB variance, apply (26b).

J(x) = −E

„
∂2

∂x2
log p(y|x)

«

= −E

0

B
@

∂2p(y|x)

∂x2 p(y|x) −
“

∂p(y|x)
∂x

”2

p2(y|x)

1

C
A

= −
X

j∈{−1,1}

∂2p(y = j|x)

∂x2
−

“
∂p(y=j|x)

∂x

”2

p(y = j|x)
. (60)

Note that (56) yields

∂% (−x/σ)

∂x
= −e

− x2

2σ2

√
2πσ

. (61)

Hence

∂p(y|x)

∂x
=

e
− x2

2σ2

√
2πσ

×
(

1, y = −1

−1, y = 1
(62)

∂2p(y|x)

∂x2
=

−xe
− x2

2σ2

√
2πσ3

×
(

1, y = −1

−1, y = 1
(63)

Inserting these equations into (60) gives

J(x) =
e
− x2

σ2

2πσ2

„
1

(1 − % (−x/σ))
+

1

% (−x/σ)

«

| {z }
1

(1−%(−x/σ))%(−x/σ)

, (64)

which proves the theorem. 2

B Proof of Theorem 4

Proof Calculate the probability for each level j = −m + 1, . . . , m− 1 (see Figure 1) as

pj(x)
M

= Prob

„

y = j∆ +
∆

2

«

= Prob (j∆ < x + e ≤ (j + 1)∆)

= %

„
(j + 1)∆ − x

σ

«

− %

„
j∆ − x

σ

«

. (65a)

The probability at the end points are calculated as

p−m(x) = %

„
−m∆ − x

σ

«

, (65b)

pm−1(x) = 1 − %

„
m∆ − x

σ

«

. (65c)
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Similar to the sign quantizer, the likelihood is given as

p(y|x) =
mX

j=−m

pj(x)δ

„

y − j∆ − ∆

2

«

. (66)

Proceeding in the same way as for the sign quantizer, note that

∂p(y|x)

∂x
=

mX

j=−m

∂pj(x)

∂x
δ

„

y − j∆ − ∆

2

«

, (67)

∂2p(y|x)

∂x2
=

mX

j=−m

∂2pj(x)

∂x2
δ

„

y − j∆ − ∆

2

«

, (68)

where the derivatives for j = −m + 1, . . . , m − 2 are given by

∂pj(x)

∂x
= − 1√

2πσ

„

e−
1
2
(
(j+1)∆−x

σ
)2 − e−

1
2
(

j∆−x
σ

)2
«

, (69)

∂2pj

∂x2
= − (j + 1)∆ − x√

2πσ3
e−

1
2
(
(j+1)∆−x

σ
)2 +

j∆ − x√
2πσ3

e−
1
2
( j∆−x

σ
)2 . (70)

For j = −m or j = m − 1, differentiating (65) yields

∂p−m(x)

∂x
= − 1√

2πσ
e−

1
2
(−m∆−x

σ
)2 , (71a)

∂pm−1(x)

∂x
=

1√
2πσ

e−
1
2
( m∆−x

σ
)2 , (71b)

∂2p−m(x)

∂x2
= − −m∆ − x√

2πσ3
e−

1
2
(−m∆−x

σ
)2 , (71c)

∂2pm−1(x)

∂x2
=

m∆ − x√
2πσ3

e−
1
2
( m∆−x

σ
)2 . (71d)

Note that the terms in (70) form a telescope sum, so together with (71c) and (71d) it
yields

m−1X

j=−m

∂2pj

∂x2
= 0. (72)

Hence, the Fisher information is

J(x) =

m−1X

j=−m

0

B
@−∂2pj

∂x2
+

“
∂pj(x)

∂x

”2

pj

1

C
A =

m−1X

j=−m

“
∂pj(x)

∂x

”2

pj
. (73)

This, together with (65), (69), (71a) and (71b), proves the theorem. 2
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Abstract

In this paper the computational complexity of the marginalized parti-
cle filter is analyzed and a general method to perform this analysis is
given. The key is the introduction of the equivalent flop measure. In an
extensive Monte Carlo simulation different computational aspects are
studied and compared with the derived theoretical results.

Keywords: Nonlinear estimation, Marginalized particle filter, Kalman
filter, Complexity analysis, Equivalent Flop.

1 Introduction

In particle filter (PF) applications, knowledge of the computational complexity is
often of paramount importance. In this paper the computational complexity issues
that arise in the use of the marginalized particle filter (MPF), also called the Rao-
Blackwellized particle filter are studied. The MPF is a clever combination of the
standard PF, [10], and the Kalman filter (KF), [12], which can be used when the
model contains a linear substructure, subject to Gaussian noise. It is a well known
fact that in some cases it is possible to obtain better estimates, i.e., estimates with
reduced variance, using the MPF instead of using the standard PF [8]. By now
quite a lot has been written about the MPF, see e.g., [7, 6, 5, 1, 2, 15]. However, to
the best of the authors knowledge, nothing has yet been written about complexity
issues. In this article, expressions for the complexity, C(p, k,N), are derived, where
p, k represent the states estimated using the PF and the KF, respectively and N
denotes the number of particles. A general method to analyze the computational
complexity of the MPF will be provided. The method is illustrated using a common
tracking model, but can be applied to a much broader class of models. For more
details of the proposed method, the reader is referred to [13].
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2 The Marginalized Particle Filter

Many nonlinear estimation problems can be handled using the particle filter. A
general state-space model

xt+1 = f(xt, wt), (1a)

yt = h(xt, et), (1b)

has both nonlinear dynamics, f , and nonlinear measurements, h. The noise pro-
cesses wt and et have known probability density functions. If the state-space model
contains a linear-Gaussian substructure, this can be exploited to obtain better es-
timates using the MPF. In this article the case with linear-Gaussian dynamics,

xt+1 = Atxt + wt, wt ∈ N(0, Qt), (2a)

yt = h(xn
t ) + Ctx

l
t + et, (2b)

is discussed. In this context the state variable xt ∈ R
m is

xt =

(
xn

t

xl
t

)

, (3)

where xl
t ∈ R

l denote the linear states and xn
t ∈ R

n denotes the nonlinear states.
Furthermore, X

n
t = {xn

i }t
i=0 and Yt = {yi}t

i=0. Using Bayes’ theorem,

p(Xn
t , x

l
t|Yt) = p(xl

t|Xn
t ,Yt)p(X

n
t |Yt), (4)

where p(Xn
t |Yt) is given by the PF and xl

t|Xn
t is linear-Gaussian, i.e., p(xl

t|Xn
t ,Yt)

is given by the KF. This marginalization idea is certainly not new [7, 4, 8, 5, 1,
8, 15, 14]. The state vector xt can be partitioned into two parts, xp

t ∈ R
p and

xk
t ∈ R

k, which are estimated using the PF and the KF respectively. Furthermore,
p ∈ [n, n + l], k ∈ [0, l] and for the general partitioning case p − n states can be
selected from l possibilities.

It is interesting to consider which states to put in the nonlinear and the linear
partition, respectively. Two relevant aspects with respect to this partitioning are
how it will affect the computational complexity and the estimation performance.
This will be discussed using the following model

xp
t+1 = Ap

tx
p
t +Ak

t x
k
t + wp

t , wp
t ∼ N(0, Qp

t ), (5a)

xk
t+1 = F p

t x
p
t + F k

t x
k
t + wk

t , wk
t ∼ N(0, Qk

t ), (5b)

yt = ht(x
p
t ) + Ctx

k
t + et, et ∼ N(0, Rt), (5c)

where the noise is assumed to be independent. This is no restriction, since the
case of dependent noise can be reduced to the case of independent noise using a
Gram-Schmidt procedure [11]. In Algorithm 1 the MPF is summarized for the
model given in (5) (with Ct = 0, for the sake of brevity). For a detailed derivation
(including the case Ct 6= 0), the reader is referred to [15].
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3 Complexity Analysis

In this section the computational complexity of the MPF is discussed from a theo-
retical point of view, by giving the number of floating-point operations (flops) used
in the algorithm. A flop is here defined as one addition, subtraction, multiplication,
or division of two floating-point numbers. However, problems occur when the flop
count is compared to the actual computation time. This is due to the fact that
issues such as cache boundaries and locality of reference will significantly influence
the computation time [3]. Moreover, there are certain steps in the algorithm that
cannot easily be measured in flops, for instance the cost of generating a random
number and the cost of evaluating a nonlinear function. Despite these drawbacks
it is still possible to analyze the complexity using the computer to measure the
absolute time that the different steps require. These can then be compared to
the theoretical result obtained from counting flops. In the PF the computational
complexity of the resampling step is proportional to the number of particles and
the amount of time for generating random numbers is proportional to the number
of random numbers required. The proportionality coefficients are related to reflect
the flop complexity instead of the time complexity for ease of comparison with
parts that only depend on matrix and vector operations. This will be referred to
as the equivalent flop (EF) complexity.

Definition 1 The equivalent flop (EF) complexity for an operation is defined as
the number of flops that results in the same computational time as the operation.

3.1 Nonlinear Measurements (Ct = 0)

In this section the case Ct = 0 in (5c) is discussed. The total complexity of Algo-
rithm 1 is given for each code line in Table 1. For instance, the first instruction
Pt|t(A

k
t )T corresponds to multiplying Pt|t ∈ R

k×k with (Ak
t )T ∈ R

k×p, which re-
quires pk2 multiplications and (k − 1)kp additions [9]. The total EF complexity is
given by:

C(p,k,N) = 4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp+ 2p2+

(6kp+ 4p2 + 2k2 + p− k + pc3 + c1 + c2)N. (10)

Above, the coefficient c1 has been used for the calculation of the Gaussian like-
lihood, c2 for the resampling and c3 for the random number complexity. Note
that, when Ct = 0 the same covariance matrix is used for all Kalman filters, which
reduces the computational complexity.
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Table 1: The EF complexity for the PF (upper) and KF time update
(lower) in Algorithm 1 († represents the case k > 0, ‡ represent operations
not from matrix multiplications and additions, such as resampling, random
number generation etc.).

Instruction Mult. Add. Other‡

PA := Pt|t(A
k
t )T pk2 (k − 1)kp

M := Ak
t PA + Q

p
t kp2 (k − 1)p2 + p2 †

T1 := chol(M) p3

3
+ 2p2

T2 := randn(p,N) pNc3
w := T1 ∗ T2 p2N (p − 1)pN

T3 := Apxp p2N (p − 1)pN

T4 := Akxk pkN (k − 1)pN †

x̂
p
t+1|t

:= T3 + T4 + w 2pN

invM := M−1 p3

L := F k
t PAinvM k2p + kp2 k2p + p2k − 2kp

T5 := F k
t Pt|t(F

k
t )T 2k3 2(k − 1)k2

T6 := LtMtL
T
t 2kp2 2(p − 1)pk

P := T5 + Qk
t − T6 2k2

T7 := F kxk k2N (k − 1)kN

T8 := F pxp kpN (p − 1)kN

T9 := x̂
p
t+1|t

− T3 − T4 2pN

x̂k
t+1|t

:= T7 + T8 + LT9 kpN (p + 1)kN

The analysis provided above is general and the main steps, which will be dis-
cussed in the subsequent section are as follows:

1. Estimate the time for one flop using linear regression.

2. Estimate the time for likelihood calculation, resampling
and random number generation.

3. Relate all times using the EF measure.

4. Calculate the overall complexity C(p, k,N).

By requiring C(p+k, 0, NPF) = C(p, k,N(k)), whereNPF corresponds to the number
of particles used in the standard PF N(k) can be solved for. This gives the number
of particles, N(k), that can be used in the MPF in order to obtain the same
computational complexity as if the standard particle filter had been used for all
states. In Figure 1 the ratio N(k)/NPF is plotted for systems with m = 3, . . . , 9
states. Hence, using Figure 1 it is possible to directly find out how much there is to
gain in using the MPF from a computational complexity point of view. The figure
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also shows that the computational complexity is always reduced when the MPF
can be used instead of the standard PF. Furthermore, it is well-known that the
quality of the estimates will improve or remain the same when the MPF is used [8].

3.2 Mixed Nonlinear/Linear Measurements (Ct 6= 0)

It is now assumed that Ct 6= 0 in (5c), which implies that the Riccati recursions
have to be evaluated for each particle. This results in a significant increase in the
computational complexity. Hence, different covariance matrices have to be used for
each Kalman filter, implying that (10) has to be modified. For details the reader
is referred to [13], but approximately the complexity is given by

C(p,k,N) = (6kp+ 4p2 + 2k2 + p− k + pc3 + c1 + c2+

4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp+ 2p2 + k3)N. (11)

The problem with the increased complexity in (11) might be reduced simply by
moving one or more linear states from xk

t to xp
t . In Figure 2 the ratio N(k)/NPF is

plotted for systems with m = 3, . . . , 9 states. For systems with few states the MPF
is more efficient than the standard PF. However, for systems with more states,
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Figure 1: The ratio N(k)/NPF for systems with m = 3, . . . , 9 states and
Ct = 0, n = 2 is shown. It is apparent the MPF can use more particles for
a given computational complexity, when compared to the standard PF.
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Figure 2: The ratio N(k)/NPF for systems with m = 3, . . . , 9 states and
Ct 6= 0, n = 2 is shown. For systems with high state dimension and many
marginalized states the standard PF can use more particles than the MPF.

where most of the states are marginalized the standard PF becomes more efficient
than the MPF. The reason is the increased complexity in the Kalman filters due
to the increased dimension in the Riccati recursions. For example; according to
Figure 2 a system with 9 states, where 7 are marginalized, N(k) < NPF .

4 Target Tracking Example

The general method for analyzing the computational complexity presented in the
previous section is illustrated using a common tracking model. The problem of
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estimating the position and velocity of an aircraft is studied using

xt+1 =











1 0 T 0 T 2/2 0
0 1 0 T 0 T 2/2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1











xt + wt, (12a)

yt =

( √

p2
x + p2

y

arctan (py/px)

)

+ et (12b)

where Q = Cov (w) = diag(1 1 1 1 0.01 0.01), R = Cov (e) = diag(100 10−6)
and the state vector is xt = (px py vx vy ax ay)T , i.e., position, velocity and
acceleration. The measurement equation gives the range and azimuth from the
radar system.

In the subsequent section a numerical study of the computational complexity
is given, where the theoretical expressions previously derived are validated. Fur-
thermore the MPF will be analyzed in an extensive Monte Carlo (MC) simulation
using the model described in (12). The main purpose of this simulation is to il-
lustrate the implications of the results derived in this paper. In the simulations
one state trajectory with different noise realizations have been used. The purpose
of the simulations presented here is to show that using marginalization the com-
putational complexity is significantly reduced and the quality of the estimates is
improved.

4.1 Numerical Complexity Analysis

The model (12) has 2 nonlinear state variables and 4 linear state variables, im-
plying k ∈ [0, 4], p ∈ [2, 6]. Two cases are now studied, the full PF, where all
states are estimated using the PF and the completely marginalized PF, where all
linear states are marginalized out and estimated using the KF. Requiring the same
computational complexity, i.e., C(6, 0, NPF ) = C(2, 4, NMPF ), gives

NPF =

(

1 − 4c3 + 56

c1 + c2 + 6c3 + 150

)

︸ ︷︷ ︸

<1

NMPF. (13)

From (13) it is clear that for a given computational complexity more particles can
be used in the MPF than in the standard PF. Expression (13) is a specific instance
of what has been plotted in Figure 1, where the curve corresponds to m = 6, k = 4.
In order to quantify this statement numerical values for the three constants c1, c2
and c3 are needed. They are estimated by analyzing the actual computational time
consumed by various parts of the MPF algorithm. It was fairly easy to measure
the time used for likelihood calculation, resampling and random number generation
as a function of the number of particles. The problem is to relate them to the
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Figure 3: Using a constant number of particles the times predicted from the
theoretical results are shown by the dashed line. The solid line corresponds
to the actual time measured using Matlab. If a certain state variable is
estimated using the PF this is indicated with a P , and if the KF is used this
is indicated using a K.

time consumed for a single flop. For simpler hardware implementations one flop
would have a constant execution time. However, in order to do this on a normal
desktop computer running Matlab, the EF estimation has to be considered, since
flop count does not entirely reflect the actual computational time. This is due to
memory caching, pipelining, efficient computational routines which are problem
size dependent and memory swapping. For the tracking example from (12) the
estimated coefficients are c1 = 445, c2 = 487 and c3 = 125 (on a Sun Blade 100
with 640 MB memory).

By comparing the EF complexity given by (10) to the actual computational
time measured in Matlab it is clear that the predictions of the computational
complexity based on theoretical considerations are quite good indeed. The result
is given in Figure 3. The small error is mainly due to the fact that it is quite hard
to predict the time used for matrix operations, as previously discussed.

4.2 Simulation - Constant Time

Using a constant time the number of particles that can be used is computed. The
study is performed by first running the full PF and measure the time consumed by
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the algorithm. A MC simulation, usingN = 2000 particles, is performed in order to
obtain a stable estimate of the time consumed by the algorithm. To avoid interven-
tion from the operating system the minimum value is chosen. The time is then used
as the target function for the different partitions in the MPF. To find the number
of particles needed a search method is implemented and MC simulations are used
to get a stable estimate. In Table 2 the number of particles (N), the root mean

square error (RMSE) and simulation times are shown for the different marginaliza-

tion cases. RMSE is defined as
(

1
Tf

∑Tf

i=1
1

NMC

∑NMC

j=1 ‖xtrue

i − x̂
(j)
i ‖2

2

)1/2

, where

Tf is the number of time samples and NMC = 100 is the number of MC simula-
tions used. From Table 2 it is clear that the different MPFs can use more particles

Table 2: Results from the constant time simulation.

PPPPPP PPKKPP PPPPKK PPKKKK

N 2000 2029 1974 2574
RMSE pos 7.10 5.81 5.76 5.60
RMSE vel 3.62 3.27 3.28 3.21
RMSE acc 0.52 0.47 0.45 0.44
Time 0.59 0.58 0.57 0.60

for a given time, which is in perfect correspondence with the theoretical result
given in (13). From the study it is also concluded that the RMSE is decreasing
when marginalization is used. This is also in accordance with theory, which states
that the variance should decrease or remain unchanged when marginalization is
used [8]. Furthermore, Table 2 verifies the theoretical results presented in Figure 1.
From this figure it is also clear that the complete marginalization (m = 6, k = 4)
gives N(k)/N0 = 1.44. Hence, the theoretically predicted number of particles is
2000 × 1.44 = 2880. This is in quite good agreement with the result reported in
Table 2, 2574.

4.3 Simulation - Constant Velocity RMSE

In this section it is studied what happens if a constant velocity RMSE is used.
First the velocity RMSE for the full PF is found using a MC simulation. This
value is then used as a target function in the search for the number of particles
needed by the different MPFs. Table 3 clearly indicates that the MPF can obtain
the same RMSE using fewer particles. The result is that using full marginalization
only requires 14% of the computational resources as compared to the standard PF
in this example.
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Table 3: Results using a constant velocity RMSE.

PPPPPP PPKKPP PPPPKK PPKKKK

N 2393 864 943 264
RMSE pos 7.07 6.98 7.12 7.27
RMSE vel 3.58 3.60 3.65 3.61
RMSE acc 0.50 0.51 0.49 0.48
Time 0.73 0.26 0.28 0.10

5 Conclusion

The contribution in this paper is a systematic approach to analyze and partition
the marginalized particle filter from a computational complexity point of view. The
method is general and can be applied to a large class of problems. To illustrate
the idea, a common target tracking problem is analyzed in detail. The complexity
analysis is performed theoretically by counting the number of flops and using the
equivalent flop measure to account for complex algorithmic parts such as random
number generation and resampling. In an extensive Monte Carlo simulation differ-
ent performance aspects are shown, and the theoretical results are illustrated and
validated.
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Algorithm 1 Marginalized Particle Filter (MPF), Ct = 0

1: Initialization: For i = 1, . . . , N , initialize the particles, x
p,(i)
0|−1 ∼ pxp

0
(xp

0) and set

{xk,(i)
0|−1, P

(i)
0|−1} = {x̄k

0 , P̄0}. Set t = 0.

2: For i = 1, . . . , N , evaluate the importance weights γ
(i)
t = p(yt|Xp,(i)

t ,Yt−1) =

N(ht(x
p,(i)
t ), Rt) and normalize γ̃

(i)
t =

γ
(i)
t

P

N
j=1 γ

(j)
t

.

3: PF measurement update (resampling): Resample N particles with replacement
according to,

Prob(x
p,(i)
t|t = x

p,(j)
t|t−1) = γ̃

(j)
t . (6)

4: PF time update and KF update

(a) KF measurement update,

x̂
k,(i)
t|t = x̂

k,(i)
t|t−1, Pt|t = Pt|t−1. (7)

(b) PF time update (prediction): For i = 1, . . . , N ,

x
p,(i)
t+1|t ∼ p(xp

t+1|t|X
p,(i)
t ,Yt), (8)

where

p(x
p,(i)
t+1 |Xp,(i)

t ,Yt) = N(Atx
p,(i)
t +Ak

t x̂
k,(i)
t|t , Ak

t Pt|t(A
k
t )T +Qp

t ).

(c) KF time update,

x̂
k,(i)
t+1|t = F k

t x̂
k,(i)
t|t + F p

t x
p,(i)
t + Lt(x

p,(i)
t+1|t −Ap

tx
p,(i)
t −Ak

t x̂
k,(i)
t|t ),

Pt+1|t = F k
t Pt|t(F

k
t )T +Qk

t − LtMtL
T
t ,

Mt = Ak
t Pt|t(A

k
t )T +Qp

t ,

Lt = F k
t Pt|t(A

k
t )TM−1

t ,

5: Set t := t+ 1 and iterate from step 2.
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Linköping University,

SE–581 83 Linköping, Sweden.

Abstract

A common framework for surface and underwater (UW) map-aided
navigation at sea is proposed, as a supplement to satellite navigation
based on the global positioning system (GPS). The proposed Bayesian
navigation method is based on information from a distance measur-
ing equipment (DME) and information from databases. For the de-
scribed system, the fundamental navigation performance expressed as
the Cramér-Rao lower bound (CRLB) is analyzed and an analytic solu-
tion as a function of the position is derived. As a solution to the recur-
sive Bayesian navigation problem, the particle filter is proposed. Two
detailed examples of different navigation applications are discussed:
surface navigation using a radar sensor and a sea chart and UW navi-
gation using a sonar sensor and a depth database. In extensive Monte
Carlo simulations the performance is shown to be close to the CRLB.
The estimation performance for the surface navigation is in comparison
with GPS performance. Experimental data is also successfully applied
to the UW application.

Keywords: Sea navigation, Recursive Bayesian estimation, Particle
filter, Cramér-Rao lower bound.

1 Introduction

Modern sea navigation systems are often based on satellite information from the
global positioning system (GPS). For critical navigation applications, this sensor
cannot be the only positioning sensor. In military applications, an independent
backup sensor insensitive to GPS jamming is preferable. Even for civil applica-
tions the robustness against jamming may constitute one of the main design issues
in the future. In [26, 1] the problem of intentional or unintentional GPS jamming is
discussed and alternative backup systems are strongly recommended. This is dis-
cussed further in [20] where both bathymetric and celestial methods are described
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as alternatives to GPS navigation. At sea, the satellite signal is often received
without problem, since there is a free line-of-sight to several satellites. However,
under severe weather conditions, such as ice-building on the antenna, or due to the
landscape geometry, or a system failure, GPS signals may not be available. There
are also applications where the GPS signal is not available at all, for instance in un-

derwater (UW) navigation. Hence, there are many reasons to use an independent
navigation system.

(a) Surface navigation with radar
and a sea chart.

(b) UW navigation using a sonar and a depth map.

Figure 1: Two DME navigation systems: (a) The surface navigation with
a radar sensor and a sea chart database and (b) the UW navigation with a
sonar sensor and a depth database.

Many navigation systems rely on linear models or models that are nearly linear.
If the system is approximately described by a Gaussian probability density function

(pdf) or at least a unimodal density, then the extended Kalman filter (EKF), [3, 11],
can often be applied successfully. For problems with highly nonlinear or non-
Gaussian distributions other methods must be used. One method is to use a bank
of several Kalman filters. Several methods are available, for instance IMM, [17].
Also the Gaussian-sum filter, [3], which approximates the underlying pdf by several
filters can be used. However, the most general approach is to tackle the nonlinear
and non-Gaussian problem directly using the particle filter (PF), [8, 7].

As an alternative to satellite navigation it is possible to use terrain information
together with sensor information from a distance measuring equipment (DME). By
comparing the terrain information from a database with the received DME mea-
surements it is in many cases possible to get an accurate position estimate. This
map-aided navigation technique is not a new topic, for instance in airborne navi-
gation it has been applied frequently. In [9] a terrain-aided navigation is discussed
using EKF; different linearization techniques and multiple models are discussed.
In [21] six different stochastic linearization techniques are proposed. In [22, 23] a
3D matching technique using terrain maps is presented. In [27] the positioning is
achieved using parallel filters. In [4] a Bayesian terrain navigation problem is solved
using a numerical integration directly for the Bayesian recursions. In [5, 7] also a
particle filter based method was proposed for aircraft terrain navigation. This was
further investigated in [2]. For UW navigation mainly map-matching techniques



2 Navigation Models 107

or Kalman filter based techniques are previously used. See for instance [19], where
a map-matching technique is described for positioning, and [6], where a Kalman
filter and data association method is applied to sea floor map-aided navigation.

In this paper, the main focus is on the particle filter as the proposed solution
to the recursive Bayesian navigation problem and on analysis of navigation perfor-
mance, mainly using the Cramér-Rao lower bound (CRLB). A common framework
for both surface and UW navigation using map-aided navigation together with
DME information is formulated. A novel map-aided DME navigation system that
does not require any external infrastructure and which is insensitive to jamming is
proposed for surface navigation at sea. Using a radar sensor the range to shore in
several directions can be compared to sea chart information, in order to calculate
the probability for different locations. To the best of the authors knowledge, this
is a completely new technique. Also a UW terrain-aided navigation using a sonar
sensor is described, based on a similar technique as the airborne navigation system
from [5] and using the preliminary results from [14, 13]. For the UW navigation a
detailed depth map is compared to depth information retrieved from a sonar sensor
in a similar way. For both applications range information from the DME and data
from the movements, for instance speed and heading, are used to calculate the po-
sition. In a statistical framework the pdf for the ship’s position is calculated. This
can be achieved by considering several possible positions and for each one calculate
the probability, using the particle filter. In Figure 1 two navigation applications
are illustrated.

The paper is organized as follows: In Section 2 the navigation system is de-
scribed. In Section 3 its fundamental performance is discussed using the CRLB. In
Section 4 the Bayesian estimation problem is formulated and the approximate solu-
tion using the particle filter is described. In Section 5 the novel surface navigation
method using a sea chart and a radar sensor is presented. Also the UW navigation
based on sonar measurements and a depth database, [14, 13] is presented. Both
extensive Monte Carlo simulations and experimental data are used. Finally, in
Section 6 conclusive remarks are given.

2 Navigation Models

In this section the common model used in the surface navigation and UW navigation
system is presented. Both the system dynamics and the measurement relation are
discussed.

2.1 Motion Model

Depending on the configuration, different sensors can be used, such as speedometers
and accelerometers. Hence, the motion can be modeled using as many position
derivatives as desired. Here, only longitudinal and lateral motion is considered,
where the speed is measured. Consider the following state variables: Cartesian
position (X,Y ), and crab angle, δ, that is the angle between the velocity vector
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and the stem of the ship,

xt =
(
Xt Yt δt

)T
, (1)

as depicted in Figure 2. The following discrete time model with sample time T is
used for the navigation system

xt+1 = f(xt, ut, wt) =





Xt + vtT sin(ϕt − δt)
Yt + vtT cos(ϕt − δt)

δt



+ wt, (2)

with input signal ut =
(
vt ϕt θt φt

)T
, consisting of speed, vt, compass, ϕt,

elevation angle, θt and azimuth angle, φt relative to the ship’s stem. The sensor
azimuth angle, φt, and elevation angle, θt, are not present in the dynamic model,
but will be used in the measurement relation described in Section 2.2. The process
noise, wt, is considered independent and describes the model uncertainty. Note that
here, the known input signal is in practice values obtained from sensors. Hence,
if they are considered as noisy measurements, the process noise will also describe
the uncertainty in the input. The symbols used in the navigation model is listed
in Table 1. If δ is negligible or known the model simplifies even further to only
position states. More advanced dynamic models can also be used, for instance a
coordinated turn model, which was the case in [13]. For an overview of possible
motion models, see the survey in [18].

Table 1: Description of symbols for the navigation system.
Signal Symbol Description

States Xt Position (in east direction)
Yt Position (in north direction)
δt Crab angle

Inputs ϕt Compass angle
vt Speed
φt Sensor azimuth angle relative to vessel
θt Sensor elevation relative to vessel

Measurements rt Radar range or sonar depth
Noise wt Process noise

et Measurement noise

2.2 Measurement Model

For the surface navigation the range to land objects is measured by a radar sensor,
and for the UW navigation the range to the sea floor is measured by a sonar
sensor. Both sensors measure distance in the direction of the sensor. Hence, the
measurement relation is given by

yt = h(xt, ut) + et = r(xt, φ
N
t , θt) + et, (3)



2 Navigation Models 109
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Figure 2: The ship with compass angle ϕ defined from the north direction
(N), together with the ship’s body coordinate frame (XB , YB), crab angle
δ, velocity v and heading ψ. The radar lobe is given with azimuth angle φ
and the range r = r(X,Y, φN ), where φN = ϕ+ φ.

where r(xt, φ
N
t , θt) is the measured range from position xt and with the sensor

azimuth angle, φN
t = ϕt + φt, relative to north and with elevation angle θt. For

the surface navigation the radar angle is defined in Figure 2.
The DME cases for sea navigation is presented in Table 2. Four different sensor

types are discussed. The radar uses only azimuth information, hence θt = 0. The
sonar system uses a fixed elevation. Also the GPS sensor can be viewed as a DME
sensor, measuring range for a given position. Finally, the celestial sensor return
a binary value. For all the cases different databases are used, for instance a sea
chart database, a depth database, a satellite motion database and a star position
database.

Table 2: Special cases of Distance Measuring Equipment (DME).
Angles Distance Sensor Database

θt = 0 r(xt, φ
N
t ) Radar Sea chart

θt < 0 r(xt, φ
N
t , θt) Sonar Depth map

θt > 0 r(xt) GPS Satellite information
θt > 0 r(xt) Celestial Star information

2.3 Navigation System

In Figure 3 the complete surface or underwater navigation system, together with
way-point calculation and auto pilot, is depicted. Depending on the application,
one or more of the presented sensors are available. For surface navigation, the GPS
signal can in many cases be the prime navigation sensor, where the estimate from
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Figure 3: The complete navigation system, used in the applications in
Section 5, consisting of a way-point unit, a controller, the sea chart database,
the estimator and various sensors. The reference is given by the desired
heading, ψt,ref and the estimated heading is given as ψ̂t = L(x̂t, ut).

the map-aided navigation method can be used to monitor performance. The main
objective in this paper is to analyze the map-aided navigation method, hence the
GPS part is not further discussed.

3 The Cramér-Rao Lower Bound

The main objective in this section is to find fundamental limits for the estimation
performance expressed in terms of the system properties, for instance as a function
of the measurement noise or the information available in the sea chart. The Cramér-

Rao lower bound (CRLB) is such a characteristic for the second order moment [16].
This is done considering a static and dynamic case respectively. In the first case,
only the measurement model is considered. In the second, the complete system
dynamics is analyzed. The idea in this section is to perform a local analysis in each
point in the sea chart and use that to analyze the global behavior.

In the sequel, the CRLB analysis is heavily based on expressions involving
gradients of scalar functions or vector valued functions:

∇xg(x) =






∂g
∂x1

...
∂g

∂xn




 , g : R

n 7→ R, (4a)

∇xg
T (x) =






∂g1

∂x1
. . . ∂gm

∂x1

...
...

∂g1

∂xn
. . . ∂gm

∂xn




 , g : R

n 7→ R
m. (4b)

Also, the Laplacian for the scalar function g(x, y) with x ∈ R
n, y ∈ R

m is defined
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as

∆x
yg(x, y) = ∇y(∇xg(x, y))

T , g : R
n × R

m 7→ R. (5)

3.1 Static CRLB

For an unbiased estimator, E (x̂) = x, the CRLB, [16], is given by

Cov (x− x̂) = E
(
(x− x̂)(x− x̂)T

)
� J−1(x), (6a)

J(x) = E (−∆x
x log p(y|x)) , (6b)

where J(x) is the Fisher information matrix and y the measurement. Also note
that an equivalent representation of the information, [16], is

J(x) = E
(
∇x log p(y|x)(∇x log p(y|x))T

)
. (7)

Particularly, for y = h(x) + e, e ∈ N(0, R) the information is

J(x) = HT (x)R−1H(x), (8)

where

HT (x) = ∇xh
T (x). (9)

Above it is assumed that J(x) is invertible. If not, a local analysis can be done by
averaging information around x, in order to get a full rank information matrix. For
the case with several independent measurements y(i), i = 1, . . . ,M , this is usually
not a problem. The information is then given by

J(x) =

M∑

i=1

J (i)(x), (10)

due to the additivity of information, assuming that J (i) is the information in mea-
surement i.

3.2 Dynamic CRLB

The theoretical posterior CRLB for a general dynamic system was derived in [25,
24, 5, 7]. The general state space model can be used to derive fundamental limits
for navigation performance. In many applications, δt is small and can be discarded
from the analysis, or it is known. Hence, for the CRLB analysis the following
simplified model is used

xt+1 = xt + ut + wt, (11a)

yt = h(xt, ut) = r(xt, φ
N
t ) + et, (11b)
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where the horizontal position state vector, xt ∈ R
2, and the input signal, ut, are

defined as

xt =

(
Xt

Yt

)

, ut =

(
vt sin(ϕt)
vt cos(ϕt)

)

, (12)

assuming independent additive process noise wt. The observation relation consists
of range measurements with measurement noise et. Using standard notations, con-
sider independent noise sources, with variances Qt = Cov (wt) and Rt = Cov (et),
the posterior CRLB for filtering can be written as, [5]

P−1
t+1|t+1 = Q−1

t + Jt+1 − ST
t

(

P−1
t|t + Vt

)−1

St, (13)

where

Vt = E
(
−∆xt

xt
log p(xt+1|xt)

)
, (14a)

St = E
(
−∆xt+1

xt
log p(xt+1|xt)

)
, (14b)

Q−1
t = E

(

−∆xt+1
xt+1

log p(xt+1|xt)
)

, (14c)

Jt = E
(
−∆xt

xt
log p(yt|xt)

)
, (14d)

where the bound is given by

Cov
(
xt − x̂t|t

)
= E

(
(xt − x̂t|t)(xt − x̂t|t)

T
)
� Pt|t. (15)

If the model in (11) is considered with Gaussian process noise, it gives St = Vt =
Q−1

t . Hence, given the true trajectory for the state vector the posterior bound can
be calculated.

In order to analyze the performance, without performing any simulations, a
local analysis of the dynamic system is conducted. The assumption is that the
covariance should reach a stationary value, i.e., consider a point x0 and assume
P̄ (x) = Pt+1|t+1(x) = Pt|t(x), for all x such that |x−x0| < ε. Using this assumption
in (13), it is possible to obtain an expression for P̄ (x). This is done by applying
the matrix inversion lemma

(A+ BCD)−1 = A−1 −A−1B(DA−1B + C−1)−1DA−1, (16)

using A = Q,B = D = I and C = P̄ (x), where I is the identity matrix. This gives

P̄−1(x) =
(
P̄ (x) +Q

)−1
+ J(x), (17)

Solving for J(x) and applying the matrix inversion lemma again with A = B =
D = P̄ (x) and C = Q−1 yield

J(x) = P̄−1(x) −
(
P̄ (x) +Q

)−1
=
(
P̄ (x) + P̄ (x)Q−1P̄ (x)

)−1
. (18)
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Hence, if J is assumed invertible, then

P̄ (x) + P̄ (x)Q−1P̄ (x) − J(x)−1 = 0. (19)

Completing squares gives
(

P̄ (x)Q−1/2 +
1

2
Q1/2

)(

Q−1/2P̄ (x) +
1

2
Q1/2

)

= J(x)−1 +
1

4
Q. (20)

Multiply with Q−1/2 from left and right in the expression

(

Q−1/2P̄ (x)Q−1/2 +
1

2
I
)(

Q−1/2P̄ (x)Q−1/2 +
1

2
I
)

= Q−1/2J(x)−1Q−1/2 +
1

4
I. (21)

Since all matrices are symmetric, a unique matrix square root can be defined.
Hence, solving for the symmetric and positive definite matrix, P̄ (x) > 0, now
yields

Q−1/2P̄ (x)Q−1/2 +
1

2
I =

(

Q−1/2J(x)−1Q−1/2 +
1

4
I
)1/2

. (22)

Hence, the covariance P̄ (x) is given as

P̄ (x) = −1

2
Q+Q1/2

(

Q−1/2J(x)−1Q−1/2 +
1

4
I
)1/2

Q1/2. (23)

One problem with the CRLB using the information form is that the Fisher
information, J , may in general be singular. Often because the measurement sub-
space dimension is much smaller than the state-space dimension. This can be
handled using one of the following methods:

(i) Since a global analysis using local behavior is performed, it makes sense to
average the information in a neighborhood i.e., J(x) = 1

M ΣM
k=1Jk(x(i)), where

x(i) are picked around x, so |x− x(i)| < ε.

(ii) Introduce more measurements, so J(x) = HT (x)R−1H(x) becomes invertible.

(iii) A regularization term can be added, basically meaning that a fictitious mea-
surement with a large variance is introduced.

In order to understand the analytic CRLB expression in (23) assume that J is
invertible, and consider the special case Q = qI and R = rI. The covariance P̄ (x)
is rewritten in order to perform a Taylor expansion:

P̄ (x) =

{

− q
2I + q

2

(
I + 4q−1J(x)−1

)1/2
,

− q
2I + q1/2J−1/2(I + q

4J)1/2.
(24)
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Introduce the signal to noise ratio (SNR) as

SNR
M

= qJ =
q

r
HTH. (25)

Hence, for large or small SNR, a Taylor expansion yields

P̄ ≈
{

J−1
(
I − SNR−1

)
,

q
(

− 1
2I + SNR−1/2 + 1

8 SNR1/2 − 1
32 SNR3/2

)

.
(26)

4 Recursive Bayesian Estimation

Navigation problems are often treated as Bayesian inference. The two map aided
navigation methods described in Section 2 are described by nonlinear problems.
Consider the following general state-space model

xt+1 = f(xt, ut, wt), (27a)

yt = h(xt) + et, (27b)

where xt ∈ R
n denotes the state of the system, ut the input signal and yt the

observation at time t. The process noise wt and measurement noise et are assumed
independent with densities pwt and pet respectively. Let Yt = {yi}t

i=0 be the set
of observations until present time.

The Bayesian estimation problem is given by, [10],

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt) dxt, (28a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (28b)

where p(xt+1|Yt) is the prediction density and p(xt|Yt) the filtering density. The
problem is in general not analytically solvable. To solve the non-tractable Bayesian
estimation problem in an on-line application without using linearization or Gaus-
sian assumptions, sequential Monte Carlo methods, or particle filters (PF), can be
used.

In this section a brief description of the particle filter theory is given. For
more details see [5, 7, 8, 12]. The particle filter method provides an approximative
Bayesian solution to (28) by approximating the probability density p(xt|Yt) by

a large set of N particles {x(i)
t }N

i=1, where each particle has an assigned relative

weight, γ
(i)
t , such that all weights sum to unity. The location and weight of each

particle reflect the value of the density in that region of the state space. The
likelihood p(yt|xt) is calculated from (27) yielding

γt = p(yt|xt) = pet(yt − h(xt)). (29)

By introducing a resampling step, as proposed in [8], problems with divergence can
be handled. This is referred to as sampling importance resampling (SIR), and is
summarized in Algorithm 1.
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Algorithm 1 Sampling Importance Resampling (SIR)

1: Let t = 0. Generate N samples {x(i)
0 }N

i=1 from p(x0).

2: Compute γ
(i)
t = pe(yt − h(x

(i)
t )) and normalize, i.e., γ̄

(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t ,

i = 1, . . . , N .

3: Generate a new set {x(i?)
t }N

i=1 by resampling with replacement N times from

{x(i)
t }N

i=1, with probability γ̄
(i)
t = Prob

(

x
(i?)
t = x

(i)
t

)

.

4: x
(i)
t+1 = f(x

(i?)
t , ut, w

(i)
t ), i = 1, . . . , N using different noise realizations, w

(i)
t .

5: Increase t and iterate to step 2.

5 Applications

In this section, two specific applications of our general framework are presented:

• Surface navigation based on range information from the ship’s radar and a
sea chart.

• UW navigation based on sonar depth measurements and a detailed depth
database.

For both applications Gaussian process noise and measurement noise are assumed.
With more detailed motion models or sensor models other assumptions are possible.

5.1 Surface Navigation

In this section the novel navigation algorithm is described. The navigation system
is presented in Figure 3, where the ship is equipped with a radar, measuring relative
distance to any land object. The sensor is assumed stabilized or that the deviation
angle is small relative to the uncertainty in the radar sensor. To simplify the
analysis, the speed relative to ground and the compass angle are considered as
input signals, i.e., noiseless measurements, as described in Section 2.1. However,
this assumption is not necessary, and by introducing them as states-variables in
the model, these can be estimated. Crucial for the positioning algorithm is a
comparison of relative range measurements from the radar with expected land
areas from a sea chart database. This is done in a statistically optimal way, using
the particle filter as described in Section 4. The map presented in Figure 4 is
computed from a vectorized sea chart.

Since the speed is rather small compared to the radar revolution, a complete
radar picture can be processed for each time the filter is updated, Figure 5. In
order to reduce the amount of possible range data, only a fixed number, (M),
of radar strobes are considered each revolution. The radar produces many range
measurements in any given direction. In the algorithm, only the measurement
closest to the ship is considered. The database consists of a sea chart, in the
sequel a portion of the Baltic Sea is studied. In Figure 4 the scenario is presented,
where the ship’s true position and some radar measurements are depicted. Also,
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Figure 4: The true position (o) and radar measurements (x), together with
the particle cloud. The marginalized pdf for the X and Y directions are also
shown.

the probability density function for each coordinate is given. As seen, after only 5
revolutions of the radar an accurate position is given. The initial distribution for
the example given in Figure 4 was uniformly distributed around the true position,
±800 m in each direction. The radar measurements from Figure 4 presented in a
polar plot with the ship in the origin is presented in Figure 5.

In a Monte Carlo simulation study the scenario given previously is used. A
straight trajectory is used in all simulations with different measurement noise real-
izations. In Figure 6 the RMSE as a function of time is given for 50 Monte Carlo
simulations. The parameters used in the Monte Carlo evaluation are presented in
Table 3. As seen in Figure 6 the RMSE from the Monte Carlo simulations are close
the fundamental limit. The performance using the map-aided navigation method
equals that or is slightly better than of an ordinary GPS based navigation system,
when there are sufficient returns from land objects. Also note that the peak is
due to a region when very few of the radar strobes (from the downsampled radar
picture) actually reflect any land area. Now M different strobes are used each
radar revolution, so even if land areas are present in the radar picture, sometimes
no value is available in the downsampled set. Another possibility is that always M
different values are used. The theoretical CRLB calculation from Section 3 can be
applied to the surface navigation problem. In Figure 7 each point in the map is
allocated the standard deviation tr

(
P̄ (x)

)
using (23).
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Figure 5: The radar measurements from one revolution of the radar using
a polar representation with the ship’s position at the origin. The nearest
distance to any object is visualized for all direction with the resolution given
by the radar sensor.
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Figure 6: Surface navigation position RMSE(t) for the particle from 50
Monte Carlo simulations together with the CRLB limit as the solution of
the EKF around the true trajectory.
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Table 3: Surface navigation parameters.

Monte Carlo simulations 50
Process noise covariance Q = diag(102, 102, 02)
Measurement noise covariance R = 102

Max radar meas./revolution M = 16
Sample time T = 1
Number of particles (initially) N = 50000
Radar interval Rmin = 300, Rmax = 6000
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Figure 7: The analytic CRLB for surface navigation for each position in
the sea chart according to the analytic CRLB expression (23).

5.2 Underwater Navigation

In this section the UW navigation method from [14, 15] is described in detail, using
the model from Section 2. In [15] an UW terrain map was collected using sonar
depth measurements and differential GPS. In Figure 9 the original data is shown.
This data is then interpolated and resampled to get a uniform depth map. This is
depicted in Figure 8, together with the platform at depth dt and with sonar range
measurements rt. In the experiment and in the simulations dt = 0. After the data
for map generation was collected, an independent test run in the map region was
done, in order to collect measurements to test the map-aided navigation system.
The experimental test run is presented in Figure 10 together with the level curves.
If the level curves are studied, one can see that the terrain is sufficiently varied
for successful positioning even in the somewhat flat regions. In order to test
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the depth map, together with an independent test run on which the particle
filter algorithm is tested.
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Figure 10: Part of the experimental test run used for evaluation in the
particle filter. The depth map is presented with level curves for each 0.5
m level. Also the trajectory used in the Monte Carlo simulation study is
visualized.

the system performance, a Monte Carlo study on simulated data, but using the
depth map from the experiment is made. The parameters used in the Monte Carlo
evaluation and the experiment are presented in Table 4. The result is presented in

Table 4: UW navigation parameters.

Monte Carlo simulations 50
Process noise covariance Q = diag(12, 12, 02)
Measurement noise covariance R = 0.12

Sample time T = 5
Number of particles (initially) N = 50000

Figure 11. Note that in the upper plot, one experimental test run was used in the
RMSE calculation. In the lower plot the RMSE is compared to the CRLB using
50 Monte Carlo simulations. The RMSE is close to the lower bound, and the error
is mainly due to deficiencies in the map.

In order to analyze the performance, without doing Monte Carlo simulations,
the CRLB technique from Section 3 is used. The problem with the UW navigation
is that only one depth measurement is given each time the filter is updated. Hence,
the Fisher information, J , is singular, and the theoretical result cannot be applied
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Figure 11: Estimation error using the trajectories in Figure 10. Upper:
The position RMSE for the experimental test run and the CRLB as the
EKF solution around the true trajectory. Note that only one test run was
used in the RMSE calculation. Lower: The position RMSE from 50 Monte
Carlo simulations.

directly. Since the idea behind the analytic CRLB was to use a local analysis of the
dynamic system to get a global behavior, it is reasonable to average the information
in a neighborhood of each point. Hence, the information matrix becomes invertible.
The result from the CRLB calculations using (23) is presented in Figure 12.

6 Conclusions

In this paper a framework for sea navigation using sea chart information and a dis-
tance measuring equipment is developed. The navigation performance is analyzed
both theoretically and using Monte Carlo simulations. An analytic Cramér-Rao
lower bound for the proposed navigation model has been derived. Two specific
applications are studied in detail: surface and underwater navigation. The novel
surface navigation method uses a radar sensor and a sea chart. In an extensive
Monte Carlo simulation the system reaches GPS performance using only a radar
sensor and the map-aided navigation method. The underwater navigation uses
sonar and a depth map. Both Monte Carlo simulation and experimental data are
successfully employed.
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R. Karlsson and M. Norrlöf. Bayesian state estimation of a flexible
industrial robot. Submitted to IEEE Transactions on Control Systems

Technology.

Parts of the paper in:
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Abstract

A sensor fusion technique for state estimation of an industrial robot is
presented. By measuring the acceleration at the end-effector, the accu-
racy of the arm angular position, velocity, and acceleration estimates
can be improved. The problem is formulated in a Bayesian estima-
tion framework and two solutions are proposed; one using the extended
Kalman filter and one using the particle filter. In an extensive sim-
ulation study on a realistic flexible industrial robot, the performance
is shown to be close to the fundamental Cramér-Rao lower bound. A
significant improvement in position accuracy is achieved using the sen-
sor fusion technique and the method is also proven to be robust to
parameter variations in the model.

Keywords: Industrial robot, positioning, estimation, particle filter,
extended Kalman filter, Cramér-Rao lower bound.

1 Introduction

Modern industrial robot control is usually based only upon measurements from
the motor angles of the manipulator. However, the ultimate goal is to move the
tool according to a predefined path. In [9] a method for improving the absolute
accuracy of a standard industrial manipulator is described. The improved accuracy
is achieved through identification of unknown or uncertain parameters in the robot
system, and applying the iterative learning control (ILC) method, [2, 24], using
additional sensors to measure the actual tool position. The aim of this paper is
to evaluate the Bayesian estimation techniques for sensor fusion and to estimate
the tool position from indirect measurements such as the acceleration at the end-
effector. It is assumed that a high accuracy at the tool position is needed, for
instance laser cutting, and that low cost sensors such as accelerometers are used
to improve positioning. The methods presented are applied to a realistic flexible
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Figure 1: The ABB IRB1400 robot with an accelerometer mounted at the
end-effector. The base coordinate system, (x0, y0, z0), and the coordinate
system for the accelerometer, (xa, ya, za), are also shown.

robot model and configuration of the system with the accelerometer is depicted in
Figure 1.

Traditionally, many nonlinear estimation problems are solved using the extended

Kalman filter (EKF) [1, 14, 10]. In [11] an EKF is used to improve the trajectory
tracking for a rigid 2 degree-of-freedom (DOF) robot. Bayesian techniques have
been applied in mobile robot applications, see e.g., [21, 13],[6, Ch. 19], but to
the best of the authors knowledge, general Bayesian techniques have not yet been
applied to position estimation in industrial robotics. The robot dynamics and mea-
surements are highly nonlinear and the measurement noise is not always Gaussian.
Hence, linearized models may not always be a good approach. The particle filter

(PF), [6], provides a general solution to many problems where linearizations and
Gaussian approximations are intractable or would yield too low performance. The
PF method is also motivated since it provides the possibility to design control laws
and perform diagnosis in a much more advanced way. This paper extends the
idea introduced in [18]. A performance evaluation in a simulation environment for
both the EKF and the PF is presented and it is extensively analyzed using the
Cramér-Rao lower bound (CRLB) [4, 19]. The sensitivity to model errors is also
considered and different levels of model simplification in the measurement equation
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are discussed and evaluated.
The paper is organized as follows. In Section 2 the theory of Bayesian estimation

is introduced and the equations for the EKF are given. The particle filter algorithm
is explained, and the concept of CRLB is presented. The simulation model, the
estimation model, and the sensor model, are introduced in Section 3. The results
from the simulation experiments are covered in Section 4 and the EKF and PF
methods are compared for nominal model parameters but also in a sensitivity
analysis with respect to model uncertainty. In Section 5 several motivations for
the Bayesian state estimation problem are presented. Finally, Section 6 contains a
summary and conclusive remarks.

2 Bayesian Estimation

Consider the discrete state-space model

xt+1 = f(xt, ut, wt), (1a)

yt = h(xt) + et, (1b)

with state variables xt ∈ R
n, input signal ut and measurements Yt = {yi}t

i=1,
with known probability density functions (pdfs) for the process noise, pw(w), and
measurement noise pe(e). The nonlinear prediction density p(xt+1|Yt) and filtering
density p(xt|Yt) for the Bayesian inference, [12], is given by

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt)dxt, (2a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (2b)

For the important special case of linear-Gaussian dynamics and linear-Gaussian
observations the Kalman filter, [15], will give the solution. For nonlinear and non-
Gaussian systems, the pdf can not in general be expressed with a finite number
of parameters. Instead approximative methods must be used. Usually this is
done in two ways; either by approximating the system or by approximating the
posterior pdf. See for instance, [30, 3]. Here two different approaches of solving
the Bayesian equations are considered; extended Kalman filter, and particle filter.
The EKF will solve the problem using a linearization of the system and assuming
Gaussian noise. The PF on the other hand will approximately solve the Bayesian
equations by stochastic integration. Hence, no linearizations errors occur. The
PF can also handle non-Gaussian noise models where the pdfs are known only up
to a normalization constant. Also hard constraints on the state variables can be
incorporated in the estimation without any problems.

2.1 The Extended Kalman Filter

For the special case of linear dynamics, linear measurements and additive Gaussian
noise the Bayesian recursions in Section 2 have an analytical solution, the Kalman



130 Paper D Bayesian State Estimation of a Flexible Industrial Robot

filter. For many nonlinear problems the noise assumptions and the nonlinearity are
such that a linearized solution will be a good approximation. This is the idea behind
the EKF, [1, 14, 10], where the model is linearized around the previous estimate.
Here the time update and measurement update for the EKF is presented,

{

x̂t+1|t = f(x̂t|t, ut, 0),

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t ,

(3a)







x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1)),

Pt|t = Pt|t−1 −KtHtPt|t−1,

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1,

(3b)

where the linearized matrices are given as

Ft = ∇xf(xt, ut, 0)|xt=x̂t|t
, (4a)

Gt = ∇wf(xt, ut, wt)|xt=x̂t|t
, (4b)

Ht = ∇xh(xt)|xt=x̂t|t−1
. (4c)

The noise covariances are given as

Qt = Cov (wt) , Rt = Cov (et) . (5)

2.2 The Particle Filter

In this section the presentation of the particle filter theory is according to [4, 6, 7,
16, 28]. The PF provides an approximate solution to the discrete time Bayesian
estimation problem formulated in (2) by updating an approximate description of
the posterior filtering density. Let xt denote the state of the observed system
and Yt = {y(i)}t

i=1 be the set of observed measurements until present time. The
PF approximates the density p(xt|Yt) by a large set of N samples (particles),

{x(i)
t }N

i=1, where each particle has an assigned relative weight, γ
(i)
t , chosen such

that all weights sum to unity. The location and weight of each particle reflect
the value of the density in the region of the state space, The PF updates the
particle location and the corresponding weights recursively with each new observed
measurement. For the common special case of additive measurement noise the
unnormalized weights are given by

γ
(i)
t = pe(yt − h(x

(i)
t )), i = 1, . . . , N. (6)

Using the samples (particles) and the corresponding weights the Bayesian equations
can be approximately solved. To avoid divergence a resampling step is introduced.
This is referred to as the Sampling Importance Resampling (SIR), [7], and is sum-
marized in Algorithm 1.
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Algorithm 1 Sampling Importance Resampling (SIR)

1: Generate N samples {x(i)
0 }N

i=1 from p(x0).

2: Compute γ
(i)
t = pe(yt − h(x

(i)
t )) and normalize, i.e., γ̄

(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t ,

i = 1, . . . , N .

3: Generate a new set {x(i?)
t }N

i=1 by resampling with replacement N times from

{x(i)
t }N

i=1, with probability γ̄
(i)
t = Prob(x

(i?)
t = x

(i)
t ).

4: x
(i)
t+1 = f(x

(i?)
t , ut, w

(i)
t ), i = 1, . . . , N using different noise realizations, w

(i)
t .

5: Increase t and continue to step 2.

The estimate for each time, t, is often chosen as the minimum mean square
estimate, i.e.,

x̂t = E (xt) =

∫

Rn

xtp(xt|Yt)dxt ≈
N∑

i=1

γ
(i)
t x

(i)
t , (7)

but other choices, such as the ML-estimate, might be of interest. The PF approx-
imates the posterior pdf, p(xt|Yt), by a finite number of particles. There exist
theoretical limits [6], that the approximated pdf converges to the true as the num-
ber of particles tends to infinity.

2.3 Cramér-Rao Lower Bound

When different estimators are used it is fundamental to know the best possible
achievable performance. As mentioned previously, the PF will approach the true
pdf asymptotically, but for any implementation, due to finite number of particles,
only an approximation is given. For other estimators, such as the EKF, it is
important to know how much the linearization or model structure used, will affect
the performance. The Cramér-Rao lower bound (CRLB) is such a characteristic for
the second order moment [19]. Here only state-space models with additive Gaussian
noise are considered. The theoretical posterior CRLB for a general dynamic system
was derived in [32, 31, 4, 6]. Here a continuous-time system is considered. By first
linearizing and then discretizing the system, the fundamental limit can in practice
be calculated as the stationary solution, P̄ = P̄ (xtrue

t ), of the Riccati recursions in
the EKF, where the linearizations are around the true state trajectory, xtrue

t . Note
that for the industrial robot application a high sample rate and a small process
noise make the approximation fairly accurate. The predicted value of the stationary
covariance for each time t, i.e., for each point in the state-space, xtrue

t , is denoted
P̄p and given as the solution to

P̄p = F̄ (P̄p − (P̄pH̄
T (H̄P̄pH̄

T +R)−1)H̄P̄p)F̄
T + ḠQḠT . (8)

where the linearized matrices are evaluated around the true trajectory, xtrue
t . The

CRLB limit can now be calculated as

P̄ = P̄p − K̄H̄P̄p, (9)
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for each point along the state-trajectory.

3 Models

In this section a continuous-time 3 DOF robot model is discussed. The model is
simplified and transformed into discrete time where it can be used by the EKF
and PF. The measurements are in both cases angle measurements from the motor,
with or without acceleration information from the arm.

3.1 Robot Model

A common assumption of the dynamics of the robot is that the transmission can
be approximated by two or three masses connected by springs and dampers. The
coefficients in the resulting model can be estimated from an identification exper-
iment. See for instance [20]. Here it will be assumed that the transmission can
be described by a two mass system and that the manipulator is rigid, schemati-
cally shown in Figure 2. The equation describing the torque balance for the motorPSfrag replacements

τ

τ, qm

qa

Mm

Ma

k, d
rg

fm

Figure 2: A two mass model of the dynamics between two joints in the in-
dustrial robot; spring (k), damper (d), friction fm, gear ratio (rg), moments
of inertia (Mm, Ma(qa)), torque (τ) and angles (qm, qa).

becomes

Mmq̈m = −fmq̇m − rgk(rgqm − qa)

−rgd(rg q̇m − q̇a) + τ,
(10)

where Mm is the motor inertia matrix, qm the motor angle, qa the arm angle, rg
the gear ratio, fm, k, and d are the motor friction, spring constant and damping
respectively. Input to the system is the motor torque, τ . The corresponding relation
for the arm becomes a nonlinear equation

Ma(qa)q̈a + C(qa, q̇a)q̇a + g(qa) =

k(rgqm − qa) + d(rg q̇m − q̇a).
(11)
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A more detailed model of the robot should include nonlinear friction such as
Coulomb friction. An important extension would also be to model the nonlin-
ear spring characteristics in the gear-boxes. In general the gear-box is less stiff for
torques close to zero and more stiff when high torques are applied.

An industrial robot has, in general, 6 DOF. However, here only joint 1-3 (not the
wrist joints) are used in the simulation study. The continuous-time robot model is
implemented in Matlab Simulink [23], as presented in Figure 3. The manipulator
block uses the Simulink block from Robotics Toolbox [5] to simulate the nonlinear
dynamics.

6
Motor angular acc

5
Motor angular vel

4
Motor angle

3
Arm angular acc

2
Arm angular vel

1
Arm angleq_m

ref_pos_a

tau_PID

PID Controller

x’ = Ax+Bu
 y = Cx+Du

Motor and gear

tau_a

q_a

qd_a

qdd_a

Manipulator
(Robotics Toolbox)

Demux

1
reference

imput

Figure 3: The Matlab Simulink model of the robot and PID controller.

The Denavit-Hartenberg (DH) parameters for the robot are given in Table 1.
The robot is stabilized using a PID-controller,

FPID(s) = KP +
KI

s
+

KDs
s
b + 1

, (12)

where s denotes the Laplace operator. The parameters are described in Table 2.
For specific values of the dynamics, see [33].

3.2 Estimation Model

The estimation model has to reflect the dynamics in the true system. A straight
forward choice of estimation model is the state space equivalent of (11) and (10),
this gives a nonlinear dynamic model with 12 states (motor and arm angular po-
sitions, velocities). Since the goal is to find an estimate of the arm angles the

Table 1: DH parameters for the robot used in the simulation.
Joint/Link αi ai θi di

i [rad] [m] [rad] [m]

1 −π/2 0.41 0 0.78
2 0 1.075 −π/2 0
3 π/2 1.056 π/2 0
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Table 2: PID parameters used in the simulation.
Parameter Joint 1 Joint 2 Joint 3

KP 40 50 40
KI 40 40 40
KD 2 2 2
b 150 150 150

following state variables are used

xt =
(
qa,t q̇a,t q̈a,t

)T
, (13)

where qa,t =
(
q1a,t q2a,t q3a,t

)T
contains the arm angles from the first three joints

in Figure 1 and q̇a,t is the angular velocity and q̈a,t is the angular acceleration at
time t. This yields the following state space model in discrete time

xt+1 = Ftxt +Gu,tut +Gw,twt, (14a)

yt = h(xt) + et, (14b)

where

Ft =





I TI T 2/2I
O I TI
O O I



 , (15a)

Gw,t =





T 2

2 I
TI
I



 , Gu,t =





T 3

6 I
T 2

2 I
TI



 . (15b)

This model is linear and the number of states is reduced to 9, compared to the 12
states in the nonlinear state space model. In Section 2.3 a linearized model of the
nonlinear dynamics is presented for computing the Cramér-Rao lower bound. The
input, ut, is the arm jerk reference, i.e., the differentiated arm angular acceleration
reference. The process noise, wt and measurement noise et are considered Gaussian
with zero mean and covariances, Qt and Rt respectively. The sample time is
denoted T and I and O are three by three unity and null matrices. The observation
relation, (14b), is described in full detail in the next section.

3.3 Sensor Model

The observation relation is given by

h(xt) =

(
qm,t

ρ̈t

)

, (16)

where qm,t is the measured motor angle and ρ̈t is the Cartesian acceleration vector
in the accelerometer frame, Figure 1. With the simplified discrete time model
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described in Section 3.1, the motor angle qm,t is computed as

qm = r−1
g

(

qa + k−1(Ma(qa)q̈a + g(qa)

+ C(qa, q̇a)q̇a − d(rg q̇m − q̇a))
)

.
(17)

The approach is similar to the one suggested in [8], which uses the relation given
by (11) in a case when the system is scalar and linear. The results presented here
are more general, since a multi-variable nonlinear system is considered.

The kinematics [29] of the robot is described by a nonlinear mapping ρt =
T (qa,t), and its Jacobian is defined as

J(qa) = ∇qaT (qa). (18)

The following equation relates the Cartesian acceleration with the state variables

ρ̈t = J(qa,t)q̈a,t +
( 3∑

i=1

∂J(qa,t)

∂q
(i)
a,t

q̇
(i)
a,t

)

q̇a,t + ng(qa,t), (19)

where q
(i)
a,t is the ith element of qa,t and ng(qa,t) is the gravity vector measured by

the accelerometer.
Remark: If the nonlinear dynamics (11) and (10), are used, see Section 3.1,

the relation in (17) becomes linear since qm,t is a state variable. However, the
relation in (19) becomes more complex since q̈a,t is no longer a state, but has to be
computed using (11).

3.4 CRLB Analysis of the Robot

In Section 2.3 the posterior CRLB was defined for a general nonlinear system with
additive Gaussian noise. In this section the focus is on the CRLB expression for
the industrial robot presented in Section 3.1. Equation (11) gives

κ(qa, q̇a)
M

= q̈a = −Ma(qa)−1
(
k(rgqm − qa)

− d(rg q̇m − q̇a) − g(qa) − C(qa, q̇a)q̇a
)
. (20)

Here, the motor angular velocity, q̇m, is considered as an input signal, hence not

part of the state-vector, x(t) =
(
qa q̇a q̈a

)T
. The system can be written in state

space form as

ẋ =
d

dt





qa
q̇a
q̈a



 = f c(x(t)) =





q̇a
q̈a

Λ(qa, q̇a, q̈a)



 , (21a)

Λ(qa, q̇a, q̈a) =
d

dt
κ(qa, q̇q). (21b)
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The differentiation of κ is performed symbolically, using the Matlab symbolic
toolbox. According to Section 2.3 the CRLB is defined as the stationary Riccati
solution of the EKF around the true trajectory, xtrue

t . This is formulated for a
discrete-time system. Hence, the continuous-time robot model from (21) must first
be discretized. This can be done by first linearizing the system and then discretize
it, [10]. The system is too complicated to apply a symbolic gradient directly in the
linearization. However, a numerical differentiation can be done around the true
trajectory, yielding

Ac = ∇xf
c(x)|x=xtrue

t
=





O I O
O O I

∂Λ(q,q̇,q̈)
∂q

∂Λ(q,q̇,q̈)
∂q̇

∂Λ(q,q̇,q̈)
∂q̈



 , (22)

The desired discrete time system matrix is now given as

F̄ = eAc·T , (23)

where T is the sample time. In Section 4 the CRLB is compared to the estimation
result in Monte Carlo simulations, both with and without accelerations measure-
ments, using the above system and the CRLB expressions presented in Section 2.3.

4 Simulation Results

The model is implemented and simulated using the Robotics Toolbox [5] in Matlab

Simulink as is described in Section 3.1. The simulation study is based mainly
around the EKF approach, since it is a fast method well suited for large Monte
Carlo simulations. The impact on several different parts in the modeling are studied
together with a sensitivity analysis. Also performance simulations around nominal
parameters are compared to the CRLB. The PF is much slower, hence a smaller
Monte Carlo study is performed. The Monte Carlo simulations use the following
covariance matrices for the process and measurement noise

Q = 4 · 10−6I, R =

(
10−6 · I O

O 10−4 · I

)

. (24)

The system is simulated around the nominal trajectory and produces different
independent noise realizations for the measurement noise in each simulation. The
same covariances are used in the CRLB evaluation. The continuous-time Simulink
model of the robot is sampled in 1 kHz. The data is then decimated to 100 Hz
before any estimation method is applied. The arm reference path is presented in
Figure 4. The robot illustration is done using Robotics Toolbox, [5], and the path
is created using the Path Generation Toolbox (PGT), [27].

4.1 Modeling and Sensitivity Analysis

The model of the angular measurement relation (17) consists of different terms,
the angular term, the gravitational term, the inertia term, the Coriolis term and
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Figure 4: Illustration of the path in Cartesian space used in the simulation.
The configuration of the robot is shown for the initial position of the path.

the damping term. Since the system does not work properly without any angular
measurements this is considered mandatory. The damping part can only be ana-
lyzed if q̇m is available. q̇m is not part of the state-vector, but could in principle
be estimated if included or directly estimated by differentiating the signal qm. In
Figure 5 the first four terms of (17) are shown for the data in the simulation. From
Figure 5 the importance of the different terms can be concluded. The term con-
taining qa is fundamental, the gravitational term is also important since it gives a
bias to the estimate. The inertia term also contributes together with the Coriolis
term. The damping term has been neglected since it is has a much lower amplitude
than the other terms.

The different models are evaluated using the EKF and the error is measured
as ‖qa,t − q̂a,t‖2. As seen in Figure 6, the incorporation of inertia and Coriolis
significantly improve performance. This is also shown in Table 3, where the average
error for the noise free case is presented.

To illustrate the estimation idea, the estimate of qa is presented for the EKF
and directly from motor measurements only. The estimate without any model, ˆ̂qa
is based on

ˆ̂qa = rgqm − k−1g(qa), (25)

where the gravitational part is compensated statically, using the true value. In
Figure 7 the estimation and the direct transformation from motor measurements
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Figure 5: Terms in the measurement equation, (17), (dash-dotted) rep-
resents joint 1, (dashed) joint 2, and (dotted) joint 3 . (a) r−1

g qa, (b)
r−1
g k−1Ma(qa)q̈a, (c) r−1

g k−1g(qa), and (d) r−1
g k−1C(qa, q̇a)q̇a.
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Figure 6: The angular error, ‖qa,t − q̂a,t‖2, for different models according
to Table 3 using a noiseless realization.
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Table 3: Average angular estimation error for different models around the
nominal trajectory, noise free system.
Model Model of measurement eq. Avg. er-

ror [rad]

I. r−1
g (qa + k−1g(qa)) 7.66 · 10−5

II. r−1
g (qa + k−1g(qa) + k−1Ma(qa)q̈a) 1.31 · 10−5

III. r−1
g (qa+k−1g(qa)+k−1Ma(qa)q̈a+k−1C(qa, q̇a)q̇a) 1.02 · 10−6

IV. r−1
g (qa + k−1g(qa) + k−1Ma(qa)q̈a +
k−1C(qa, q̇a)q̇a − k−1d(rg q̇m − q̇a))

7.53 · 10−7

only is illustrated based on 500 Monte Carlo simulations. The evaluation uses the
root mean square error (RMSE) defined as

RMSE(t) =




1

NMC

NMC∑

j=1

‖xtrue

t − x̂
(j)
t ‖2

2





1/2

, (26)

where NMC is the number of Monte Carlo simulations, xtrue
t is the true state vector

and x̂
(j)
t is the estimated state vector in Monte Carlo simulation j. As seen in

Figure 7, the EKF gives a significant improvement in arm position even if the
accelerometer is not used. This is because the states are available in the EKF and
a detailed model can be included. The filter also reduces the effect of measurement
disturbances.

It is also interesting to investigate the sensitivity of the estimator for important
parameters, such as the damping coefficient d and the spring coefficient k. In
Figure 8 the total RMSE for different parameter variations is presented using 10
Monte Carlo simulations for each specific parameter.

4.2 Estimation Performance

EKF. In Figure 9 the RMSE from 500 Monte Carlo simulations are compared with
the CRLB limit, both with and without acceleration measurements. The CRLB
is computed as the square root of the trace for the covariance matrix part corre-
sponding to the angular states. As seen the RMSE is close the fundamental limit.
The discrepancy is due to model errors, i.e., neglected damping term and the fact
that the estimator uses a simplified system matrix consisting of integrators only.
Also note that the accelerometer measurements reduce the estimation uncertainty.
The results in Figure 9 is of course for the chosen trajectory, but the acceleration
values are not that large, so greater differences will occur for larger accelerations.
The total RMSE, ignoring the initial transient is given in Table 4 for both angular
position, velocity and acceleration. The improvement is substantial in angular po-
sition, but for control also the improvement in angular velocity and acceleration is
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Figure 7: The arm position estimate, ˆ̂qa from motor-side measurements
only (dotted) with static gravity compensation and the estimate q̂a from
EKF without using the accelerometer (solid).
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Figure 9: Angular position RMSE from 500 Monte Carlo simulations using
the EKF without and with accelerometer sensor are compared to the CRLB
limit, i.e., the square root of the trace of the angular position from the CRLB
covariance.

Table 4: Total RMSE for arm-side angular position (qa), angular velocity
(q̇a) and angular acceleration (q̈a), with and without the accelerometer,
using 500 Monte Carlo simulations.

Accelerometer No accelerometer

RMSE qa 1.25 · 10−5 2.18 · 10−5

RMSE q̇a 7.57 · 10−5 4.08 · 10−4

RMSE q̈a 1.23 · 10−3 3.91 · 10−3

important. On a 1.5 GHz PC running Matlab the EKF performs in real-time on
the 100 Hz data rate.

PF. The particle filter is rather slow compared to the EKF for this model
structure. Hence, the given Matlab implementation of the system is not well
suited for large Monte Carlo simulations. Instead a small Monte Carlo study over
a much shorter time period than for the EKF case is considered. The PF and the
EKF are compared, and a small improvement in performance is noted. The result
is given in Figure 10. Even though the PF is slow, it gives more insight in the
selection of simulation parameters than the EKF, where the filter performance is
more dependent on the ratio between the process and measurement noise. Since
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Figure 10: EKF and PF angular position RMSE with external accelerom-
eter signal from 20 Monte Carlo simulations.

the data rate is rather high the linearization problem is not severe, so the EKF
performs sufficiently well. To improve performance a more complicated system
dynamics must be implemented in the filter.

5 Motivations

In this section motivations for the Bayesian methods presented are given and future
work are indicated. With a highly accurate tool position estimate, the control of
the robot can be improved. However, to incorporate the estimates in a closed loop
real-time system may not be possible due to the computational complexity in the
estimation methods. This is not a problem in many practical applications. Consider
for instance ILC, which is an off-line method. ILC has over the years become a
standard method for achieving high accuracy in industrial robot control [2, 26, 22].
It utilizes a repetitive system dynamics to compensate for errors. Mathematically
an ILC control law can be written as

ut,k+1 = Q(ut,k + Lεt,k), (27)

where ut,k is the ILC input in the kth iteration and εt,k is the error. The error is
defined as εt,k = rt−yt,k where r is the reference and yt,k the measured output of the
system. Q and L are design parameters for the control law, often chosen as linear
filters [24]. In industrial robot systems the measured output does not correspond
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to the actual controlled output. An ILC experiment on the ABB IRB1400 in [25,
Chapter 9] using only motor angle measurements, i.e., no accelerometer, shows that
although the error on the motor-side is reduced the path on the arm-side does not
follow the programmed path. This is illustrated in Figure 11.
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Figure 11: Results from an ILC experiment on the ABB IRB1400 robot
where ILC is applied using only motor angle measurements. Programmed
path (left), iteration 0 (middle), and iteration 10 (right). The path on the
arm-side does not follow the programmed trajectory.

The idea in this paper is to use an accelerometer at the end-effector to get
measurements that reflects the actual tool motion, see Figure 1. From these mea-
surements and a model of the robot the estimated position error, ε̂t,k, is used in
the ILC update equation according to

ut,k+1 = Q(ut,k + Lε̂t,k). (28)

Using the EKF, ε̂t,k represent the mean error, with an estimate of the covariance
from the EKF. Hence, this can be used in the improvement process and an idea in
this direction is presented in [26]. The covariance could be used to change the gain
of the learning operator L in order to reduce the effect of random disturbances.
In [8] a 1 DOF lab-process is controlled using (28) but the estimation is simplified
due to the inherent linearity of the system. Using the PF, the pdf p(xt|Yt) is given

by samples, x
(i)
t , i = 1, ..., N as described in Section 2.2. Hence, the error consists

of samples ε
(i)
t , so the ILC improvement can be done in a more sophisticated way.

The mean estimate or the maximum likelihood (ML) estimate, or a combination
thereof are logical choices.

The extra knowledge of the pdf from the PF can also be used in for in-
stance diagnosis. A general model-based statistical decision rule based on a cri-
terion, g(xt), can be formulated. The probability can be calculated, for instance
Prob(g(xt) > 0) > 1 − β, where β determines the confidence level. Here, the sam-

ples x
(i)
t , i = 1, 2, . . . , N from the distribution p(xt|Yt) can be used to calculate the

probability as

Prob(g(xt) > 0) ≈ #g(x
(i)
t ) > 0

N
, (29)
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by simply counting the number of samples fulfilling the criteria. Since these samples
are directly available in the PF method it is well suited for hypothesis testing.
Similar for the EKF, an off-line Monte Carlo integration technique can be used,
but this introduces extra computations since the samples are not intrinsic in the
algorithm. For details see for instance [17], where this idea was tested.

6 Conclusions

A sensor fusion approach to find estimates of the tool position by combining a
3-axes accelerometer and the measurements from the motor angles of an industrial
robot is presented. The estimation is formulated as a Bayesian problem and two
solutions are proposed; extended Kalman filter and particle filter respectively. The
algorithms were tested on data from a realistic robot model. For the linear dynam-
ical model used in the estimation, sufficiently accurate estimates are produced.
The performance both with and without accelerometer measurements are close to
the fundamental Cramér-Rao lower bound limit. Estimation performance with the
accelerometer is better, considering both the Cramér-Rao lower bound and the ac-
tual result from the Monte Carlo simulations. A comparison of a filter-based and
a non-filter based approach to find estimates of the arm angle shows a significant
improvement using the model-based filter. The velocity estimates are also proven
to be much more accurate when the filter uses information from the accelerometer.
This is important for control design in order to give a well damped response at the
robot arm. Under the assumption that the robot can be statically calibrated the es-
timation algorithms are shown to be very robust to variations in the spring constant
and the damping coefficient. Since the intended use of the estimates is to improve
position control using an off-line method, like ILC, there are no real-time issues
using the computational demanding particle filter algorithm, however the extended
Kalman filter runs in real-time in Matlab. The estimation methods presented in
this paper are general and can be extended to higher degrees of freedom robots
and additional sensors, such as accelerometers, gyros, or camera systems, can be
included. The main effect is a more complex measurement equation.
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Linköping Studies in Science and Technology. Dissertations No. 579, Linköping Uni-
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[26] M. Norrlöf. An adaptive iterative learning control algorithm with experiments on
an industrial robot. IEEE Transactions on Robotics and Automation, 18(2):245–251,
April 2002.
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83 Linköping, Sweden, September 2003.

[28] B. Ristic, S. Arulampalam, and N. Gordon. Beyond the Kalman Filter: Particle
Filters for Tracking Applications. Artech House, 2004.

[29] L. Sciavicco and B. Siciliano. Modelling and Control of Robot Manipulators. Springer,
2000.

[30] H. W. Sorenson. Recursive Estimation for Nonlinear Dynamic Systems. In Bayesian
Analysis of Time Series and Dynamic Models (Ed. J. C. Spall), Dekker, 1988.

[31] P. Tichavsky, P. Muravchik, and A. Nehorai. Posterior Cramér-Rao bounds
for discrete-time nonlinear filtering. IEEE Transactions on Signal Processing,
46(5):1386–1396, 1998.

[32] H. L. Van Trees. Detection, Estimation and Modulation Theory. Wiley, New York,
1968.
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Abstract

In this paper recursive Bayesian estimation methods are applied to sev-
eral angle-only applications. Air-to-Air passive ranging, as well as an
Air-to-Sea application with terrain induced constraints, are discussed.
The bearings-only problem is also discussed using experimental data
from a torpedo, i.e., Sea-to-Sea with a passive sonar sensor. The
Bayesian estimation problem is solved using the particle filter method
and the marginalized particle filter. For comparison, a filter bank
method using range parameterized extended Kalman filters is used. In a
simulation study the particle filter outperforms the filter bank method.

Keywords: Bearings-only tracking, Particle filter, Marginalized parti-
cle filter, Range parameterized extended Kalman filter, Applications.

1 Introduction

Target tracking using angle-only measurements in azimuth and elevation is a com-
mon technique for many applications using radar, sonar or infrared (IR) sensor
information. Typically, radar and sonar sensors are used in an active mode, trans-
mitting energy. In this mode, range and possibly range rate are available from the
sensor. To avoid the risk of being detected by a hostile target, it may be desirable
to use the sensors in a passive mode. Hence, only angle measurements from target
induced energy is available. There are also true passive sensors, such as the IR sen-
sor. The main idea in passive ranging is to use angle information only to estimate
the unknown relative range. By causing the observation platform (aircraft, missile,
torpedo, etc.) to perform certain maneuvers, it is possible to gain observability of
range, although it is often difficult to execute an optimal maneuver. Therefore,
the approach is often to perform the maneuvering sequence in a deterministic way,
exciting the system sufficiently to gain range observability. The issue of optimal
maneuvers is not discussed here, but can be found in [30, 29].

149



150 Paper E Recursive Bayesian Estimation – Bearings-Only Applications

Passive ranging has been an important research area for many years. The clas-
sical method is to use a single extended Kalman filter (EKF), [2, 20]. A common
problem is that a single linearized filter may easily diverge. There exist several
approaches to estimate the range using a single tracking filter. As described in
[35, 38, 37], a modified spherical/polar coordinate system is preferred to a tradi-
tional Cartesian system. In [1], this is studied and it is investigated how to reduce
filter divergence problems by selecting the coordinate system. A survey of bearings-
only estimators and comparison of methods is given in [17]. Another approach is
to use multiple filters, where each filter is parameterized to a range interval. Using
a bank of filters, cf. [33], the performance is enhanced using the range parame-

terized extended Kalman filter (RPEKF). Using sequential Monte Carlo methods,
or particle filters, [11, 14], a single nonlinear filter can be used for passive rang-
ing, [4, 5, 34]. The unknown range uncertainty is easier addressed and constraints
due to terrain or limitations in the system can be incorporated in a natural way,
[31, 22, 34]. In [31], littoral tracking, i.e., tracking of targets on land and in sea
near the boundary region between them is discussed, for a joint tracking and clas-
sification problem.

The paper is organized as follows. In Section 2 a common target tracking model
for bearings-only is described. In Section 3 the recursive Bayesian estimation prob-
lem is formulated together with several methods and algorithms. The EKF and the
RPEKF represent the linearized solution assuming Gaussian noise. The particle

filter (PF) and the marginalized version thereof (MPF) are sample approximations
of the general Bayesian problem. Section 4 consists of three bearings-only appli-
cations, Air-to-Air, Air-to-Sea and Sea-to-Sea. Simulations and experimental data
are considered.

2 Target Tracking Model

There are several possible tracking models for passive ranging problems. The choice
of coordinate system, [1, 35, 38, 37], can be one issue. Also modeling of non-
kinematic properties, such as signal intensity [8], could in principle improve the
result, but in practice it may be troublesome. In this section a simple tracking
model is described. The focus is on a discrete-time linear dynamics so all non-
linearities appear in the measurement relation. The described model will then be
used in all the applications in Section 4. For an overview of models within this
structure or other common tracking models see for instance [16, 28, 26, 27].

2.1 Dynamic Model

Assume that the target and the tracking platform are described by the same dy-
namics, modeled by the linear state equations

xtg
t+1 = Ftx

tg
t +Gtwt, (1a)

xo
t+1 = Ftx

o
t +Gtut, (1b)
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where xtg is the tracked object’s (target) state vector and xo
t is the tracking plat-

form’s state vector. The unknown target input signal is defined as process noise,
wt, and the known input signal is denoted ut. Hence,

xt+1 = xtg
t+1 − xo

t+1 = Ftxt +Gtwt +Gtut, (2)

where xt = xtg
t − xo

t is the relative state vector. Assume that the state vector
consists of Cartesian position, pt ∈ R

M , and velocity, vt ∈ R
M ,

xt =

(
pt

vt

)

, (3)

with the following discrete-time matrices

Ft =

(
IM T · IM

OM IM

)

, Gt =

(
T 2

2 IM

T · IM

)

, (4)

where IM is an M ×M identity matrix, OM is an M ×M null matrix and T is

the sample time. In Cartesian coordinates the position is given as pt =
(
Xt Yt

)T

or pt =
(
Xt Yt Zt

)T
, and the velocity vector as vt = ṗt.

In the above model the process noise represents the maneuverability of the
unknown target. For long range applications, where the target is assumed not to
have detected the tracker, a common model used is to assume a straight path, i.e., a
small process noise. For maneuvering targets a higher value of the noise can be used,
but this will reduce performance. The models and applications presented in the
simulations studies can easily be generalized to more complex models and scenarios.
Often it may be necessary to introduce multiple turn models. For instance, the
interacting multiple model (IMM), [6], can be used. Another possibility is to use a
change detector and adjust the estimate or system when a maneuver is detected,
[18, 17]. In [4] maneuvering target tracking using particle filters and sub-optimal
EKF-based filters is discussed.

2.2 Measurement Relation

For bearings-only applications only the azimuth angle, ϕt is measured. For angle-
only applications the azimuth angle and the elevation angle, θt are measured. In
this section these measurement relations are presented.

Bearings-only : The position and velocity vectors consist of pt =
(
Xt Yt

)T
, vt =

(
Ẋt Ẏt

)T
. The measurement relation for the azimuth angle, ϕ, is given as

yt = h(xt) + et = ϕt + et = arctan(Yt/Xt) + et. (5)

Angle-only : The position and velocity vector consist of pt =
(
Xt Yt Zt

)T
, vt =
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(

Ẋt Ẏt Żt

)T
. The measurement relation for the azimuth angle, ϕ, and elevation

angle, θ, is given as

yt = h(xt) + et =

(
ϕt

θt

)

+ et =

(
arctan(Yt/Xt)

arctan( −Zt√
X2

t +Y 2
t

)

)

+ et. (6)

3 Bayesian Estimation

Consider the discrete state-space model

xt+1 = Ftxt +Gtut +Gtwt, (7a)

yt = h(xt) + et, (7b)

with state variables xt ∈ R
m, input signal ut and yt the measurement at time t. Let

Yt = {yi}t
i=0 and assume that the probability density function (pdf) for the process

noise, pw(w), and measurement noise pe(e) are known. Here, only additive noise
is considered, but a more general description is possible. The nonlinear prediction
density p(xt+1|Yt) and filtering density p(xt|Yt) for the Bayesian inference, [19], is
given by

p(xt+1|Yt) =

∫

Rm

p(xt+1|xt)p(xt|Yt) dxt, (8a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (8b)

These equations are in general not analytically solvable. However, for the impor-
tant special case of linear-Gaussian dynamics and linear-Gaussian observations the
Kalman filter, [21], provides a finite dimensional solution. For a general nonlinear
or non-Gaussian system, approximate methods must be used. Here two different
approaches of solving the Bayesian equations are considered; EKF and PF. Also
the use of a bank of EKFs, for the RPEKF method, is discussed.

3.1 The Extended Kalman Filter

For many nonlinear problems, the noise assumptions and the nonlinearity are such
that a linearized solution assuming Gaussian noise will be a good approximation.
This is the idea behind the EKF, [2, 20], where the model is linearized around the
previous estimate. The time update and measurement update for the EKF are
given by

{

x̂t+1|t = Ftx̂t|t +Gtut +Gtwt,

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t ,

(9a)







x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1)),

Pt|t = Pt|t−1 −KtHtPt|t−1,

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1,

(9b)
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where

HT
t = ∇xh

T (xt)|xt=x̂t|t−1
. (10)

The noise covariances are given as

Qt = Cov (wt) , Rt = Cov (et) . (11)

3.2 Range Parameterized Extended Kalman Filter

In this section the range parameterized extended Kalman filter (RPEKF) is pre-
sented. It consists of a bank of individual EKFs, each tuned to a certain range.
The RPEKF method described in [25, 5] consists of a bank of EKFs in Cartesian
coordinates, initialized with different range assumptions. In [33], the filter bank is
expressed in modified polar coordinates.

For a particular EKF the performance is dependent on the coefficient of varia-

tion, CR, [33]. To have comparable performance for each filter, the same CR value
should be used on each interval. Approximatively, this is given as σ(i)/r(i), i =
1, . . . , NF , where r(i) and σ(i) are the range and standard deviation for the differ-
ent filters. In Figure 1, the range intervals are depicted for a predefined interval
(rmin, rmax). The intervals and the CR are given as

r(i) =
rmin

2
(ρi + ρi−1), ρ =

(rmax

rmin

)1/NF
, (12a)

CR =
σ(i)

r(i)
=

2(ρ− 1)√
12(ρ+ 1)

, (12b)

Therefore, the variance for each interval is given as σ(i) = r(i)CR.
PSfrag replacements

rmin
rmaxrminρ

i−1 rminρ
i

r(i)

Figure 1: The RPEKF interval i with mean range r(i).

The RPEKF uses the likelihood from each EKF, p(yt|i), to recursively update
its probability according to Bayes’ rule

γ
(i)
t = p(yt|i)γ(i)

t−1. (13)

The prior distribution is assumed uniform, i.e., γ
(i)
0 = 1

NF
, i = 1, . . . , NF . However,

if other information is available it could be used to enhance the performance. The



154 Paper E Recursive Bayesian Estimation – Bearings-Only Applications

likelihood is given from the EKF as

p(yt|i) ∝
1

√

det(S
(i)
t )

e
− 1

2

“

yt−h(x̂
(i)

t|t−1
)
”T

S
(i)
t

−1
“

yt−h(x̂
(i)

t|t−1
)
”

, (14a)

S
(i)
t = H

(i)
t P

(i)
t|t−1(H

(i)
t )T +Rt. (14b)

The combined estimate and covariance is calculated as

x̂t|t =

NF∑

i=1

γ
(i)
t x̂

(i)
t|t , (15a)

Pt|t =

NF∑

i=1

γ
(i)
t

(

P
(i)
t|t + (x̂

(i)
t|t − x̂t|t)(x̂

(i)
t|t − x̂t|t)

T
)

, (15b)

where P
(i)
t|t is the covariance and x̂

(i)
t|t the estimate for the different range filter i =

1, . . . , NF and the weights γ
(i)
t are normalized. The RPEKF method is summarized

in Algorithm 1.

Algorithm 1 Range Parameterized Extended Kalman Filter (RPEKF)

1: Define r(i), ρ, CR, σ
(i) according to (12a)-(12b), for i = 1, ..., NF .

2: Initialize at t = 0: x̂
(i)
0|0, P

(i)
0|0, i = 1, ..., NF .

3: Given yt calculate the likelihood using (14).
4: Update the estimate x̂t|t and covariance Pt|t according to (15).

5: Predict each EKF in the filter bank, x̂
(i)
t+1|t, P

(i)
t+1|t for i = 1, ..., NF using (9a).

6: Increase t and continue to step 3.

Remark 1: If the filter probability is below a predefined threshold or if some other
criterion, such as if the estimated range in a filter is outside the (rmin, rmax) interval,
the filter is removed from further calculations.
Remark 2: There are many possible ways to initialize a passive ranging estimator.
Classical initialization methods are based on measurement initialization for Kalman
filters, see for instance [8, 6]. In the implemented angle-only applications, the filter
initialization is performed in Cartesian coordinates, projecting the assumed range
hypothesis to the line-of-sight (LOS) using the measured angles. The velocity
consists of the known velocity for the tracking platform. The unknown target
velocity is accounted for in the initial uncertainty covariance.

The inital angle measurement is given by

y0 =

(
ϕ0

θ0

)

. (16)



3 Bayesian Estimation 155

The initial value of the relative state vector, assuming no knowledge of the target
velocity, is for each filter

x
(i)
0 =











r(i) cosϕ0 cos θ0
r(i) sinϕ0 cos θ0
−r(i) sin θ0

0 − Ẋo

0 − Ẏ o

0 − Żo











, (17)

where ϕ0 and θ0 are the measured angle values. The initial state covariance matrix
in the LOS is given by

P
(i)
0LOS

=







(σ(i))2 0 0

0 (r(i)σϕ)2 0 O3

0 0 (r(i)σθ)
2

O3 σ2
vI3






,

where σv is the maximal uncertainty in the target velocity, σϕ and σθ are the
angle measurement noise standard deviation and σ(i) is the interval uncertainty

from (12b). The initial covariance matrix, P
(i)
0 , is calculated as

P
(i)
0 = RrotP

(i)
0LOS

RT
rot,

where

Rrot =

(
(RI,B)T O3

O3 RT
I,B

)

,

RI,B =





cosϕ0 sinϕ0 0
− sinϕ0 cosϕ0 0

0 0 1









cos θ0 0 − sin θ0
0 1 0

sin θ0 0 cos θ0



 .

For the case when only the azimuth angle is measured, a similar initialization
method is used.

3.3 The Particle Filter

In this section the particle filter (PF) theory is presented according to [7, 11,
14, 22, 34]. The particle filter provides an approximative solution to the discrete
time Bayesian estimation problem formulated in (8) by updating an approximate
description of the posterior filtering density. The particle filter approximates the

density p(xt|Yt) by a large set of N samples (particles), {x(i)
t }N

i=1, where each

particle has an assigned relative weight, γ
(i)
t , chosen so that all weights sum to

unity. The location and weight of each particle reflect the value of the density in
that region of state space. The particle filter updates the particle location and the
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corresponding weights recursively with each new observed measurement. Since the
measurement noise is assumed additive, the unnormalized weights are given by

γ
(i)
t = pe(yt − h(x

(i)
t )), i = 1, . . . , N. (18)

Using the samples (particles) and the corresponding weights the Bayesian equations
can be approximately solved. To avoid divergence a resampling step is introduced.
This is referred to as the Sampling Importance Resampling (SIR), [14], and is
summarized in Algorithm 2.

Algorithm 2 Sampling Importance Resampling (SIR)

1: Let t = 0. Generate N samples {x(i)
0 }N

i=1 from p(x0).

2: Compute γ
(i)
t = pe(yt − h(x

(i)
t|t−1)) and normalize, i.e., γ̄

(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t ,

i = 1, . . . , N .
3: Resample N particles with replacement according to,

Prob(x
p,(i)
t|t = x

p,(j)
t|t−1) = γ̃

(j)
t . (19)

4: x
(i)
t+1|t = Ftx

(i)
t|t +Gtut +Gtw

(i)
t , i = 1, . . . , N using different noise realizations,

w
(i)
t .

5: Increase t and iterate to step 2.

As the estimate for each time, choose the minimum mean square estimate, i.e.,

x̂t = E (xt|Yt) =

∫

Rm

xtp(xt|Yt)dxt ≈
N∑

i=1

γ
(i)
t x

(i)
t . (20)

The particle filter approximates the posterior pdf, p(xt|Yt), by a finite number
of particles. However, asymptotically the approximated pdf converges to the true
one, [11].

Remark 1: The particle filter for bearings-only estimation is easily initialized as-
suming a uniform distribution in the unknown range in the direction of the observed
angles.

The terrain constraints can be formulated as a nonlinear state update equa-
tion. The terrain map could also be interpreted as a sensor, which would affect
the likelihood function. Denote the set of allowed positions, Ω = {X,Y : (X,Y ) ∈
Sea region}.

3.3.1 Terrain Constraints via Time Update

The terrain constraints are in this case handled in the update equation, where
particles are accepted if the predicted position, after the additive process noise has
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been added, belongs to an accaptable region, Ω, in the database.

pwt(wt) ∝

{

pw̄t(w̄), x
tg,(i)
t+1 ∈ Ω,

0, x
tg,(i)
t+1 6∈ Ω.

3.3.2 Terrain Constraints via Measurement Update

A natural approach to introduce constraints is by using the importance weights
calculated in the measurement update. This basically means that the database
acts as an extra sensor.

pet(et) ∝

{

pēt(yt − h(x
(i)
t )), x

tg,(i)
t ∈ Ω

0, x
tg,(i)
t 6∈ Ω.

It is straightforward to impose other constraints. For example on state-variables
such as velocity and acceleration. The fact that sea-targets are close to the surface
is also handled. All these constraints are difficult or troublesome to fulfill with
classical Kalman filter techniques.

3.4 The Marginalized Particle Filter

If the state-space model contains linear-Gaussian substructures this can be used to
obtain better estimates using the marginalized particle filter (MPF), also denoted
the Rao-Blackwellized particle filter, [12, 9, 13, 10, 3, 13, 36, 32, 16]. For many
target tracking applications it is common to use linear-Gaussian dynamics. All
nonlinearities are then in the measurement relation. Particularly, if not all state
variables are present in the measurement relation marginalization can be applied.
This is the case for all the applications described in this paper.

Consider the following partition of the system

xp
t+1 = Ap

tx
p
t +Ak

t x
k
t + wp

t , wp
t ∈ N (0, Qp

t ), (21a)

xk
t+1 = F p

t x
p
t + F k

t x
k
t + wk

t , wk
t ∈ N (0, Qk

t ), (21b)

yt = ht(x
p
t ) + et, et ∈ N (0, Rt), (21c)

where the noise is assumed to be independent.

Denote the state vector xt =
(
xp

t xk
t

)T
, with linear states xk

t and nonlinear
states xp

t . Furthermore, X
p
t = {xp

i }t
i=0 and Yt = {yi}t

i=0. Using

p(Xp
t , x

k
t |Yt) = p(xk

t |Xp
t ,Yt)p(X

p
t |Yt), (22)

where p(Xp
t |Yt) is given by a PF and xk

t |Xp
t is linear-Gaussian, i.e., p(xk

t |Xp
t ,Yt) is

given by the Kalman filter.
The assumption of independent noise is not necessary. If the noise has depen-

dencies, which most tracking system have, these can be handled by decorrelating
the noises using a Gram-Schmidt procedure according to what has been done in [20].
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Algorithm 3 Marginalized Particle Filter (MPF)

1: Initialization: For i = 1, . . . , N , initialize the particles, x
p,(i)
0|−1 ∼ pxp

0
(xp

0) and set

{xk,(i)
0|−1, P

(i)
0|−1} = {x̄k

0 , P̄0}. Set t = 0.

2: For i = 1, . . . , N , evaluate the importance weights γ
(i)
t = p(yt|Xp,(i)

t ,Yt−1)
according to the likelihood

p(yt|Xp
t ,Yt−1) = pe(yt − ht(x

p
t )), (23)

and normalize γ̃
(i)
t =

γ
(i)
t

PN
j=1 γ

(j)
t

.

3: PF measurement update: Resample N particles with replacement according
to,

Prob(x
p,(i)
t|t = x

p,(j)
t|t−1) = γ̃

(j)
t . (24)

4: PF time update and Kalman filter update

(a) Kalman filter measurement update,

x̂
k,(i)
t|t = x̂

k,(i)
t|t−1, Pt|t = Pt|t−1. (25)

(b) PF time update: For i = 1, . . . , N ,

x
p,(i)
t+1|t ∼ p(xp

t+1|t|X
p,(i)
t ,Yt), (26)

where

p(x
p,(i)
t+1|t|X

p,(i)
t ,Yt) = N (Atx

p,(i)
t +Ak

t x̂
k,(i)
t|t , Ak

t Pt|t(A
k
t )T +Qp

t ).

(c) Kalman filter time update,

x̂
k,(i)
t+1|t = F k

t x̂
k,(i)
t|t + F p

t x
p,(i)
t + Lt(x

p,(i)
t+1|t −Ap

tx
p,(i)
t −Ak

t x̂
k,(i)
t|t ),

Pt+1|t = F k
t Pt|t(F

k
t )T +Qk

t − LtMtL
T
t ,

Mt = Ak
t Pt|t(A

k
t )T +Qp

t ,

Lt = F k
t Pt|t(A

k
t )TM−1

t ,

5: Set t := t+ 1 and iterate from step 2.
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In Algorithm 3 the MPF is summarized for the model given in (21) with uncorre-
lated process noise, in order to keep the algorithm simple.

Remark 1: If the tracking model from Section 2 is used in the MPF, relevant
matrices must be re-defined. Consider w̄t = Gwt. Hence

Q̄t = E
(
w̄tw̄

T
t

)
= GQtG

T =

(
Qp

t St

ST
t Qk

t

)

. (28)

In order to adjust for the correlated process noise, define the scalar product of
two stochastic signals as <u, v> = E

(
uvT

)
. According to [20], the noise can be

decorrelated by

w̃k
t = wk

t −<wk
t , w

p
t>‖wp

t ‖−2wp
t

= wk
t − St(Q

p
t )

−1wp
t . (29)

where <wp
t , w

k
t > = St. Once step (4b) in Algorithm 3 has been executed wp

t is
known and it is straightforward to calculate w̃k

t , and the decorrelation is complete.

Remark 2: In the model only the position states, Xt, Yt and Zt, are present in
the measurement relation. Using the notation from Section 3.4 this means that

xp
t =

(
Xt Yt Zt

)T
and xk

t =
(
Ẋt Ẏt Żt

)
. Hence, the particle filter dimension

is reduced from R
6 to R

3. Even though the MPF introduces extra calculations this
is a more efficient method for many system, since the number of particles needed
can be reduced. In [24] this is analyzed more thoroughly, where the computational
complexity of the MPF is discussed.
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Figure 2: Passive ranging for Air-to-Air, Air-to-Sea, and Sea-to-Sea appli-
cations. The relative azimuth (ϕ) and elevation (θ) angles are defined from
the tracking platform.
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4 Passive Ranging Applications

In this section several passive ranging applications are presented using the estima-
tion methods described in Section 3. In Figure 2 the Air-to-Air and Air-to-Sea
applications are depicted. Monte Carlo evaluations on simulated data as well as
true experimental data for an Sea-to-Sea application are presented. The estima-
tion performance is evaluated in a Monte Carlo simulation study using the same
scenario, but with different measurement noise realizations and randomly chosen
initial target values. The performance is evaluated using the root mean square

error (RMSE) for each time according to [15]

RMSE(t) =




1

NMC

NMC∑

j=1

‖xtrue

t − x̂
(j)
t ‖2

2





1/2

, (30)

where NMC is the number of Monte Carlo simulation, and where x̂(j) denotes the
estimate at time t for Monte Carlo simulation j and where xtrue

t is the true value.
In all applications the RPEKF is initialized as described in Section 3.2 and the

particle filter is initialized as described in Section 3.3. The number of particles is
very large initially, in order to have an accurate range resolution, and it is reduced
deterministically.

4.1 Air-to-Air Passive Ranging

This section is based on part of the passive ranging application from [23], where
the RPEKF is compared to the PF method in a Monte Carlo simulation study for
an Air-to-Air application. Assume that the target is non-maneuvering and that
angle observations are available with a sample period of T = 1 s. The simulation
parameters are presented in Table 1.

Table 1: Air-to-Air simulation parameters.

Monte Carlo simulations NMC = 100
Process noise covariance Q = diag(4, 4, 4)
Measurement noise σϕ = σθ = 1mrad (Gaussian)
Min/Max distances Rmin = 10km, Rmax = 30km
Sample time T = 1 s
Number of particles N = 80000 ↘ 10000
Number of RPEKFs NF = 6
Relative height 1000 m
Speed vo = 150, vtg = 150 m/s
Input signal (maneuver) u = ±4 g (lateral)

In Figure 3 the scenario is presented. The position RMSE is given in Figure 4.
As seen the PF and MPF have better RMSE performance, but asymptotically the
RPEKF performs almost as well.
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Figure 3: The scenario in the (X,Y)-plane. The aircraft and the target
trajectories are shown. The position at t = 70 is indicated together with
the particle cloud from one realization of the particle filter. Marginalized
position pdfs represent the estimated position uncertainty.

4.2 Air-to-Sea Passive Ranging

In this section an Air-to-Sea passive ranging application from [22] is presented
as illustrated in Figure 2. The main objective in this section is to merge terrain
type information from a terrain database to the kinematic part in order to discard
regions uninteresting to the tracking application. Terrain induced tracking con-
straints improve tracking performance and reduce the computational complexity.
In this application the filter only distinguishes between land and sea, but for other
applications, more detailed terrain type information could be used. In the parti-
cle filter, particles are discarded if the position is within a prohibited area (land),
whereas particles belonging to feasible regions (sea) are accepted and assigned a
probability according to the likelihood function.

In a simulation study the range estimation problem using an IR sensor is consid-
ered. The relative distance and the aircraft’s trajectory are illustrated in Figure 5.
The target model used in the simulations assumes a small constant velocity. The
terrain database has a resolution of 50m. The simulation parameters are presented
in Table 2.

In Figure 5 the scenario is presented together with the marginal position den-
sities in each direction, p(X) and p(Y ), for time t = 1 s, using terrain constraints.

In Figure 6 the position RMSE is presented for the PF and MPF with and
without constraints, and for the RPEKF. As seen the incorporation of constraints
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Figure 4: Position RMSE(t) for PF, MPF, and RPEKF using 100 Monte
Carlo simulations.

Table 2: Air-to-Sea simulation parameters.

Monte Carlo simulations NMC = 100
Process noise covariance Q = diag(1, 1, 1)
Measurement noise σϕ = σθ = 1mrad (Gaussian)
Min/Max distances Rmin = 1 km, Rmax = 23km
Sample time T = 1 s
Number of particles N = 80000 ↘ 10000
Number of RPEKFs NF = 20
Relative height 1000 m
Speed vo = 250, vtg ≈ 0 m/s
Input signal (maneuver) u = ±1 g (lateral)

improve performance. The different particle filters have basically the same perfor-
mance for the scenario.

4.3 Sea-to-Sea Passive Ranging

Modern torpedo systems are equipped with an acoustic seeker, which is similar to
the electro-magnetic radar. This sound based sensor is referred to as sonar. In the
active mode range and bearing to a target are available. To avoid being detected
by a hostile target and to reduce the risk of hostile counter-measurements, it is
often important to minimize the usage of the active mode. In the passive mode,
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Figure 5: The sea target position and marginalized position pdf using the
particle filter with constraints at t = 1 s. The particle cloud and the future
trajectory of the aircraft are also shown.
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the acoustic sensor just listens for target related sounds. Hence, in principle only
the direction can be measured. Most sonar based systems do not measure the
elevation angle, therefore only azimuth bearing information is available.

The bearing information is from experimental sonar data acquired from a tor-
pedo system. The position estimate is done afterward, hence no control feedback
to the torpedo. The scenario is given in Figure 7, where torpedo way-points are

t
A

t
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t
C t

D

t
E

t
F

t
G

X

Y

�	

Figure 7: Torpedo trajectory from experimental data with time indications
at way-points and an indication of the ship’s true trajectory. The initial time
is denoted tA and the final time tG.

marked with time indices. The true position of the target (ship) is not known since
no true position information is available. However, it is known that the ship fol-
lows a rather straight path, with nearly constant velocity as indicated in the figure.
Since the torpedo approaches the target from behind in the final phase (t > tF ) and
impact occurs at t = tG, the probable approximate true target position is indicated
with a dashed line in Figure 7.

Between the initial time tA and first major maneuver at tB the torpedo follows
a relatively straight trajectory. During this time the range estimation is not partic-
ularly good since the small maneuver and the relative geometry to the target does
not reveal much range information. At tB the first major maneuver is performed
to gain observability, followed by maneuvers at tC and tD. During the long inter-
val tD − tE a straight path is followed, where the main objective is to decrease the
distance to the ship. Finally, at tE and tF maneuvers are performed to gain observ-
ability and to approach the target from behind. The total number of measurements
is close to 300. The position scale and the actual values of the maneuver times are
not presented in any plot, since it is confidential information. The RPEKF and



5 Conclusions 165

X

Y

p(Y)

Y

X

p(X) 

Figure 8: Torpedo trajectory, particle cloud and marginalized densities for
target position at t = tA, in Figure 7.

the PF are applied to experimental torpedo data, using N = 15000 particles and
NF = 6 range filters. The number of particles was chosen large enough to minimize
effects of to few samples. In Figure 8, the output from the particle filter is shown
for t = tA. The target position and the marginalized target position probability
densities are given. Initially, no maneuver is made so the range can not be esti-
mated. The full torpedo position trajectory is shown, where the current torpedo
position is indicated with a small circle.

Since the relative velocity is estimated, the target speed and heading can be
calculated as illustrated in Figure 9 for PF and RPEKF method, respectively. The
minimum mean square estimate (20) of target position from the particle filter is
presented in Figure 10 together with the estimation from the RPEKF method.

5 Conclusions

In this paper Bayesian estimation methods for several bearings-only applications
are discussed. The particle filter can handle any noise distribution. Hence, the
initialization is easy and optimal for the bearings-only problem, since it is natu-
ral to initialize the filter with a uniform range distribution over all possible target
distances. If constraints are present on the system state or from external sources,
such as terrain information, the particle filter can easily incorporate these, hence
improving performance. This is impossible or troublesome with the EKF approach.
The particle filter also improves the estimation performance since no linearizations
are necessary. If a linear-Gaussian substructure is present, the MPF can be used,
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and possibly to a reduced computational demand. As a comparison to the simula-
tion based particle filter, a bank of EKFs is used, in the RPEKF method. Without
terrain constraints, this method yields comparative RMSE results after the initial
transient. With constraint present, the particle filters yield better performance.
However, the RPEKF method is much faster than the particle filter. Various sim-
ulation studies as well as experimental data are presented.
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Sweden, February 2002.

[23] R. Karlsson and F. Gustafsson. Range estimation using angle-only target tracking
with particle filters. In Proceedings of American Control Conference, volume 5, pages
3743–3748, Arlington, Virginia, USA, June 2001. Invited paper.

[24] R. Karlsson, T. Schön, and F. Gustafsson. Complexity analysis of the marginalized
particle filter. Technical Report LiTH-ISY-R-2611, Department of Electrical Engi-
neering, www.control.isy.liu.se/publications, June 2004. To appear in IEEE Trans-
actions on Signal Processing.

[25] T. R. Kronhamn. Bearings-only target motion analysis based on a multihypothesis
Kalman filter and adaptive ownship motion control. In IEE Proceedings on Radar,
Sonar and Navigation, volume 145, pages 247–252, 1998.

[26] X. R. Li and V. P. Jilkov. A survey of maneuvering target tracking–part III: Mea-
surement models. In Proceedings of SPIE Conference on signal and data processing
of small targets, volume 4473, pages 423–446, July 2001.

[27] X. R. Li and V. P. Jilkov. Survey of maneuvering target tracking. part i. dynamic
models. IEEE Transactions on Aerospace and Electronic Systems, 39:1333–1364,
October 2003.

[28] X. R. Li and V.P. Jilkov. A survey of maneuvering target tracking: Dynamics
models. In Proceedings of SPIE Conference on signal and data processing of small
targets, volume 4048, pages 212–235, April 2000.



5 References 169

[29] A. Logothetis, A. Isaksson, and R. J. Evans. An information theoretic approach to
observer path design for bearings-only tracking. In Proceedings of the 36:th IEEE
Conference on Decision and Control, volume 4, pages 3132–3137, 1997.

[30] A. Logothetis, A. Isaksson, and R. J. Evans. Comparison of suboptimal strategies for
optimal own-ship maneuvers in bearings-only tracking. In Proceedings of American
Control Conference, volume 6, pages 3334–3338, 1998.

[31] M. Mallick, S. Maskell, T. Kirubarajan, and N. Gordon. Littoral tracking using the
particle filter. In Proceedings of the Fifth International Conference on Information
Fusion, volume 1, pages 935–942, Annapolis, MD, USA, July 2002.

[32] P-J. Nordlund. Sequential Monte Carlo Filters and Integrated Navigation. Linköping
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Abstract

The data association problem occurs for multiple target tracking ap-
plications. Since nonlinear and non-Gaussian estimation problems are
solved approximately in an optimal way using recursive Monte Carlo
methods or particle filters, the association step will be crucial for the
overall performance. We introduce a Bayesian data association method
based on the particle filter idea and the joint probabilistic data as-
sociation (JPDA) hypothesis calculations. A comparison with classical
EKF based data association methods such as the nearest neighbor (NN)
method and the JPDA method is made. The NN association method
is also applied to the particle filter method. Multiple target tracking
using particle filter will increase the computational burden, therefore a
control structure for the number of samples needed is proposed. A radar
target tracking application is used in a simulation study for evaluation.

Keywords: Multiple target tracking, Data association, Particle filter.

1 Introduction

For multiple target tracking application the data association problem must be han-
dled. Traditionally, the estimation problem is solved using linearized filters, such
as the extended Kalman filter (EKF) [1], under a Gaussian noise assumption. The
sufficient statistics from the linearized filter are used for data association. Sev-
eral classical association methods have been proposed in the literature. When
dealing with nonlinear models in state equation and measurement relation and a
non-Gaussian noise assumption, these estimation methods may lead to non-optimal
solutions. The sequential Monte Carlo methods, or particle filters, provide general
solutions to many problems where linearizations and Gaussian approximations are
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intractable or would yield too low performance. In this paper, we apply the clas-
sical particle filter Bayesian bootstrap [12], to a multiple target environment. In a
simulation study we compare this approach to traditional methods. To handle the
complexity problem we also propose a controller structure, to recursively chose the
number of particles.

2 Sequential Monte Carlo Methods

Monte Carlo techniques have been a growing research area lately due to improved
computer performance. A rebirth of this type of algorithms came after the seminal
paper of Gordon et al. [12], showing that Monte Carlo methods could be used in
practice to solve the optimal estimation problem. In the recent article collection,
[9], the theory and development in sequential Monte Carlo methods over the last
years are summarized.

Consider the following nonlinear discrete time system for a single target

xt+1 = f(xt) + wt,

yt = h(xt) + et.

The sequential Monte Carlo methods, or particle filters, provide an approximative
Bayesian solution to discrete time recursive problem by updating an approximative
description of the posterior filtering density. Let xt ∈ R

n denote the state of the
observed system and Yt = {yi}t

i=0 be the set of observations until present time.
Assume independent process noise wt and measurement noise et with densities pwt

respective pet . The initial uncertainty is described by the density px0 . The particle
filter approximates the probability density p(xt|Yt) by a large set of N particles

{x(i)
t }N

i=1, where each particle has an assigned relative weight, γ
(i)
t , such that all

weights sum to unity. The location and weight of each particle reflect the value of
the density in the region of the state space. The particle filter updates the parti-
cle location and the corresponding weights recursively with each new observation.
The nonlinear prediction density p(xt|Yt−1) and filtering density p(xt|Yt) for the
Bayesian inference are given by

p(xt|Yt−1) =

∫

Rn

p(xt|xt−1)p(xt−1|Yt−1)dxt−1, (1)

p(xt|Yt) ∝ p(yt|xt)p(xt|Yt−1). (2)

The main idea is to approximate p(xt|Yt−1) with

p(xt|Yt−1) ≈
1

N

N∑

i=1

δ(xt − x
(i)
t ), (3)

where δ is the discrete Dirac function. Inserting (3) into (2) yields a density to
sample from. This can be done by using the Bayesian bootstrap or sampling im-

portance resampling (SIR) algorithm from [12], given in Algorithm 1. The estimate
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Algorithm 1 Sampling Importance Resampling (SIR).

1: Set t = 0, generate N samples {x(i)
0 }N

i=1 from the initial distribution p(x0).

2: Compute the weights γ
(i)
t = p(yt|x(i)

t ) and normalize, i.e.,

γ̃
(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t , i = 1, . . . , N .

3: Generate a new set {x(i?)
t }N

i=1 by resampling with replacement N times from

{x(i)
t }N

i=1, where Prob(x
(i?)
t = x

(j)
t ) = γ̃

(j)
t .

4: Predict (simulate) new particles, i.e., x
(i)
t+1 = f(x

(i?)
t , w

(i)
t ), i = 1, . . . , N using

different noise realizations for the particles.
5: Increase t and iterate to item 2.

and uncertainty region for the particle filter can be calculated as

x̂MMS
t|t =

N∑

i=1

γ
(i)
t x

(i)
t , (4)

Pt|t =

N∑

i=1

γ
(i)
t (x

(i)
t − x̂MMS

t|t )(x
(i)
t − x̂MMS

t|t )T . (5)

3 Particle Number Controller

The computational burden for the particle filter is dependent on the number of par-
ticles and on the resampling calculation. However, the resampling can be efficiently
implemented using a classical algorithm for sampling N ordered independent iden-
tically distributed variables [5, 17]. For multiple target tracking applications the
computational burden is increased. Therefore, it is essential to minimize the num-
ber of particles used in the estimation step. A novel approach is to apply a simple
control structure according to Figure 1. The number of particles needed is deter-

+ −

PSfrag replacements

Nt

k1

PF

PF

εt ∆(N, ε)

µ
(1)
t

µ
(2)
t

1
q−1

Resampling step

Control structure

|ε|

Figure 1: Controller of particles.

mined by the controller using the residual εt = ‖µ(1)
t − µ

(2)
t ‖, where µ

(1)
t and µ

(2)
t

are some statistical property from the particle filters (PFs), using different num-
ber of particles. Possible choices are for instance some relevant statistics, such as
the mean estimate from the particle filter or utilization of the probability density
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(pdf) or the cumulative density function (cdf). For instance the marginal distri-
bution (density for each coordinate) could be used. The control structure used is
a nonlinear block consisting of a relay and an integrator using

∆(Nt, εt) =

{

αinc(Nt) , if |εt| > Λ

αdec(Nt) , if |εt| ≤ Λ
,

For maneuvering targets in a tracking application the controller can reduce or in-
crease the number of particles during the tracking envelope. However, performance
may now depend on the parameters of the controller. Note that the controller is
implemented in the resampling step (Algorithm 1, step 3).

4 Data Association

Data association is a problem of great importance for multiple target tracking
applications. Several methods have been proposed in the literature and different
methods are often discussed in estimation and tracking literature, [3, 4, 7, 8]. In
general multi target tracking deals with state estimation of an unknown number of
targets. Some methods are special cases which assume that the number of targets
is constant or known. The observations are considered to originate from targets
if detected or from clutter. The clutter is a special model for false alarms, whose
statistical properties are different from the targets. In some applications only
one measurement is assumed from each target object, where in other applications
several returns are available. This will of course reflect which data association
method to use.

Several classical data association methods exist. The simplest is probably the
nearest neighbor (NN). In [3], this is referred to as the nearest neighbor standard

filter (NNSF) and uses only the closest observation to any given state to perform
the measurement update step. The method can also be given as a global optimiza-
tion, so the total observation to track statistical distance is minimized. Another
multi target tracking association method is the joint probability data association

(JPDA) which is an extension of the probability data association (PDA) algorithm
to multi targets. It estimates the states by a sum over all the association hypoth-
esis weighted by the probabilities from the likelihood. The most general method
is a time-consuming algorithm called the multi hypothesis tracking (MHT), which
calculates every possible update hypothesis. In [16], several algorithms for multiple
target tracking are listed and categorized according to the underlying assumptions.
A reference list to the different methods is also given. In [15], the probabilistic

MHT (PMHT) method is presented, using a maximum-likelihood method in com-
bination with the expectation maximization (EM) method. A comparison between
the JPDAF and the PMHT is also made. In [6], a Markov Chain Monte Carlo

(MCMC) technique is used for data association of multiple measurements in an
over the horizon radar application.

Most of these methods rely upon that the mean and covariance is sufficient
statistics for the problem. For linear and Gaussian problems the Kalman filter
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is the optimal estimator yielding sufficient information. For nonlinear problems
the EKF is often used as an approximation. To be able to fully use nonlinear
and non-Gaussian estimation methods combined with data association to solve the
joint data association and estimation problem there is a need to develop other
methods. In [2], the solution to the assignment problem for data association is
proposed to be within the Bayesian framework by simply incorporate it in the
estimation equations. In [18], this idea is suggested for the particle filter, when the
problem of maintaining a track on a target in the presence of intermittent spurious
objects. In [11], a multiple target and multiple sensor estimation and association
problem is solved using the Bayesian bootstrap filter. Samples are drawn from
the overall target probability density. A special filter called hybrid bootstrap filter

is constructed. The joint-filter in [14], is a solution to the joint data association
and estimation problem for particle filters. The estimation is done using a particle
filter and a Gibbs sampler, [10], is used for the association. The case for unknown
number of targets is handled by using a hypothesis test.

In this paper we focus on this idea for a multiple target problem in a cluttered
environment, and compare the particle filter based estimation and association with
classical association techniques.

5 Monte Carlo Probabilistic Data Association

In this paper we modify the classical SIR algorithm (Algorithm 1) for estimation
to handle multiple targets. The association principle proposed is based on a novel
Monte Carlo approach for the JPDA algorithm. We have assumed time-invariant
target models, which are the same for all targets. We use the same Bayesian
approach as in [11], for the estimation. However, we extend the idea and introduce
hypothesis calculations according to the JPDA method. The resampling is then
executed over all target association hypotheses. The clutter or false alarm model
is assumed uniformly distributed in the volume and the number of false alarms for
a given time is assumed to be Poisson distributed.

Let xt be the state at time t for the relative target locations, i.e., xt = {x1
t , . . . , x

τ
t }.

The samples or particles in the SIR/MCJPDA method is defined as {x(i)
t }Nt

i=1 =

{x(i),1
0 , . . . , x

(i),τ
0 }Nt

i=1, where each initial target cloud is denoted x
(i),j
0 for targets

j = 1, . . . , τ . The measurements for each time frame (scan) are denoted yk
t , k =

1, . . . ,Mt. A special clutter model is used to handle false alarms, x0
t (j = 0). The

association likelihood (track j, measurement k) is given by pjk = pet(y
k
t − h(xj

t )).
A general expression for the probability in hypothesis Hn is:

Prob(Hn) = δnP
τ−Zn

D (1 − PD)ZnP
Mt−(τ−Zn)
FA ln, (6)

where Zn is the number of false alarms (FA) in hypothesis n and ln is the likelihood
part. For more details, see hypothesis calculations in the example given in [8] (p.
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354). We also have an extra option

δn =

{

1, allow multiple measurement associations

0, otherwise.

For the particle filter each particle is associated with a weight:

γ
(i)
t =

(Mt+1)τ

∑

n=1

Prob(H(i)
n ).

Normalization yields the particle probability γ̃
(i)
t . The joint particle filtering and

association is summarized in Algorithm 2. Similar ideas in the context of robot con-

Algorithm 2 SIR/MCJPDA estimation and association.

1: Set t = 0, generate Nt samples from each target j = 1, . . . , τ , i.e., x0 =

{x(i)
0 }Nt

i=1 = {x(i),1
0 , . . . , x

(i),τ
0 }Nt

i=1, where x
(i),j
0 from p(xj

0).
2: For each particle compute the weights for all measurement to track association

γ
(i)
t =

∑(Mt+1)τ

n=1 Prob(H
(i)
n ) and normalize for each measurement, i.e.,

γ̃
(i)
t = γ

(i)
t /

∑Nt

i=1 γ
(i)
t , where Prob(H

(i)
n ) is the probability for hypothesis n

using particle i according to equation (6).

3: Generate a new set {x(i?)
t }Nt

i=1 by resampling with replacement Nt times from

{x(i)
t }Nt

i=1, where Prob(x
(i?)
t = x

(l)
t ) = γ̃

(l)
t .

4: Predict (simulate) new particles, i.e., x
(i),j
t+1 = f(x

(i?),j
t , w

(i),j
t ), i = 1, . . . , Nt,

using different noise realizations for the particles, for each target j = 1, . . . , τ .
5: Increase t and iterate to item 2.

trol appear in [19]. The optional particle number controller described in Section 3,
is applied at step 3, in Table 2.

To simplify the algorithm some practical problems are discarded. The mea-
surements within a scan is considered given at the same time instances and the
number of targets (τ) is assumed constant during the simulation. If the number of
targets is unknown or changing, the algorithm could be modified, for instance us-
ing a separate track start hypothesis. This could be done within the particle filter
framework or possible to use some linearized method. To allow measurements with
different time, the prediction step is modified with an increased computational load
as a consequence, i.e., each track must be predicted to every measurement time, in
the association step.

6 Simulations

In a simulation study, the proposed SIR/MCJPDA method is implemented for
a multi target environment problem. The application at hand is a missile to air
scenario. To simplify the simulations we assume that it is always possible to resolve
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the targets. In Cartesian coordinates the relative state vector is defined as xt = x̄t−
x̄own

t , such that xt =
(
X(t) Y (t) Z(t) Vx(t) Vy(t) Vz(t)

)T
, where X,Y and

Z are the Cartesian position coordinates and Vx, Vy and Vz the velocity components.
The following discrete time system is used

xt+1 =

( I3 TI3

O3 I3

)

xt +

(
T 2

2 I3

TI3

)

wt,

yt = h(xt) =






√

X2
t + Y 2

t + Z2
t

arctan( Yt

Xt
)

arctan( −Zt√
X2

t +Y 2
t

)




+ et,

where the process noise wt is assumed Gaussian, wt ∼ N(0, Q). The three-by-three
null matrix and unity matrix is denoted O3 and I3 respectively. The measurement
noise is assumed Gaussian et ∼ N(0, R). The parametric models for false alarms
are assumed NFA ∈ Po(λV ), with average number of false alarms per unit volume
λ and the validation region volume V . In the simulations E (NFA) = λV = 0.5
is used. The detection probability is assumed PD = 0.9. Assume the number of
targets τ = 2 and a sample time of T = 1[s]. The initial inertial target state vectors
x̄i

0, initial own platform x̄own
0 , measurement noise matrix R, process noise Q and

initial state error matrix P0 are

x̄1
0 =

0

B
B
B
B
B
B
@

6500
−1000
2000
−50
100
0

1

C
C
C
C
C
C
A

, x̄2
0 =

0

B
B
B
B
B
B
@

5050
−450
2000
100
50
0

1

C
C
C
C
C
C
A

, x̄own
0 =

0

B
B
B
B
B
B
@

0
0

3000
200
−50
0

1

C
C
C
C
C
C
A

,

P0 = diag
`
1002 1002 1002 502 502 502

´
,

Q =

0

@

102 0 0
0 102 0
0 0 102

1

A , R =

0

@

502 0 0
0 0.012 0
0 0 0.012

1

A .

The implemented EKF is according to the discretized linearization technique [13],
i.e., first linearize the underlying continuous time system and then discretize. Ini-
tial values for the tracks is draw from the initial uncertainty region P0 around the
true value. We compare the SIR/MCJPDA method with an NN data association
where the estimation is done by the particle filter and where the covariance matrix
needed for the association is similar to equation (5). A comparison is also made to
an EKF using the NN or JPDA association in a similar way. In Figure 2, a data
association and estimation using the SIR/MCJPDA filter is presented. To evalu-
ate the performance a root mean square error (RMSE) analysis is performed over
Nmc = 60 simulations and time samples. In Table 1, the results for the different
methods are summarized, using RMSE for the two targets when t ≥ 3, ignoring ini-
tial transients. The particle filter used N = 25000 samples. In Figure 3, the RMSE
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Figure 2: Data association & tracking.

Table 1: Association & estimation – RMSE analysis.
Estimation Association RMSE #1 RMSE #2

SIR MCJPDA 51.7 51.4
SIR NN 55.9 55.5
EKF JPDA 52.1 51.5
EKF NN 52.7 54.0

values for different times are presented for the methods described in Table 1 (target
1). In Figure 4, the particle number controller (Section 3), for SIR/MCJPDA is
used with k1 = 1

2 , k2 = 0.1,Λ = 9.5 and αinc(Nt) = 0.2Nt, αdec(Nt) = −0.1Nt, for
the marginal case, for 20 Monte Carlo simulations.

7 Conclusions

In this paper a novel Monte Carlo data association method for jointly estimation
and association in a probabilistic data association framework is presented. This
method (SIR/MCJPDA) is compared to EKF based classical association methods
such as NN and JPDA. The NN association is also applied to the SIR method,
where the covariance is calculated from the particle filter cloud. A novel approach
to determine the number of particles for each target is also developed, using a
relay and an integrator in a feedback system. In the simulation study in Section 6,
the methods are compared and the RMSE is used to describe the performance.
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Figure 3: RMSE(t) for different methods.

For more nonlinear problems and problems where the noise distribution is highly
non-Gaussian, the proposed simulation based algorithms may increase the overall
tracking performance.
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Abstract

We consider the recursive state estimation of a highly maneuverable tar-
get. In contrast to standard target tracking literature we do not rely on
linearized motion models and measurement relations, or on any Gaus-
sian assumptions. Instead, we apply optimal recursive Bayesian filters
directly to the nonlinear target model. We present novel sequential sim-
ulation based algorithms developed explicitly for the maneuvering tar-
get tracking problem. These Monte Carlo filters perform optimal infer-
ence by simulating a large number of tracks, or particles. Each particle
is assigned a probability weight determined by its likelihood. The main
advantage of our approach is that linearizations and Gaussian assump-
tions need not be considered. Instead, a nonlinear model is directly
used during the prediction and likelihood update. Detailed nonlinear
dynamics models and non-Gaussian sensors can therefore be utilized in
an optimal manner resulting in high performance gains. In a simulation
comparison with current state-of-the-art tracking algorithms we show
that our approach yields performance improvements. Moreover, incor-
poration of physical constraints with sustained optimal performance is
straightforward, which is virtually impossible to incorporate for linear
Gaussian filters. With the particle filtering approach we advocate these
constraints are easily introduced and improve the results.

Keywords: Maneuvering target tracking, Auxiliary particle filter, IMM.

1 Introduction

Traditionally, target tracking problems are solved using linearized tracking filters,
mainly extended Kalman filters (EKFs) [1]. For highly maneuvering targets or for
low observation rates different maneuvering modes are used to describe the motion.
Therefore, target maneuvers are often described by multiple linearized models. A

187
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common method is the Interacting Multiple Model filter (IMM) [6]. State-of-the-
art estimation and tracking literature [2], present state estimation and prediction
performed by switching between models or by mixing them. If the filter update
is slow or the target maneuver large the linearized solution may not always be
good. Nonlinear models in state equation and measurement relation and a non-
Gaussian noise assumption may also lead to non optimal solutions. Moreover,
the incorporation of constraints to the system parameters is complicated using
linearized techniques.

The sequential Monte Carlo methods, or particle filters, provide general so-
lutions to many problems where linearizations and Gaussian approximations are
intractable or would yield too low performance. The maneuvering target tracking
problem is an application which has strong elements of nonlinearity. Non-Gaussian
noise assumptions and incorporation of constraints on some of the system param-
eters can also be performed in a natural way by using these simulation based
methods. The constraints are due to limitations in state variables but could also
be induced by the terrain, such as land avoidance for tracking ships. Monte Carlo
techniques have been a growing research area lately due to improved computer
performance. Particularly some aspects of the bearings-only tracking application
has been investigated [3].

In this paper we extend the auxiliary particle filter (APF) of Pitt and Shep-
ard [8] to the case of multiple nonlinear models, switching according to a Markov
transition kernel. Each particle is split deterministically into a number of possi-
ble maneuver hypotheses and the likelihood is adjusted by the Markov transition
probabilities.

The algorithm is implemented for the classical Bayesian Bootstrap method [5]
using the Auxiliary Particle method. In a simulation study we compare this filter
to a linearized method using an interacting multiple model filter (IMM) [6] based on
three extended Kalman filters (EKFs) for an air traffic control (ATC) track-while-

scan (TWS) application. The problem under consideration incorporates nonlinear
effects both in the prediction and measurement model and some constraints on the
system states.

2 The Target Tracking Model

A general target tracking problem consists of a nonlinear state equation and a
nonlinear measurement relation of the form

xt+1 = f(xt, wt),

yt = h(xt, et),

where the process noise wt and measurement noise et are non-Gaussian, describing
the target maneuver and measurement. Some states or combination thereof are in
general constrained by some parameter dependent set Λi(x). The constraints of
states are due to target maneuvering capabilities or to terrain constraints. In this
paper only constraint of the target speed is considered among a state dependent
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turn rate. The constraint is defined in discrete time, but a continuous constraint
could also be possible, if a numerical solution to the state equation is used.

Following standard target tracking literature [2], tracking an aircraft in nearly
coordinated flight using a radar sensor yields a model with nonlinear elements both
in the dynamic state equation and in the measurement relation. The model is a
discretized continuous time nonlinear stochastic differential equation model where
the turn rate state ω gives a strong nonlinear behavior. For highly maneuvering
targets we extended it with a maneuvering model where the target maneuver is
described by a Markovian switching structure. The amount of the turn rate is
assumed velocity dependent due to the fact that the pilot will induce a moderate
turn rate traveling at high speed. The turn rate is modeled so a change will be
visible in the measurement directly following the onset of a turn, and modeled as a
set of three discrete values for right turn, straight flying or left turn. The discrete
system is given by

χt+1 = A(ωt+1)χt +
(
Bw Bω

)
wt, (1)

χt =
(
xt ωt+1

)T
, xt =

(

X Ẋ Y Ẏ
)T
, (2)

where X and Y is the Cartesian position coordinates and Ẋ, Ẏ the velocity com-

ponents. The velocity is constrained to some set V , i.e.,
√

Ẋ2 + Ẏ 2 ∈ V .

A(ω) =









1 sin(ωT )
ω 0 − (1−cos(ωT ))

ω 0
0 cos(ωT ) 0 − sin(ωT ) 0

0 (1−cos(ωT ))
ω 1 sin(ωT )

ω 0
0 sin(ωT ) 0 cos(ωT ) 0
0 0 0 0 1









,

Bv =









T 2

2 0
T 0

0 T 2

2
0 T
0 0









, Bω =









0
0
0
0
1









.

The turn rate is assume velocity dependent according to the following model

ω = atyp/
√

Ẋ2 + Ẏ 2, where atyp is the typical maneuvering acceleration which
is modeled as a set of three discrete values, having a Markovian switching struc-
ture. The radar measurements are modeled as

yt = h(xt) + et =

(√
X2 + Y 2

arctan( Y
X )

)

+ et,

where et is zero mean noise with covariance Rt. Independence in time and between
the measurement and process noise is assumed.

In the Bayesian bootstrap algorithm presented in section 4 the prediction stage
is performed by simply simulating equation (1) with the noise model. For systems
with an explicit solution this yields a simple and efficient predictor.
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3 Particle Filters

Many engineering problems are by nature recursive and require on-line solutions.
Common applications such as state estimation, recursive identification and adaptive
filtering often require recursive solutions to problems having both nonlinear and
non-Gaussian character. The seminal paper of Gordon et al. [5] marks the onset
of a rebirth for algorithms based on Monte Carlo simulation techniques for solving
this important class of problems in an optimal manner.

The sequential Monte Carlo methods, or particle filters provide an approxima-
tive Bayesian solution to discrete time recursive identification or filtering problems
by updating an approximative description of the posterior filtering density. Let
xt denote the state of the observed system and Yt = {yi}t

i=1 be the set of ob-
served measurements until present time. The Monte Carlo filter approximate the

density p(xt|Yt) by a large set of N particles {x(i)
t }N

i=1, where each particle has

an assigned relative weight, γ
(i)
t , chosen such that all weights sum to unity. The

location and weight of each particle reflect the value of the density in the region

of the state space, p(xt|Yt) ≈ 1
N

∑N
i=1 δ(xt − x

(i)
t ). The particle filter updates the

particle location and the corresponding weights recursively with each new observed
measurement.

The nonlinear prediction density p(xt|Yt−1) and filtering density p(xt|Yt) for
the Bayesian inference is given by

p(xt|Yt−1) =

∫

p(xt|xt−1)p(xt−1|Yt−1)dxt−1, (3)

p(xt|Yt) ∝ p(yt|xt)p(xt|Yt−1). (4)

The main idea is to approximate p(xt|Yt−1) with

p(xt|Yt−1) ≈
1

N

N∑

i=1

δ(xt − x
(i)
t ).

Inserting into (4) yields a density to sample from. This can be done by using the
Bayesian bootstrap or sampling importance resampling (SIR) algorithm from [5].

Algorithm 1 Sampling Importance Resampling (SIR)

1: Set t = 0, and generate N samples {x(i)
0 }N

i=1 from p(x0).

2: Compute the likelihood weights γ
(i)
t = p(yt|x(i)

t ) and normalize, i.e., γ̃
(i)
t =

γ
(i)
t /

∑N
j=1 γ

(j)
t , i = 1, . . . , N .

3: Generate a new set {xi?
t }N

i=1 by resampling with replacement N times from

{x(i)
t }N

i=1, where Prob(x
(i?)
t = x

(j)
t ) = γ̃

(j)
t .

4: Predict (simulate) new particles, i.e., x
(i)
t+1 = f(x

(i?)
t , w

(i)
t ), i = 1, . . . , N using

different noise realizations for the particles.
5: Increase t and iterate to item 2.
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4 Auxiliary Particle Filter for Maneuvering Tar-
gets

In this paper we are interested in what performance one can achieve by using true
nonlinear inference based on Monte Carlo algorithms, applied to a target tracking
application. In contrast to what is standard procedure in target tracking we choose
not to linearize the target models for each mode. Instead, we apply particle filters
directly to the mode switching model. The maneuvers are modeled by a discrete
parameter ω (turn rate) with a Markovian switching structure yielding a mode
switching, or jumping, model. In [7] a similar idea is used for linear jump Markov
models, applied to a bootstrap filter. By using particle filters, nonlinearities in
the system and measurement models and constraints in system parameters are
incorporated in a natural way.

For reliable handling of the mode hypotheses we extend the state-of-the-art
particle filter of Pitt and Shepard [8]. These so called auxiliary particle filters
use resampling on the predicted particles to select which particles to use in the
prediction and measurement update. We introduce a deterministic splitting of each
particle into several offspring, each one representing a different target maneuver.
Each offspring is weighted by the Markov transition probability for the maneuver
and its likelihood. In Figure 1 an example of three different maneuver assumptions
in the deterministic particle splitting is visualized in the upper plot. The three
predicted particle clouds conditioned on the turn rate are clearly distinguished in
the figure. The resampled cloud using the predicted particles is viewed in the lower
plot. In the lower plot in Figure 1 the resampled particles are predicted one step
forward.

System constraints are also incorporated in the model, so that non feasible
maneuvers are avoided using the particle filtering technique.

The Auxiliary Particle Filter [8] extends the state xt by predicting the state

conditional upon particle k. At time t, the particle set {x(k)
t }N

k=1 and the cor-

responding weights π
(k)
t form the following approximations to the prediction and

filter densities for the state of the target

p(xt+1|Yt) =

N∑

j=1

p(xt+1|x(j)
t )π

(j)
t ,

p(xt+1|Yt+1) ∝ p(yt+1|xt+1)

N∑

j=1

p(xt+1|x(j)
t )π

(j)
t .

By defining

p(xt+1, k|Yt+1) ∝ p(yt+1|xt+1)p(xt+1|x(k)
t )π

(k)
t , k = 1, . . . , N,

we can draw from this joint density and then discard the index, to produce a sample
from the empirical filtering density as required. The index k is referred to as an
auxiliary variable. For the target tracking application we consider the joint density
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Figure 1: The three different maneuvers, Auxiliary particle filter.

of particle k at time t and the target state at time t + 1. The turn rate ωt+1

indicates that the state is effected during the integration of the state equation from
t to t+ 1, i.e., it will effect the states at time t+ 1, when applied at time t. Using
Baye’s rule gives

p(xt+1, ωt+1, k|Yt+1) ∝ p(yt+1|xt+1, ωt+1, k)p(xt+1, ωt+1, k|Yt)

= p(yt+1|xt+1)p(xt+1|ωt+1, k,Yt)p(ωt+1, k|Yt)

= p(yt+1|xt+1)p(xt+1|x(k)
t , ωt+1)p(ωt+1|k,Yt)p(k|Yt)

= p(yt+1|xt+1)p(xt+1|x(k)
t , ωt+1)p(ωt+1|ω(k)

t )π
(k)
t . (5)

Approximating this expression by replacing xt+1 with the expected mean

µ
(k)
t+1(ωt+1) = E

(

xt+1|ωt+1, x
(k)
t

)

,

in the first factor gives

p(xt+1, ωt+1, k|Yt+1) ≈ Cp(yt+1|µ(k)
t+1(ωt+1))p(xt+1|x(k)

t , ωt+1)p(ωt+1|ω(k)
t )π

(k)
t .

Marginalization over xt+1 yields

p(ωt+1, k|Yt+1) ≈ Cp(yt+1|µ(k)
t+1(ωt+1))p(ωt+1|ω(k)

t )π
(k)
t , (6)

where C is a normalization factor. Sampling from the density (5) can now be

performed by resampling with replacement from the set {x(k)
t }N

k=1, where the index
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Algorithm 2 Auxiliary Particle Filter for maneuvering target tracking (APF)

1: Set t = 0, and generate N samples {x(i)
0 }N

i=1 from p(x0), set µ
(k)
t = x

(k)
t ,

k(j) = j, j = 1, . . . , N .

2: Compute µ
(k)
t+1(ωt+1) = E

(

xt+1|x(k)
t , ωt+1

)

for every ωt+1 ∈ M(x
(k)
t ), where

M(x
(k)
t ) is the set of all feasible (state dependent) maneuvers. Number of

particles after splitting: M .
3: Generate new indices k(j) by sampling N times from p(k|Yt+1) ∝

π
(k)
t p(yt+1|µ(k)

t+1)p(ωt+1|ω(k)
t ) and predict (simulate) the particles, i.e., x

(j)
t+1 =

f(x
(k(j))
t , w

(j)
t ), j = 1, . . . , N with different noise realizations.

4: Compute the likelihood weights γ
(j)
t =

p(yt+1|x(j)
t+1)

p(yt+1|µ(k(j))
t+1 )

for j = 1, . . . , N and nor-

malize, i.e., π
(j)
t =

γ
(j)
t

PM
j=1 γ

(j)
t

5: Perform an optional resampling of the set {x(i)
t+1}N

i=1, using the probability

weights. If resampling is chosen then reset π
(j)
t = 1

N , j = 1, . . . , N .
6: Increase t and iterate to item 2.

is chosen proportional to (6). The resampled candidates are then predicted using
the system model. In summary, the algorithm is given by

Implementing three different maneuvers for left turn, straight flying or right
turn gives M = 3N in the algorithm, which will only marginally increase the com-
putational burden, since the Bayesian bootstrap method with/without auxiliary
particle filters is linear in complexity O(M). This is because the resampling stage
can be done in a fast way by using a classical algorithm for sampling M ordered
independent identically distributed variables [4],[9].

5 Simulations

A simulation study using the nearly coordinated turn model from section 2 is
performed. The maneuvering is done by setting up a flight path in accordance
with the used Markov transition density. Simulations are performed by using the
APF extended with the deterministic maneuver splitting discussed in section 4. A
comparison to a traditional tracking method based on an IMM-filter consisting of
three EKFs with different turn assumptions is made. In the simulation study the
only parameter constraint considered is a limitation on the target speed, to the
interval 50 ≤ |v| ≤ 60 m/s. The simulation step is re-run until a feasible speed is
achieved. The distribution of the measurement noise is chosen to be Gaussian, with
angular and distance standard deviations of 0.5o respectively 20 m. The sampling
period is chosen to T = 4 s to emulate a track-while-scan (TWS) behavior. For
modern mono-pulse radars the update time and the angle standard deviation may
be much smaller, but for non-monopulse system or for air-borne tracking systems
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much greater values should be used.

In Figure 2 one realization using Gaussian noise is viewed. The a posteriori
probabilities for each coordinate is presented in Figure 3 for the predicted particles
for one realization.
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Figure 2: Simulation overview.

In Table 1 the position root mean square error (RMSE) for the APF with
N = 800 particles is compared to the IMM-filter, using NMC = 100 Monte Carlo
simulations. The RMSE using measurements only is also presented in Table 1.
The RMSE is defined by equation (7). As seen the APF method improves tracking
performance.

RMSE =

√
√
√
√ 1

L

L∑

t=1

1

NMC

NMC∑

i=1

(X̂
(i)
t −Xtrue

t )2 + (Ŷ
(i)
t − Y true

t )2, (7)

where L = 30 is the simulation path length and X̂
(i)
t , Ŷ

(i)
t , are the filter position

estimates at time t in Monte Carlo run i.

Table 1: RMSE for 100 Monte Carlo simulations, using N = 800 particles.
APF IMM Measurements

RMSE 32.09 37.05 41.5

In Figure 4 the RMSE is presented for each time, i.e., according to (8) for the
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different methods

RMSE(t) =

√
√
√
√ 1

NMC

NMC∑

i=1

(X̂
(i)
t −Xtrue

t )2 + (Ŷ
(i)
t − Y true

t )2. (8)

6 Conclusions

In the simulation study in section 5 the auxiliary particle filter method improved
tracking performance compared to the IMM-filter for the track-while-scan air traffic
control application. The particle filter method is also more flexible than traditional
methods since it can also incorporate system constraints and non-Gaussian noise
assumptions. However, simulation based methods such as particle filters can be
time consuming if many particles are used. To improve the real-time execution
performance the particle filter update could be run in parallel.
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Abstract

A growing research topic within the automotive industry is active safety
systems. These systems aim at helping the driver avoid or mitigate the
consequences of an accident. In this paper a collision mitigation system
that performs late braking is discussed. The brake decision is based on
estimates from tracking sensors. We use a Bayesian approach, imple-
menting an extended Kalman filter (EKF) and a particle filter to solve
the tracking problem. The two filters are compared for different sensor
noise distributions in a Monte Carlo simulation study. In particular
a bi-modal Gaussian distribution is proposed to model measurement
noise for normal driving. For ideal test conditions the noise probabil-
ity density is derived from experimental data. The brake decision is
based on a statistical hypothesis test, where collision risk is measured
in terms of required acceleration to avoid collision. The particle filter
method handles this test easily. Since the test is not analytically solv-
able a stochastic integration is performed for the EKF method. Both
systems perform well in the simulation study under the assumed sensor
accuracy. The particle filter based algorithm is also implemented in a
real-time testbed and fullfilled the on-line requirements.

Keywords: Collision mitigation by braking, Particle filter, EKF, Hy-
pothesis test.

1 Introduction

A current trend in automotive industry is to introduce active safety systems that
avoid or mitigate collisions. One system with a potential large positive impact

199
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on accident statistics is forward collision avoidance systems (FCAS), using sensors
such as radar, lidar and cameras to monitor the region in front of the vehicle.
A tracking algorithm is used to estimate the state of the objects ahead and a
decision algorithm uses the estimated states to determine any action. We will
specifically look at a system that performs late braking to reduce the collision
speed, which is referred to as collision mitigation by braking system (CMbBS).
This type of system is discussed further in [6]. There are several motivations for
this kind of system. One is its potential ability to affect rear-end collisions which
constitute approximately 30%, see [13], of all collisions. Furthermore human factors
contribute to approximately 90% of all traffic accidents, [12]. For reasons such as
driver acceptance and legal requirements of the system, the tracking and decision
algorithms are crucial. Current state of the art automotive tracking algorithms use
Kalman or extended Kalman filter (EKF) due to computational cost.

In this paper we will propose a new method for collision avoidance applications
based on Bayesian estimation methods and hypothesis testing. Two tracking al-
gortihms are tested. One based on EKF an one on the particle filter. The latter
method is also implemented in a real-time test system and its real-time feasabil-
ity is demonstrated in spite of its computer intensive complexity compared to the
EKF.

2 Tracking and Vehicle Models

2.1 Tracking Model

The general tracking model takes the form of a nonlinear state space model for the
vehicle dynamics and sensor measurements

xt+1 = f(xt, ut, wt), (1a)

yt = h(xt) + et. (1b)

For our radar based CMbB system, the state vector, xt ∈ R
n, contains relative

position to the other vehicle of potential collision risk, and relative velocity. Here
both longitudinal and lateral directions are used. Further, ut is the known inputs
from the accelerator, brake and steering wheel. These are also present for the
target vehicle, but then un-measureable and hence treated as state noise, wt. The
measurement relation (1b) comes from radar measurements of range, range rate
and bearing. The measurement noise, et, includes clutter, multi-path and multiple
reflection points in the vehicle ahead.

2.2 Estimation Approaches

For the CMbB system the measurement noise and the process noise (driver inputs)
are not necessarily Gaussian. Thus we need a recursive estimation method that
can handle this. In this paper we will study a general nonlinear and non-Gaussian
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Bayesian estimation problem. This is in general non-tractable, but using the par-
ticle filter method [4] (see Section 4.1) a recursive solution to the problem is given.
We will also compare with the linearized solution using the extended Kalman filter
(EKF).

2.3 State Noise Model

The classical assumption in target tracking is to assume a Gaussian distribution for
wt. In Figure 1 recorded driving data provided by Volvo is used to make histograms
of the longitudinal component of the acceleration noise, wt. The data is of course
highly correlated in time, since the acceleration does not fluctate rapidly. It could
be used by introducing a Markov chain based on the empirical data. However, for
braking situations probably a distribution based on accelerations collected close
to rapid decelerations should be used instead. A further and natural option is

−6 −4 −2 0 2 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Acceleration [m/s2]

P
ro

ba
bi

lit
y

Empirical distribution of vehicle acceleration

Figure 1: Acceleration histogram of a vehicle driven in urban traffic for 45
minutes.

to switch between different distributions depending on the driving situation. In
urban traffic one distribution is used, on highway another one, etc. This leads to a
mode dependent distribution pw(w; ξ). Here the mode can be determined from the
host vehicle speed, it may depend on the state vector, external information from
navigation and telematics systems etc. A simple approach is to use one mode when
v < 70 km/h and another one for v > 70 km/h.
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2.4 Measurement Noise Model

The measurement equation for the radar involves range, range rate and relative
angle measurements to the vehicle ahead. Similarly to the above, the range er-
ror distribution can be modeled. A common model is to assume Gaussian noise.
However, we will extend this to a more general case. An experiment is performed
by towing a radar equipped vehicle, which can then measure the range to the
towing vehicle under driving conditions with an almost constant range. Data is
collected using an FM-CW radar at 40 m and constant speed 60 km/h on a Volvo
S80 sedan. The range data is correlated, probably due to some oscillations in the
rope and from internal filters in the receiver. A second order state space model is
fitted to data using the n4sid method, [11, 10], in order to produce de-correlated
range data. This pdf range error is presented in Figure 2 together with a Gaussian
approximation.
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Figure 2: Measurement range noise pdf around the nominal range r =
40 m for the target vehicle Volvo S80 sedan and an equivalent Gaussian
approximation.

The measurement noise from the experiment is collected under nearly ideal cir-
cumstances. For instance, the data was collected from behind, i.e., no aspect angle
to the car, and on a smooth test track. In many cases due to road curvatures,
uneven road surfaces and lateral movement the measurement range distribution
might be different. Also, the exact reflection point is uncertain since the azimuth
angle is not that exact, so for medium distances, the main reflection point may be
located on different parts of the car. Hence, there are indications that the measure-
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ment noise pdf has a larger variance and different shape. A bi-modal Gaussian pdf
example is presented in Figure 3. This measurement noise model is motivated by
modeling the vehicle by two point reflectors, which is a simplified way of describing
both multi-path propagation and complex reflection geometry. The exact appear-
ance of the pdf will vary with many factors such as target vehicle, sensor and traffic
situation. Here we only test a bi-modal distribution with highly separated peaks.
This is to cover many situations with different aspect angles, where the density
is due to multi-path propagation, and multiple reflections points for instance in
the rear-end, wheel housing and rear-view mirror. More measurements and exper-
iments are needed to establish the empirical pdf for different driving situations, so
the proposed density should just be an example of non-Gaussian pdf influence. In
the simulation study we will compare different assumptions of the pdf.
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Figure 3: Bimodal range measurement noise and Gaussian approximation
of range density pe = 0.75N(0, 0.42) + 0.25N(1.6, 0.42).

3 Statistical Decision Making

Statistical decision making requires an estimate of the distribution of xt from noisy
measurements yt. The idea is for instance to calculate the probability for impact
for each time. More on this for automotive application can be found in [6].
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Figure 4: Data from a hard braking maneuver, 110-0 km/h for a Volvo
V70.

3.1 Hypothesis Testing

A general model-based statistical decision rule based on some criterion, g(xt), takes
the form

Prob(g(xt) > 0) > 1 − α, (2)

where α determines the confidence level. Hence, in (2) one has to compute some
integrals over the state-dimension to calculate the probability, given that we know
the probability density function or an estimate thereof. Note that this is a more
flexible approach than a simple rule like g(x̂t) > 0, since in (2) we use the complete
a posteriori distribution of the state vector and not only the estimate x̂t.

How successful the rule (2) is in mitigating a collision depends on the chosen
rule, but also on how accurately the estimated pdf reflects the true distribution.
Almost always an analytical expression of the probability is hard or impossible to
compute. One way is to use a numerical integration or more preferrable a stochas-
tic integration to compute an approximation. Here, one takes a large number of

samples x
(i)
t , i = 1, 2, . . . , N from the distribution p(xt|y0, ..., yt), and then

Prob(g(xt) > 0) ≈ #g(x
(i)
t ) > 0

N
. (3)

For the EKF a stochastic integration can be applied by drawing samples from the
Gaussian distribution around the estimate x̂t. This procedure is much simpler when
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the particle filter is used, since the samples, x
(i)
t , exist internally in the algorithm.

One can simply count the number of particles for which the inequality is satisfied.
This fact decreases the gap in computational burden between the EKF and particle
filter approaches.

3.2 The CMbB Decision Rule

In this paper we will study a CMbB system, which performs maximum braking
when a collision is becoming imminent, i.e., when a brake maneuver close to or
exceeding the vehicles handling limits is needed to reach a zero speed at impact. We
will introduce a very simple brake criteria to test the decision idea. We do this by
calculating the required acceleration to obtain a zero velocity at a possible impact.
Suppose at time t = t0 the relative position and speed to the object ahead is given
by p0 and v0. Denote the host vehicle acceleration by ut = ahost (input signal) and
the target vehicle acceleration by aobj . We consider both of these accelerations to be
constant from time t > t0 and denote the relative acceleration by a = ahost−aobj . In
the following analysis an ideal brake system is used for simplicity. For a high relative
velocity the error of neglecting brake system characteristics can be compensated
by adjusting the threshold in (7). The collision speed, vc at the collision time tc,
can be calculated as vc = v0 +a · (tc− t0). The relative time to zero collision speed,
vc = 0, is hence

tz = tc − t0 = −v0
a
. (4)

For a simple motion model the zero velocity impact can be obtained using the
relative acceleration solved from

0 = p0 + v(t) · (t− t0) +
a · (t− t0)

2

2
, (5)

using (4). Hence, one obtains a = − v2
0

2p0
, which yield the host required acceleration

ahost = aobj − a = aobj −
v2
0

2p0
. (6)

For constant velocity case, i.e., aobj = 0, the risk metric simplifies further and the
hypothesis test will be according to

Prob(− v2
0

2p0
< ath) > 1 − α, (7)

where ath is the acceleration threshold for when we consider an accident to be
imminent.

3.3 Brake System Model

To calculate the collision speed the brake system characteristics need to be known.
A complete brake system model is very complex. However looking at overall vehicle
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performance a simple yet accurate description can be obtained using a first order
system for the acceleration. Figure 4 shows measurement data from 10 brake
maneuvers with a Volvo V70 and a first order approximation The measurements
were performed on warm and dry asphalt. For the simulated data a first order
system was used with transfer function

Gbrake(s) =
k1

s/k2 + 1
, (8)

with k1 = 11 and k2 = 7 chosen such that the system rise time is 0.3 s and the
stationary value is 11 m/s

2
, Comparing traveled distance after 2 seconds we find

that the difference is less than 1 m which is sufficient for our purposes. More
information on typical brake system behavior can be found in [1].

4 Bayesian Estimation

Consider the state-space model

xt+1 = f(xt, ut, wt), (9a)

yt = h(xt) + et, (9b)

where xt ∈ R
n denotes the state of the system, ut the input signal and yt the

observation at time t. The process noise wt and measurement noise et are assumed
independent with densities pwt and pet respectively. Let Yt = {yi}t

i=1 be the set
of observations until present time.

The Bayesian estimation problem is given by, [7],

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt)dxt, (10a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (10b)

where p(xt+1|Yt) is the prediction density and p(xt|Yt) the filtering density. The
problem is in general not analytically solvable.

4.1 Particle Filter

To solve the non-tractable Bayesian estimation problem in an on-line application
without using linearization or Gaussian assumptions, sequential Monte Carlo meth-
ods, or particle filters, could be used. Here only a brief description of the theory
is given. For more details we refer to [3, 4, 5, 9]. The particle filter method pro-
vides an approximative Bayesian solution to (10) by approximating the probability

density p(xt|Yt) by a large set of N particles {x(i)
t }N

i=1, where each particle has an

assigned relative weight, γ
(i)
t , such that all weights sum to unity. The location and
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weight of each particle reflect the value of the density in the region of the state
space. The likelihood p(yt|xt) is calculated from (9) yielding

γt = p(yt|xt) = pet(yt − h(xt)). (11)

By introducing a resampling step as in [5] problems with divergence can be handled.
This is referred to as sampling importance resampling (SIR), and is summarized in
Algorithm 1.

Algorithm 1 Sampling Importance Resampling (SIR)

1: Generate N samples {x(i)
0 }N

i=1 from p(x0).

2: Compute γ
(i)
t = pe(yt|x(i)

t ) and normalize, i.e., γ̄
(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t ,

i = 1, . . . , N .

3: Generate a new set {x(i?)
t }N

i=1 by resampling with replacement N times from

{x(i)
t }N

i=1, with probability γ̄
(j)
t = Prob(x

(i?)
t = x

(j)
t ).

4: Prediction: x
(i)
t+1 = f(x

(i?)
t , ut, w

(i)
t ), i = 1, . . . , N using different noise realiza-

tions w
(i)
t .

5: Increase t and iterate to step 2.

The decision criterion (7) can easily be evaluated for the particle filter since

the particles, x
(i)
t reflects the location and distribution of the states. Hence, the

particle filter is well suited for statistical decision making.

4.2 Extended Kalman Filter

The Bayesian recursions in Section 4 do not in general have an analytical solution.
For the special case of linear dynamics, linear measurements and Gaussian noise
there exist a solution, which is retrieved by the Kalman filter, [8]. For many
nonlinear problems the noise assumptions are such that a linearized solution will
be a good approximation. This is the idea behind the EKF, [2], where the model
is linearized around the previous estimate. The time- and measurement update for
the EKF are give by

{

x̂t+1|t = f(x̂t|t, ut),

Pt+1|t = FtPt|tF
T
t +GtQtG

T
t ,

(12a)







x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1)),

Pt|t = Pt|t−1 −KtHtPt|t−1,

Kt = Pt|t−1H
T
t (HtPt|t−1H

T
t +Rt)

−1,

(12b)

with linearized matrices and covariances

F T
t = ∇xf

T (xt)|xt=x̂t|t
, HT

t = ∇xh
T (xt)|xt=x̂t|t−1

, (13)

Qt = Cov (wt) , Rt = Cov (et) . (14)
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When a multi-modal Gaussian measurement pdf is used

et ∼
M∑

i=1

piN(µi, σ
2
i ), (15)

where N(µ, σ2) denotes a Gaussian density with mean (µ) and covariance (σ2), the
measurement update equation must be modified as

x̂t|t = x̂t|t−1 +Kt(yt − h(x̂t|t−1) − m̄), (16)

where m̄ =
∑M

i=1 piµi. If the measurement pdf is not know analytically, the ap-
proximation using a single Gaussian pdf introduces a bias (since m̄ = 0).

The decision criterion (7) is not analytically solvable when the state variables
are considered Gaussian. By sampling the position and velocity distribution around
the estimates a Monte Carlo integration technique can solve the decision criterion.
Hence, part of the computational burden present in the particle filter is introduce
in this step for the EKF method.

5 Simulations and Tests

In a simulation study we compare the traditionally EKF tracking filter with the
particle filter using the previously described decision rule for braking. We also test
the real-time performance in a hardware collision avoidance test platform.

5.1 Model

To simplify analysis of the system performance for different noise distributions, we
consider a single scenario. The scenario to be studied is one where the target object
is not moving and the vehicle with the CMbB system is approaching with constant
velocity (60 km/h).

Consider the state vector with relative position p and velocity v for the x-
and y-direction, where the sensor measures relative distance, azimuth and relative
speed.

xt =
(
px py vx vy

)T
. (17)

The tracking model with sample time T is then

xt+1 = Fxt +Gwt (18a)

yt = h(xt) + et, (18b)

F =







1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1






, G =







T 2/2 0
0 T 2/2
T 0
0 T






, (19)
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h(xt) =





r
ϕ
ṙ



 =







√

p2
x + p2

y

arctan(py/px)
1√

p2
x+p2

y

(pxvx + pyvy)






. (20)

The process noise, wt, and measurement noise, et, are assumed to be independent
white noise.

5.2 Scenario

We consider two main models for the measurement sensor. In the first we use the
measured range distribution from Figure 2, based on measurements collected from
experimental data on a Volvo S80. We conclude that the range density is narrow
and not as bimodal as expected. This is probably due to the ideal circumstances in
the experiment as described in Section 2.4. We are also interested in other driving
situations. Hence the second model of the measurement range noise is a bi-modal
Gaussian, i.e.,

et ∼ p1N(µ1, σ
2
1) + p2N(µ2, σ

2
2), (21)

where N(µ, σ2) denotes a Gaussian density with mean (µ) and covariance (σ2). A
sample of et belongs to one of the distributions, with probability pi. The values are
given in Table 5.2. Here p1 = 0.75 and p2 = 0.25 since the rear-end of the vehicle is
assumed to have a larger radar cross section. The motivation for studying the bi-
modal distribution is discussed in Section 2.4. Here two different parameterizations
are presented to investigate the influence.

Table 1: Results from 1000 Monte Carlo simulations and different cases.

Case Filter Range pdf RMSE RMSE Coll.vel σ Coll.vel

pet (pos)[m] (vel)[m/s] [m/s] [m/s]

I SIR 0.75N(0, 0.42) + 0.25N(1.6, 0.42) 0.11 0.29 -6.59 0.51
I EKF 0.75N(0, 0.42) + 0.25N(1.6, 0.42) 0.16 0.29 -6.61 0.53

II SIR 0.75N(0, 0.22) + 0.25N(1, 0.42) 0.08 0.29 -6.56 0.49
II EKF 0.75N(0, 0.22) + 0.25N(1, 0.42) 0.11 0.29 -6.56 0.51

III SIR Empirical 0.06 0.29 -6.52 0.47
III EKF Empirical 0.06 0.29 -6.52 0.47

The range rate and azimuth were found to be well approximated by Gaussian
distributions, with σṙ = 0.2 and σϕ = 0.01.

We use a longitudinal acceleration process noise, Q ≈ 0.5/T , to model driving
behavior and model imperfections.

A simple brake system model according to (8) is used in the simulations, with
parameters k1 and k2 chosen to give a brake system rise-time of 300 ms and a
maximum deceleration of 9.8 m/s

2
. The somewhat lower maximum deceleration



210 Paper H Model-Based Statistical Tracking and Decision Making ...

(compared to section 2) is due to the fact that the test track exhibit optimal
frictional conditions.

The brake decision is based on a hypothesis test on the expected required ac-
celeration according to (7). We have chosen the acceleration threshold to ath =

−8 m/s
2

and the confidence level to α = 0.05. For the SIR approach the hypothesis
is evaluated for each particle.

We perform 1000 Monte Carlo (MC) simulations for both SIR and EKF. In the
particle filter we use N = 5000 particles and the same amount of samples in the
stochastic integration for the EKF.

5.3 Simulation Results

The different simulations from the Monte Carlo study are summarized in Table 5.2
together with tracking and CMbB system performance. Three different cases were
considered. In case I and II two different bi-modal Gaussian range distributions
were used and in case III the empirical range distribution from Figure 2 were used.
All other values were the same for all the simulation cases. For non-Gaussian range
distributions such as the bimodal-Gaussian proposed for the measurement noise,
the SIR method increases estimation performance (position RMSE) slightly. The
mean difference in collision speed is basically not affected, however the EKF has
a somewhat larger collision speed variance, but probably insignificant. The result
is under the assumptions of quite accurate range rate and azimuth measurements
and a high measurement update rate, f = 1/T = 20 Hz. Hence, for systems that
do not measure the relative speed more significant differences are expected.

5.4 Hardware and Real-Time Issues

In the simulations presented in Section 5.1 the entire algorithm was implemented in
standard Matlab code. However, the ultimate goal with the particle filter based
approach is to incorporate the algorithm and test the idea in an on-line application
in a collision avoidance system. In Figure 5 the test system is shown mounted
inside the test vehicle. The test platform uses dSpace hardware (equipped with
a 1 GHz power PC) together with Simulink and Real-Time Workshop (RTW).
Hence, the algorithm must be written in C-code and Matlab/MEX functions
for Simulink. The entire environment is then compiled using the RTW-compiler
to the dedicated hardware platform. In Figure 6 the Simulink diagram is shown
for the underlying MEX C-code functions, i.e., the particle filter and the decision
making algorithm. These are incorporated in the testbed using the RTW-compiler.
The entire algorithm runs faster then real-time on the dedicated hardware, with
T = 0.05 s and N = 5000 particles.

6 Conclusions

We have implemented a decision rule in a CMbB system for late braking using
a hypothesis test based on estimates of the relative longitudinal dynamics. Both
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Figure 5: The collision avoidance hardware in the test vehicle.
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Figure 6: Matlab Simulink diagram of the CMbBS model used to gener-
ate RTW-code for the dedicated hardware.

an EKF and a particle filter were evaluated for different noise assumptions. For
non-Gaussian range distributions such as the bimodal-Gaussian proposed for the
measurement noise, the SIR method increases estimation performance slightly.
However, the range error is in the order of decimeters for all tested scenarios,
so the mean difference in collision speed is basically not affected. The EKF has a
somewhat larger collision speed variance, but probably insignificant. The result is
under the assumption of quite accurate range rate and azimuth measurements, and
a moderate process noise. Hence, a greater difference might occur if for instance
the range rate is not measured or if more maneuverability, i.e., larger process noise
is considered.

The computational cost of the EKF method is somewhat smaller than for the
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SIR, but rather close. This is due to the fact that the EKF uses a stochastic
integration to calculate the probability of collision. So for a decision rule like (2)
a particle filter approach might be preferable. It should also be kept in mind that
the scenario studied here is very simple (from a tracking sense), for more complex
scenarios with maneuvering target and tracking platform the difference between
the methods may be larger. Also the particle filter method is more flexible, so if a
more complex state-space model is used, linearization errors in the dynamic model
can be avoided.

In the simulation study the simulations for both the SIR and EKF approach
were run faster than real-time on an ordinary desk-top computer. The particle filter
was also implemented in the Volvo testbed hardware (used in vehicle tests) using
the Matlab Simulink RTW compiler. The tracking filter and decision algorithm
executed faster than the real-time constraint, T = 0.05, using N = 5000 particles
for the tracking model described earlier.
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Sweden, 2001.



214 Paper H Model-Based Statistical Tracking and Decision Making ...



PhD Dissertations, Division of Automatic Control, Linköping
University

M. Millnert: Identification and control of systems subject to abrupt changes.
Thesis no. 82, 1982. ISBN 91-7372-542-0.

A.J.M. van Overbeek: On-line structure selection for the identification of mul-
tivariable systems. Thesis no. 86, 1982. ISBN 91-7372-586-2.

B. Bengtsson: On some control problems for queues. Thesis no. 87, 1982. ISBN
91-7372-593-5.

S. Ljung: Fast algorithms for integral equations and least squares identification
problems. Thesis no. 93, 1983. ISBN 91-7372-641-9.

H. Jonson: A Newton method for solving non-linear optimal control problems
with general constraints. Thesis no. 104, 1983. ISBN 91-7372-718-0.

E. Trulsson: Adaptive control based on explicit criterion minimization. Thesis
no. 106, 1983. ISBN 91-7372-728-8.

K. Nordström: Uncertainty, robustness and sensitivity reduction in the design
of single input control systems. Thesis no. 162, 1987. ISBN 91-7870-170-8.

B. Wahlberg: On the identification and approximation of linear systems. Thesis
no. 163, 1987. ISBN 91-7870-175-9.

S. Gunnarsson: Frequency domain aspects of modeling and control in adaptive
systems. Thesis no. 194, 1988. ISBN 91-7870-380-8.

A. Isaksson: On system identification in one and two dimensions with signal
processing applications. Thesis no. 196, 1988. ISBN 91-7870-383-2.

M. Viberg: Subspace fitting concepts in sensor array processing. Thesis no. 217,
1989. ISBN 91-7870-529-0.

K. Forsman: Constructive commutative algebra in nonlinear control theory. The-
sis no. 261, 1991. ISBN 91-7870-827-3.

F. Gustafsson: Estimation of discrete parameters in linear systems. Thesis no.
271, 1992. ISBN 91-7870-876-1.

P. Nagy: Tools for knowledge-based signal processing with applications to system
identification. Thesis no. 280, 1992. ISBN 91-7870-962-8.

T. Svensson: Mathematical tools and software for analysis and design of nonlinear
control systems. Thesis no. 285, 1992. ISBN 91-7870-989-X.

S. Andersson: On dimension reduction in sensor array signal processing. Thesis
no. 290, 1992. ISBN 91-7871-015-4.

H. Hjalmarsson: Aspects on incomplete modeling in system identification. The-
sis no. 298, 1993. ISBN 91-7871-070-7.

I. Klein: Automatic synthesis of sequential control schemes. Thesis no. 305, 1993.
ISBN 91-7871-090-1.
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