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Abstract

Aircraft flight control design is traditionally based on linear control theory, due
to the existing wealth of tools for linear design and analysis. However, in order
to achieve tactical advantages, modern fighter aircraft strive towards performing
maneuvers outside the region where the dynamics of flight are linear, and the need
for nonlinear tools arises.

In this thesis we investigate backstepping as a new framework for nonlinear flight
control design. Backstepping is a recently developed design tool for constructing
globally stabilizing control laws for a certain class of nonlinear dynamic systems.
Flight control laws for two different control objectives are designed. First, general
purpose maneuvering is considered, where the angle of attack, the sideslip angle,
and the roll rate are the controlled variables. Second, automatic control of the
flight path angle control is considered.

The key idea of the backstepping designs is to benefit from the naturally stabiliz-
ing aerodynamic forces acting on the aircraft. The resulting state feedback control
laws thereby rely on less knowledge of these forces compared to control laws based
on feedback linearization, which today is the prevailing nonlinear design technique
within aircraft flight control.

The backstepping control laws are shown to be inverse optimal with respect to
meaningful cost functionals. This gives the controllers certain gain margins which
implies that stability is preserved for a certain amount of control surface saturation.

Also, the problem of handling a model error appearing at the input of a non-
linear dynamic system is treated, by considering the model error as an unknown,
additive disturbance. Two schemes, based on adaptive backstepping and nonlinear
observer design, are proposed for estimating and adapting to such a disturbance.
These are used to deal with model errors in the description of the aerodynamic
moments acting on the aircraft.

The designed control laws are evaluated using realistic aircraft simulation mod-
els and the results are highly encouraging.
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Notation

Symbols

R the set of real numbers
x1, . . . , xn state variables
x = (x1 · · · xn)T state vector
u control input
k(x) state feedback control law
V (x) Lyapunov function, control Lyapunov function
xref

1 reference value of x1

xdes
1 desired value of x1

Γ multiplicative control input perturbation
e unknown additive input bias
ê estimate of e

Operators

‖x‖ =
√
x2

1 + . . .+ x2
n Euclidian norm

V̇ = dV
dt time derivative of V
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x Notation

V ′(x1) = dV (x1)
dx1

derivative of V w.r.t. its only argument x1

Vx(x) = (∂V (x)
∂x1

· · · ∂V (x)
∂xn

) gradient of V w.r.t. x

Acronyms

clf control Lyapunov function
GAS global asymptotic stability, globally asymptotically

stable
NDI nonlinear dynamic inversion
TVC thrust vectored control
GAM Generic Aerodata Model
HIRM High Incidence Research Model

Aircraft nomenclature

State variables

Symbol Unit Definition
α rad angle of attack
β rad sideslip angle
γ rad flight path angle
Φ = (φ, θ, ψ)T aircraft orientation (Euler angles)
φ rad roll angle
θ rad pitch angle
ψ rad yaw angle
ω = (p, q, r)T body-axes angular velocity
ωs = (ps, qs, rs)T stability-axes angular velocity
p rad/s roll rate
q rad/s pitch rate
r rad/s yaw rate
p = (pN , pE, h)T aircraft position
pN m position north
pE m position east
h m altitude
V = (u, v, w)T body-axes velocity vector
u m/s longitudinal velocity
v m/s lateral velocity
w m/s normal velocity
VT m/s total velocity
M - Mach number
nz g normal acceleration, load factor



Notation xi

Control surface deflections

Symbol Unit Definition
δ collective representation of all control surfaces
δes rad symmetrical elevon deflection
δed rad differential elevon deflection
δcs rad symmetrical canard deflection
δcd rad differential canard deflection
δr rad rudder deflection

Aircraft data

Symbol Unit Definition
m kg aircraft mass

I =

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iz

 kg m2 aircraft inertial matrix

S m2 wing planform area
b m wing span
c̄ m mean aerodynamic chord
ZTP m zb-position of engine thrust point

Atmosphere

Symbol Unit Definition
ρ kg/m3 air density
q̄ N/m2 dynamic pressure

Forces and moments

Symbol Unit Definition
g m/s2 acceleration due to gravity
FT N engine thrust force
D = q̄SCD N drag force
L = q̄SCL N lift force
Y = q̄SCY N side force
L̄ = q̄SbCl Nm rolling moment
M = q̄Sc̄Cm Nm pitching moment
N = q̄SbCn Nm yawing moment

Coordinate systems

Symbol Definition
(xb, yb, zb) body-axes coordinate system
(xs, ys, zs) stability-axes coordinate system
(xw, yw, zw) wind-axes coordinate system
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Introduction

During the past 15 years, several new design methods for control of nonlinear dy-
namic systems have been invented. One of these methods is known as backstepping.
Backstepping allows a designer to methodically construct stabilizing control laws
for a certain class of nonlinear systems.

Parallel to this development within nonlinear control theory, one finds a desire
within aircraft technology to push the performance limits of fighter aircraft towards
“supermaneuverability”. By utilizing high angles of attack, tactical advantages
can be achieved, as demonstrated by Herbst [32] and Well et al. [77], who consider
aircraft reversal maneuvers for performance evaluation. The aim is for the aircraft
to return to a point of departure at the same speed and altitude but with an
opposite heading at minimum time. It is shown that using high angles of attack
during the turn, the aircraft is able to maneuver in less air space and complete the
maneuver in shorter time. These types of maneuvers are performed outside the
region where the dynamics of flight are linear. Thus, linear control design tools,
traditionally used for flight control design, are no longer sufficient.

In this thesis, we investigate how backstepping can be used for flight control
design to achieve stability over the entire flight envelope. Control laws for a number
of flight control objectives are derived and their properties are investigated, to see
what the possible benefits of using backstepping are. Let us begin by illustrating
the key ideas of the design methodology with a concrete example.

1
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Figure 1.1 The sideslip, β, is in general desired to be kept zero. The aero-
dynamic side force, Y (β), naturally acts to fulfill this objective.

1.1 Introductory Example: Sideslip Regulation

An important aircraft variable to be controlled is the sideslip angle, β, which is
depicted in Figure 1.1(a). Nonzero sideslip means that the aircraft is “skidding”
through the air. This is unwanted for several reasons: it is unsuitable for the
engines, especially at high speeds, it increases the air resistance of the aircraft, and
it is uncomfortable for the pilot. Thus, β = 0 is in general the control objective.

To regulate the sideslip, the rudder, situated at the back of the aircraft, is used.
The (somewhat simplified) sideslip dynamics are given by

β̇ = −r +
1

mVT
(Y (β) − FT sinβ) (1.1a)

ṙ = cN(δr) (1.1b)

Here, r = yaw rate of the aircraft, m = aircraft mass, VT = aircraft speed, Y =
aerodynamic side force due to the air resistance, FT = thrust force produced by
the engines, c = constant related to the aircraft moment of inertia, N = yawing
moment, and δr = rudder deflection.

The side force, which is the component of the air resistance that affects the
sideslip, is a nonlinear function of β. Figure 1.1(b) shows the typical relationship
between the two entities. In particular we see that for a negative sideslip, the side
force is positive and vice versa for a positive sideslip. Thus, considering (1.1a),
the side force is useful for bringing the sideslip to zero since, e.g., for β < 0 its
contribution to β̇ is positive. The same is true for the β̇ component due to the
engine thrust force. For β < 0, −FT sinβ is positive, bringing β towards zero.
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Figure 1.2 Controller configuration.

The important implication of these discoveries is that since the nonlinear terms
act stabilizing, they need not be cancelled by the controller, and hence complete
knowledge of them is not necessary. This idea of recognizing useful nonlinearities
and benefitting from them rather than cancelling them is the main idea of this
thesis.

In Chapter 5 we use backstepping to design state feedback laws for various flight
control objectives. A common feature of the derived control laws is that they are
linear in the variables used for feedback, considering the angular acceleration of
the aircraft as the input. In our example this corresponds to designing a control
law

u = k(β, r) = −k1β − k2r

where

u = ṙ = cN(δr) (1.2)

To realize such a control law in terms of the true control input, δr, requires
perfect knowledge of the yawing moment, N . Since typically this is not the case,
we can remodel (1.2) as

u = cN̂(δr) + e

where N̂ is our model of the yawing moment and e is the bias to the actual yawing
moment. An intuitively appealing idea is to compute an estimate, ê, of the bias,
e, on-line and realize the modified control law

cN̂(δr) = k(β, r) − ê (1.3)
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which, if the estimate is perfect, cancels the effect of the bias and achieves u =
k(β, r) as desired. In Chapter 6, two such estimation schemes are proposed and
shown to give closed loop stability.

The remaining problem is that of control allocation, i.e., how to determine δr
such that (1.3) is satisfied. This will be discussed in Chapter 7 where two numerical
solvers are proposed.

The overall control configuration, along with chapter references, is shown in
Figure 1.2.

1.2 Outline of the Thesis

Chapter 2 Contains basic facts about modern fighter aircraft such as their dy-
namics, the control inputs available and what the control objectives are.

Chapter 3 Introduces the backstepping methodology for control design for a class
of nonlinear system. Discusses design choices and contains examples showing
how some nonlinearities can actually be useful and how to benefit from them.

Chapter 4 A short chapter on inverse optimal control, i.e., how one can decide
whether a given control law is optimal w.r.t. a meaningful cost functional.

Chapter 5 Contains the main contributions of the thesis. Backstepping is used
to design state feedback control laws for various flight control objectives.

Chapter 6 Proposes two different methods for adapting to model errors appearing
at the input and investigates closed loop stability in each case.

Chapter 7 Proposes numerical schemes for solving the control allocation problem.
Also presents computer simulations of the designed aircraft control laws in
action.

Chapter 8 Concludes the thesis by evaluating the ability to handle important
issues like stability, tuning, robustness, input saturation, and disturbance
attenuation within the proposed backstepping framework.

1.3 Contributions

The main contributions of this thesis are the following:

• The ideas in Sections 5.1.2 and 5.2.2 on how to benefit from the naturally sta-
bilizing aerodynamic forces using backstepping, rather than cancelling them
as in feedback linearization. The resulting control laws rely on less knowledge
of the aerodynamic forces than the feedback linearizing designs which have
been previously proposed (reviewed in Section 2.5.2).

• The backstepping designs for the two general nonlinear systems in Sections
5.1.2 and 5.2.2.
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• The discovery in Section 5.1.3 that the angle of attack control law used by
Snell et al. [71], based on feedback linearization and time-scale separation,
can also be constructed using backstepping and is in fact optimal w.r.t. a
meaningful cost functional.

• The adaptive schemes in Chapter 6 for handling model errors appearing at
the control input.

• The computer simulations in Section 7.3 showing the proposed control laws
to work satisfactory using realistic aircraft simulation models.

Parts of this thesis have been published previously. The backstepping designs
in Chapter 5 originate from

Ola Härkeg̊ard and S. Torkel Glad. A backstepping design for flight
path angle control. In Proceedings of the 39th Conference on Decision
and Control, pages 3570–3575, Sydney, Australia, December 2000.

and

Ola Härkeg̊ard and S. Torkel Glad. Flight control design using back-
stepping. Technical Report LiTH-ISY-R-2323, Department of Electrical
Engineering, Linköpings universitet, SE-581 83 Linköping, Sweden, De-
cember 2000. To be presented at the 5th IFAC Symposium “Nonlinear
Control Systems” (NOLCOS’01), St. Petersburg, Russia.

The results in Chapter 6 on how to adapt to a model error at the input can be
found in

Ola Härkeg̊ard and S. Torkel Glad. Control of systems with input non-
linearities and uncertainties: an adaptive approach. Technical Report
LiTH-ISY-R-2302, Department of Electrical Engineering, Linköpings
universitet, SE-581 83 Linköping, Sweden, October 2000. Submitted to
the European Control Conference, ECC 2001, Porto, Portugal.
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2

Aircraft Primer

In this chapter, we investigate modern fighter aircraft from a control perspective.
The aim is to introduce the reader to the aircraft dynamics, the control objectives,
and how to assist the pilot to achieve these objectives using automatic control.
Much of what is said applies to aircraft in general, not only to fighters.

Section 2.1 discusses the possibilities of using electric control systems to aid the
pilot in controlling the aircraft. In Sections 2.2 and 2.3, the control objectives are
presented along with the control means at our disposal. In Section 2.4 we turn to
the dynamics of flight, and in Section 2.5 some existing approaches to flight control
design are presented.

2.1 The Impact of Automatic Control

The interplay between automatic control and manned flight goes back a long time,
see Stevens and Lewis [74] for a historic overview. At many occasions their paths
have crossed, and progress in one field has provided stimuli to the other.

During the early years of flight technology, the pilot was in direct control of the
aircraft control surfaces. These where mechanically connected to the pilot’s manual
inputs. In modern aircraft, the pilot inputs are instead fed to a control system.
Based on the pilot inputs and available sensor information, the control system
computes the control surface deflections to be produced. This information is sent

7
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Mission

Pilot

Manual inputs

Control
System

Actuator settings

Aircraft

Aircraft behavior

Sensor data

Cockpit displays, visual information, etc.

Figure 2.1 Fly-by-wire from a control perspective.

through electrical wires to the actuators located at the control surfaces, which in
turn realize the desired deflections. Figure 2.1 shows the situation at hand. This
is known as fly-by-wire technology. What are the benefits of this approach?

Stability Due to the spectacular 1993 mishap, when a fighter aircraft crashed
over central Stockholm during a flight show, it is a widely known fact, even to people
outside the automatic control community, that many modern aircraft are designed
to be unstable in certain modes. A small disturbance would cause the uncontrolled
aircraft to quickly diverge from its original position. Such a design is motivated by
the fact that it enables faster maneuvering and enhanced performance. However,
it also emphasizes the need for reliable control systems, stabilizing the aircraft for
the pilot.

Varying dynamics The aircraft dynamics vary with altitude and speed. Thus
without a control system assisting him, the pilot himself would have to adjust his
joystick inputs to get the same aircraft response at different altitudes and speeds.
By “hiding” the true aircraft dynamics inside a control loop, as in Figure 2.1, the
varying dynamics can be made transparent to the pilot by designing the control
system to make the closed loop dynamics independent of altitude and speed.

Aircraft response Using a control system, the aircraft response to the manual
inputs can be selected to fulfill the requirements of the pilots. By adjusting the
control law, the aircraft behavior can be tuned much more easily than having to
adjust the aircraft design itself to achieve, e.g., a certain rise time or overshoot.

Interpretation of pilot inputs By passing the pilot inputs to a control system,
the meaning of the inputs can be altered. In one mode, moving the joystick sideways
may control the roll rate, in another mode, it may control the roll angle. This
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q

nz

α

VT

Figure 2.2 Pitch control objectives.

paves the way for various autopilot capabilities, e.g., altitude hold, relieving the
pilot workload.

2.2 Control Objectives

Given the possibilities using a flight control system, what does the pilot want to
control?

In a classical dogfight, whose importance is still recognized, maneuverability is
the prime objective. Here, the normal acceleration, nz, or the pitch rate, q, make
up suitable controlled variables in the longitudinal direction, see Figure 2.2. nz,
also known as the load factor, is the acceleration experienced by the pilot directed
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xb

yb

zb

xs

xw

VT

α

β
ps

Figure 2.3 Lateral control objectives and coordinate systems definitions.
In the figure, α and β are both positive.

along his spine. It is expressed as a multiple of the gravitational acceleration,
g. nz is closely coupled to the angle of attack, α, which appears naturally in
the equations describing the aircraft dynamics, see Section 2.4. Therefore, angle
of attack command control designs are also common, in particular for nonlinear
approaches.

In the lateral direction, roll rate and sideslip command control systems are
prevalent. The sideslip angle, β, is depicted in Figure 2.3. Typically, β = 0 is
desired so that the aircraft is flying “straight into the wind” with a zero velocity
component along the body y-axis, yb. However, there are occasions where a certain
sideslip is necessary, e.g., when landing the aircraft in the presence of side wind.

For the roll rate command system, a choice must be made regarding which axis
to roll about, see Figure 2.3. Let us first consider the perhaps most obvious choice,
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Canard wings, δc

Leading-edge flaps

Rudder, δr

TVC

Elevons, δe

Figure 2.4 A modern fighter aircraft configuration.

namely the body x-axis, xb. Considering a 90 degrees roll, we realize that the initial
angle of attack will turn into pure sideslip at the end of the roll and vice versa.
At high angles of attack this is not tolerable, since the largest acceptable amount
of sideslip during a roll is in the order of 3–5 degrees [14]. To remove this effect,
we could instead roll about the wind x-axis, xw. Then α and β remain unchanged
during a roll. This is known as a velocity-vector roll. With the usual assumption
that a roll is performed at zero sideslip, this is equivalent to a stability-axis roll,
performed about the stability x-axis, xs. In this case, the angular velocity ps is the
variable to control.

There also exist situations where other control objectives are of interest. Au-
topilot functions like altitude, heading, and speed hold are vital to assist the pilot
during long distance flight. For firing on-board weapons, the orientation of the
aircraft is crucial. To benefit from the drag reduction that can be accomplished
during close formation flight, the position of the wingman relative to the leader
must be controlled precisely, preferably automatically to relieve the workload of
the wingman pilot [26]. Also, to automate landing the aircraft it may be of interest
to control its descent through the flight path angle, γ, see Figure 2.7.
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2.3 Control Means

To accomplish the control tasks of the previous section, the aircraft must be
equipped with actuators providing ways to control the different motions. Figure
2.4 shows a modern fighter aircraft configuration.

Pitch control, i.e., control of the longitudinal motion, is provided by deflecting
the elevons and the canard wings symmetrically (right and left control surfaces
deflect in the same direction). Conversely, roll control is provided by deflecting the
elevons, and possibly also the canard wings, differentially (right and left control
surfaces deflect in the opposite directions). Therefore, it is natural to introduce
the control inputs

δes =
δlefte + δrighte

2
symmetrical elevon deflection

δed =
δlefte − δrighte

2
differential elevon deflection

δcs =
δleftc + δrightc

2
symmetrical canard deflection

δcd =
δleftc − δrightc

2
differential canard deflection

Yaw control, i.e., control of the rotation about the body z-axis, is provided by the
rudder. The leading-edge flaps can be used, e.g., to minimize the drag.

Recently, the interest in high angle of attack flight has led to the invention of
thrust vectored control (TVC). Deflectable vanes are then mounted at the engine
exhaust so that the engine thrust can be directed to produce a force in some desired
direction. The NASA High Angle-of-Attack Research Vehicle (HARV) [30] uses this
technology.

When convenient, we will let δ represent all the above control surface deflections.
Finally, the aircraft speed, or rather the engine thrust force, is governed by the
engine throttle setting.

2.4 Aircraft Dynamics

We now turn to the aircraft dynamics, and present the governing equations that tie
the variables to be controlled to the control inputs available to us. The presentation,
based on the books by Stevens and Lewis [74] and Boiffier [7], is focused on arriving
at a model suitable for control design, consisting of a set of first order differential
equations. For a deeper insight into the mechanics and aerodynamics behind the
model, the reader is referred to the aforementioned books or, e.g., Etkin and Reid
[16], McLean [54], or Nelson [57].
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2.4.1 Governing physics

We will use the assumptions that Earth is flat and fixed, and that the aircraft body
is rigid (as opposed to flexible). This yields a 6 degrees of freedom model (rotation
and translation in 3 dimensions). The dynamics can be described by a state space
model with 12 states consisting of

• p =
(
pN pE h

)T , the aircraft position expressed in an Earth-fixed coordi-
nate system;

• V =
(
u v w

)T , the velocity vector expressed in the body-axis coordinate
system;

• Φ =
(
φ θ ψ

)T , the Euler angles describing the orientation of the aircraft
relative to the Earth-fixed coordinate system;

• ω =
(
p q r

)T , the angular velocity of the aircraft expressed in the body-
axes coordinate system.

The task of controlling the aircraft position p is typically left entirely to the pilot,
formation flight being a possible exception. The only coupling from p to the other
state variables is through the altitude dependence of the aerodynamic pressure
(2.4). Since the altitude varies slower than the rest of the variables, it can be
regarded as a constant during the control design. Therefore the position dynamics
will be left out here.

The equations governing the remaining three state vectors can be compactly
written as

F = m(V̇ + ω ×V) force equation (2.1)
M = Iω̇ + ω × Iω moment equation (2.2)

Φ̇ = E(Φ)ω attitude equation (2.3)

where

E(Φ) =

1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sin θ/ cos θ cosφ/ cos θ


m is the aircraft mass and I is the aircraft inertial matrix. The force and moment
equations follow from applying Newton’s second law and the attitude equation
spurs from the relation between the Earth-fixed and the body-fixed coordinate
systems.

F and M represent the sum of the forces and moments, respectively, acting on
the aircraft at the center of gravity. These forces and moments spring from three
major sources, namely
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• gravity,

• engine thrust, and

• aerodynamic efforts.

Introducing

F = FG + FE + FA
M = ME + MA

we will now investigate each of these components and express them in the body-
fixed coordinate system.

Gravity

Gravity only gives a force contribution since it acts at the aircraft center of grav-
ity. The gravitational force, mg, directed along the normal of the Earth plane, is
considered constant over the altitude envelope. This yields

FG = mg

 − sin θ
sinφ cos θ
cosφ cos θ


Engine thrust

The thrust force produced by the engine is denoted by FT . Assuming the engine
to be positioned so that the thrust acts parallel to the aircraft body x-axis (not
using TVC) yields

FE =

FT0
0


Also assuming the engine to be mounted so that the thrust point lies in the body-
axes xz-plane, offset from the center of gravity by ZTP in the body-axes z-direction
results in

ME =

 0
FTZTP

0


Aerodynamic efforts

The aerodynamic forces and moments, or the aerodynamic efforts for short, are
due to the interaction between the aircraft body and the incoming airflow. The
size and direction of the aerodynamic efforts are determined by the amount of air
diverted by the aircraft in different directions (see [3] for an enlightening discussion
on various explanations to aerodynamic lift). The amount of air diverted by the
aircraft is mainly decided by
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• the speed and density of the airflow (VT , ρ);

• the geometry of the aircraft (δ, S, c̄, b);

• the orientation of the aircraft relative to the airflow (α, β).

The aerodynamic efforts also depend on other variables, like the angular rates (p,
q, r) and the time derivatives of the aerodynamic angles (α̇, β̇), but these effects
are not as prominent.

This motivates the standard way of modeling aerodynamic forces and moments:

Force = q̄SCF (δ, α, β, p, q, r, α̇, β̇,M, . . . )

Moment = q̄SlCM (δ, α, β, p, q, r, α̇, β̇,M, . . . )

The aerodynamic pressure,

q̄ =
1
2
ρ(h)V 2

T (2.4)

captures the density dependence and most of the speed dependence, S is the aircraft
wing area, and l refers to the length of the lever arm connected to the moment.
CF and CM are known as aerodynamic coefficients. These are difficult to model
analytically but can be estimated empirically through wind tunnel experiments
and actual flight tests. Typically, each coefficient is written as the sum of several
components, each capturing the dependence of one or more of the variables above.
These components can be represented in several ways. A common approach is to
store them in look-up tables and use interpolation to compute intermediate values.
In other approaches one tries to fit the data to some parameterized function.

In the body-axes coordinate system, we have the expressions

FA =

XȲ
Z

 where
X = q̄SCx

Ȳ = q̄SCy

Z = q̄SCz

MA =

 L̄

M

N

 where
L̄ = q̄SbCl rolling moment
M = q̄Sc̄Cm pitching moment
N = q̄SbCn yawing moment

These are illustrated in Figure 2.5. The aerodynamic forces are also commonly
expressed in the wind-axes coordinate system (related to the body-fixed coordinate
system as indicated in Figure 2.3) where we have that

FA,w =

−DY
−L

 where
D = q̄SCD drag force
Y = q̄SCY side force
L = q̄SCL lift force

(2.5)

where the lift and side force coefficient, CL and CY , mainly depend on α and β
respectively.
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X

Ȳ

Z

L̄

M

N

Figure 2.5 Aerodynamics forces and moments in the body-axes coordinate
system.

Essentially, only the aerodynamic moments are affected when a control surface
is deflected. This is a key feature without which some nonlinear control design
methods, including backstepping and dynamic inversion, would not be applicable.
Figure 2.6 shows the lift force and pitching moment coefficients, CL and Cm, as
functions of angle of attack and symmetrical elevon deflection. The aerodata comes
from the HIRM model [56].

In Section 2.2, the normal acceleration nz was introduced. We now have the
setup to define nz more precisely and find its relationship to α. We have that

nz = − Z

mg
= − q̄SCz(δ, α, β, . . . )

mg

Given an nz command, the above equation can be used to solve for a corresponding
α command.

2.4.2 Modeling for control

We will now collect the equations from the previous section and write the result in a
form suitable for control design, namely as a system of first order scalar differential
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Figure 2.6 The aerodynamic coefficients CL and Cm as functions of α
and δes. In the lower figures, the shaded area represents the
dependence on δes. Apparently, elevon deflections primarily
produce aerodynamic moments rather than forces.
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equations. Expanding Equations (2.1)–(2.3) yields

'

&

$

%

Force equations (body-axes)

u̇ = rv − qw − g sin θ +
1
m

(X + FT )

v̇ = pw − ru + g sinφ cos θ +
1
m
Ȳ

ẇ = qu− pv + g cosφ cos θ +
1
m
Z

Moment equations (body-axes)
ṗ = (c1r + c2p)q + c3L̄+ c4N (2.6a)

q̇ = c5pr − c6(p2 − r2) + c7(M + FTZTP ) (2.6b)
ṙ = (c8p− c2r)q + c4L̄+ c9N (2.6c)

Attitude equations (body-axes)

φ̇ = p+ tan θ(q sinφ+ r cos θ)

θ̇ = q cosφ− r sinφ

ψ̇ =
q sinφ+ r cosφ

cos θ

Here we have introduced

Γc1 = (Iy − Iz)Iz − I2
xz Γc2 = (Ix − Iy + Iz)Ixz Γc3 = Iz

Γc4 = Ixz c5 =
Iz − Ix
Iy

c6 =
Ixz
Iy

c7 =
1
Iy

Γc8 = Ix(Ix − Iy) + I2
xz Γc9 = Ix

where

I =

 Ix 0 −Ixz
0 Iy 0
−Ixz 0 Iz

 , Γ = IxIz − I2
xz

In Section 2.2, α, β, and VT were mentioned as suitable controlled variables.
We can rewrite the force equations in terms of these variables by performing the
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following change of variables:

VT =
√
u2 + v2 + w2

α = arctan
w

u

β = arcsin
v

VT

This gives us'

&

$

%

Force equations (wind-axes)

V̇T =
1
m

(−D + FT cosα cosβ +mg1) (2.7a)

α̇ = q − (p cosα+ r sinα) tanβ +
1

mVT cosβ
(−L− FT sinα+mg2) (2.7b)

β̇ = p sinα− r cosα+
1

mVT
(Y − FT cosα sinβ +mg3) (2.7c)

where the contributions due to gravity are given by

g1 = g(− cosα cosβ sin θ + sinβ cos θ sinφ+ sinα cosβ cos θ cosφ)
g2 = g(cosα cos θ cosφ+ sinα sin θ)
g3 = g(cosβ cos θ sinφ+ sinβ cosα sin θ − sinα sinβ cos θ cosφ)

(2.8)

See Appendix 2.A for a complete derivation. A pleasant effect of this reformulation
is that the nonlinear aerodynamic forces L and Y mainly depend on α and β,
respectively. This fact will be used for control design using backstepping.

A very common approach to flight control design is to control longitudinal
motions (motions in the body xz-plane) and lateral motions (all other motions)
separately. With no lateral motions, the longitudinal equations of motion become'

&

$

%

Longitudinal equations

V̇T =
1
m

(−D + FT cosα−mg sin γ) (2.9a)

α̇ = q +
1

mVT
(−L− FT sinα+mg cos γ) (2.9b)

θ̇ = q (2.9c)

q̇ =
1
Iy

(M + FTZTP ) (2.9d)

Here, γ = θ − α is the flight path angle determining the direction of the velocity
vector, as depicted in Figure 2.7.
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θ

Figure 2.7 Illustration of the longitudinal aircraft entities.

2.5 Current Approaches to Flight Control Design

In this section we survey some of the proposed design schemes with the emphasis
on nonlinear control designs. Flight control design surveys can also be found in
Magni et al. [53] and Huang and Knowles [35].

2.5.1 Gain-scheduling

The prevailing flight control design methodology of today is based on gain-scheduling.
The flight envelope that one wants to conquer is partitioned into smaller regions.
For each region, a steady state operating point is chosen around which the dynam-
ics are linearized. Linear control tools can then be used to design one control law
for each operating point. Between the operating points, the controllers are blended
together using gain-scheduling to make the transitions between different regions
smooth and transparent to the pilot.

Dynamic pressure or Mach number and altitude together are typical scheduling
variables. Note that if the closed loop behavior is designed to be the same through-
out the envelope, gain-scheduling can be seen as a way of cancelling the nonlinear
behavior due to variations in the scheduling variables. However, the nonlinear ef-
fects due to high angles of attack or high angular rates are not dealt with. Whether
or not closed loop stability holds when the aircraft state is far from the operating
point at which the linearization was performed, depends on the robustness of the
control design.

Let us summarize the pros and cons of gain-scheduling.
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+ Using several linear models to describe the aircraft dynamics allows the con-
trol designer to utilize all the classical tools for control design and robustness
and disturbance analysis.

+ The methodology has proven to work well in practice. The Swedish fighter
JAS 39 Gripen [63] is a “flying proof” of its success.

− The outlined divide-and-conquer approach is rather tedious since for each
region, a controller must be designed. The number of regions may be over
50.

− Only the nonlinear system behavior in speed and altitude is considered. Sta-
bility is therefore guaranteed only for low angles of attack and low angular
rates.

2.5.2 Dynamic inversion (feedback linearization)

The idea behind gain-scheduling was to provide the pilot with a similar aircraft
response irrespectively of the aircraft speed and altitude. This philosophy is even
more pronounced in nonlinear dynamic inversion (NDI), which is the term used
in the aircraft community for what is known as feedback linearization in control
theory. In this thesis, we only deal with feedback linearization through examples
and intuitive explanations. For an introduction to feedback linearization theory,
the reader is referred to, e.g., Slotine and Li [70] or Isidori [36].

Using dynamic inversion, as the name implies, the natural aircraft dynamics are
“inverted” and replaced by the desired linear ones through the wonders of feedback.
This includes the nonlinear behavior in speed and altitude as well as the nonlinear
effects at high angles of attack and high angular rates.

To make things more concrete, consider the simplified angle of attack dynamics
(cf. (2.9b), (2.9d))

α̇ = q − 1
mVT

L(α) (2.10a)

q̇ =
1
Iy
M(δ, α, q) (2.10b)

The speed is assumed to vary much slower than α and q so that V̇T ≈ 0 is a good
approximation. Now, introduce

z = q − 1
mVT

L(α) (2.11)

and compute ż:

ż =
1
Iy
M(δ, α, q)− 1

mVT
L′(α)z
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NDI
(2.12)
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change

α, z
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Figure 2.8 Illustration of a dynamic inversion control law. The inner feed-
back loop cancels the nonlinear dynamics making the dashed
box a linear system, which is controlled by the outer feedback
loop.

Introducing

u =
1
Iy
M(δ, α, q)− 1

mVT
L′(α)z (2.12)

we can now rewrite (2.10) as a chain of two integrators:

α̇ = z

ż = u

Through this transformation, we have cast a nonlinear control problem onto a
linear one. Again, linear control tools can be used to find a control law

u = k0α
ref −

(
k1 k2

)(α
z

)
(2.13)

giving a satisfactory response from the commanded value αref to α. Using (2.11)
and (2.12) we can solve for the true control input δ, given that (2.12) is invertible
w.r.t. δ. Invertability is lost, e.g., when the control surfaces saturate.

Equation (2.12) can be interpreted as an inner control loop cancelling the non-
linear behavior while (2.13) is an outer control loop providing the system with the
desired closed loop characteristics, see Figure 2.8.

There exists a large number of publications devoted to flight control design
using feedback linearization. The 1988 paper of Lane and Stengel [48] is an early
contribution on the subject containing designs for various control objectives.

Enns et al. [15] outline dynamic inversion as the successor to gain-scheduling
as the prevailing design paradigm. This bold statement is supported by discus-
sions regarding the ability to deal with, e.g., handling quality specifications, distur-
bance attenuation, robustness, and control surface allocation in a dynamic inversion
framework.
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Robustness analysis has often been pointed out as the Achilles’ heel of dynamic
inversion. Dynamic inversion relies on the complete knowledge of the nonlinear
plant dynamics. This includes knowledge of the aerodynamic efforts, which in
practice comes with an uncertainty in the order of 10%. What happens if the true
nonlinearities are not completely cancelled by the controller? [78] contains some
results regarding this issue.

One way of enhancing the robustness is to reduce the control law dependence on
the aerodynamic coefficients. Note that computing δ from (2.12) requires knowl-
edge of the aerodynamic coefficients Cm and CL as well as dCL/dα (recall from
(2.5) that L = q̄SCL). Snell et al. [71] propose a dynamic inversion design which
does not involve dCL/dα, thus making the design more robust. The idea is to use
time-scale separation and design separate controllers for the α- and q-subsystems
of (2.10). Inspired by singular perturbation theory [42] and cascaded control de-
sign, the system is considered to consist of slow dynamics (2.10a) and fast dynamics
(2.10b). First, the slow dynamics are controlled. Assume the desired slow dynamics
to be

α̇ = −k1(α− αref), k1 > 0

Then the angle of attack command αref can be mapped onto a pitch rate command

qref = −k1(α− αref) +
1

mVT
L(α) (2.14)

We now turn to the fast dynamics and determine a control law rendering the fast
dynamics

q̇ = −k2(q − qref), k2 > 0

This can be achieved by solving

1
Iy
M(δ, α, q) = −k2(q − qref) = −k2(q + k1(α − αref)− 1

mVT
L(α)) (2.15)

for δ, which obviously only requires knowledge of Cm and CL. The controller
structure is shown in Figure 2.9.

The remaining question to be answered is whether this time-scale separation
approach indeed is valid – is the closed loop system guaranteed to be stable? Snell
et al. [71] use linear pole placement arguments to confirm stability. Interestingly
enough, in Section 5.1.3 we will show that the above design is a special case of a
general backstepping design, and stability can be shown using Lyapunov theory. We
also show that using backstepping, the knowledge of the aerodynamic coefficients
required to guarantee stability can be further reduced.

Further efforts to robustify a dynamic inversion design against model errors can
be found in Adams et al. [1] and Reiner et al. [60, 61]. Here, the idea is to enhance
robustness by using a µ synthesis controller in the outer, linear loop in Figure 2.8.

Let us summarize the pros and cons of dynamic inversion.
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αref Outer ctl.
(2.14)

qref Inner ctl.
(2.15)

δ q̇ = . . .

(2.10b)

q α̇ = . . .

(2.10a)

α

Figure 2.9 Cascaded dynamic inversion control design based on time-scale
separation.

+ One single controller is used throughout the whole flight regime.

+ Stability is guaranteed even for high angles of attack, provided that the model
is accurate at those angles.

+ Closed loop performance can be tuned using linear tools.

− Dynamic inversion relies on precise knowledge of the aerodynamic coefficients
to completely cancel the nonlinear dynamics.

2.5.3 Other nonlinear approaches

In addition to dynamic inversion, many other nonlinear approaches have been ap-
plied to flight control design. Garrard et al. [23] formulate the angle of attack con-
trol problem as a linear quadratic optimization problem. As their aircraft model
is nonlinear, in order to capture the behavior at high angles of attack, the arising
Hamilton-Jacobi-Bellman equation is difficult to solve exactly. The authors settle
for a truncated solution to the HJB equation.

Mudge and Patton [55] consider the problem of pitch pointing, where the ob-
jective is to command the pitch angle θ while the flight path angle γ remains
unchanged. Eigenstructure assignment is used to achieve the desired decoupling
and sliding mode behavior is added for enhanced robustness.

Other approaches deal with the problem of tracking a reference signal, whose
future values are also known. Lévine [50] shows that an aircraft is differentially flat
if the outputs are properly chosen. This is used to design an autopilot for making
the aircraft follow a given trajectory.

Hauser and Jadbabaie [31] design receding horizon control laws for unmanned
combat aerial vehicles performing aggressive maneuvers. Over a receding horizon,
the aircraft trajectory following properties are optimized on-line. The control laws
are implemented and evaluated using the ducted fan at Caltech.



Appendix

2.A Wind-axes Force Equations

This appendix contains the details of the conversion of the aircraft force equation
from the body-axes to the wind-axes coordinate system. The result is a standard
one, but the derivation, which establishes the relationship between the forces used
in the two different representations, is rarely found in textbooks on flight control.

The body-axes force equations are

u̇ = rv − qw − g sin θ +
1
m

(X + FT )

v̇ = pw − ru + g sinφ cos θ +
1
m
Ȳ

ẇ = qu− pv + g cosφ cos θ +
1
m
Z

The relation between the variables used in the two coordinate systems is given by

α = arctan
w

u

β = arcsin
v

VT

VT =
√
u2 + v2 + w2

⇐⇒
u = VT cosα cosβ
v = VT sinβ
w = VT sinα cosβ

Differentiating we get

V̇T =
uu̇+ vv̇ + wẇ

VT
=

1
VT

(
u(rv − qw − g sin θ +

1
m

(X + FT ))

+ v(pw − ru + g sinφ cos θ +
1
m
Ȳ ) + w(qu − pv + g cosφ cos θ +

1
m
Z)
)

= g(− cosα cosβ sin θ + sinβ sinφ cos θ + sinα cosβ cosφ cos θ)︸ ︷︷ ︸
g1

+
1
m

(FT cosα cosβ +X cosα cosβ + Ȳ sinβ + Z sinα cosβ︸ ︷︷ ︸
−D

)

25
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α̇ =
uẇ − wu̇
u2 + w2

=
VT cosβ(ẇ cosα− u̇ sinα)

V 2
T cos2 β

=
1

VT cosβ
(
(qVT cosα cosβ − pVT sinβ + g cosφ cos θ +

1
m
Z) cosα

− (rVT sinβ − qVT sinα cosβ − g sin θ +
1
m

(X + FT )) sinα
)

= q − tanβ(p cosα+ r sinα)

+
1

mVT cosβ
(mg(cosα cosφ cos θ − sinα sin θ)︸ ︷︷ ︸

g2

−FT sinα+ Z cosα−X sinα︸ ︷︷ ︸
−L

)

β̇ =
v̇VT − vV̇T
V 2
T cosβ

=
v̇(u2 + w2)− v(uu̇+ wẇ)

V 3
T cosβ

=
v̇V 2

T cos2 β − V 2
T sinβ cosβ(u̇ cosα+ ẇ sinα)

V 3
T cosβ

=
1
VT

((pw − ru + g sinφ cos θ +
1
m
Ȳ ) cosβ

− (rv − qw − g sin θ +
1
m

(X + FT )) cosα sinβ

− (qu− pv + g cosφ cos θ +
1
m
Z) sinα sinβ)

= p(sinα cos2 β + sinα sin2 β︸ ︷︷ ︸
sinα

)− r(cosα cos2 β + cosα sin2 β︸ ︷︷ ︸
cosα

)

+
1

mVT
(mg(cosβ sinφ cos θ + cosα sinβ sin θ − sinα sinβ cosφ cos θ)︸ ︷︷ ︸

g3

− FT cosα sinβ−X cosα sinβ + Ȳ cosβ − Z sinα sinβ︸ ︷︷ ︸
Y

)

Summing up, we have the following transformed system of equations.

V̇T =
1
m

(−D + FT cosα cosβ +mg1)

α̇ = q − tanβ(p cosα+ r sinα) +
1

mVT cosβ
(−L− FT sinα+mg2)

β̇ = p sinα− r cosα+
1

mVT
(Y − FT cosα sinβ +mg3)

The orientation dependent gravitational components are

g1 = g(− cosα cosβ sin θ + sinβ cos θ sinφ+ sinα cosβ cos θ cosφ)
g2 = g(cosα cos θ cosφ+ sinα sin θ)
g3 = g(cosβ cos θ sinφ+ sinβ cosα sin θ − sinα sinβ cos θ cosφ)
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The relationship between the aerodynamic forces expressed in the two coordinate
systems is given by

D = −X cosα cosβ − Ȳ sinβ − Z sinα cosβ
L = X sinα− Z cosα
Y = −X cosα sinβ + Ȳ cosβ − Z sinα sinβ

These equations are relevant since often the available aerodata relates to the body-
axes system while it is the wind-axes forces that appear in the control laws.
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3

Backstepping

Lyapunov theory has for a long time been an important tool in linear as well as
nonlinear control. However, its use within nonlinear control has been hampered by
the difficulties to find a Lyapunov function for a given system. If one can be found,
the system is known to be stable, but the task of finding such a function has often
been left to the imagination and experience of the designer.

The invention of constructive tools for nonlinear control design based on Lya-
punov theory, like backstepping and forwarding, has therefore been received with
open arms by the control community. Here, a control law stabilizing the system is
derived along with a Lyapunov function to prove the stability.

In this chapter, backstepping is presented with the focus on designing state
feedback laws. Sections 3.1 and 3.2 contain mathematical preliminaries. Section
3.3 is the core of the chapter where the main backstepping result is presented along
with a discussion on the class of systems to which it applies and which choices
are left to the designer. In Section 3.4, some related design methods based on
Lyapunov theory are outlined, and in Section 3.5 we survey applications to which
backstepping has been applied.

29
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3.1 Lyapunov Theory

A basic requirement on a controlled system is that it should end up at the desired
equilibrium without taking a too big detour getting there. Let us formalize this
requirement in terms of the properties of the desired equilibrium, following Slotine
and Li [70].

Definition 3.1 (Lyapunov stability)
Consider the time-invariant system

ẋ = f(x) (3.1)

starting at the initial state x(0). Assume xe to be an equilibrium point of the
system, i.e., f(xe) = 0. We say that the equilibrium point is

• stable, if for each ε > 0 there exists δ(ε) > 0 such that

‖x(0)− xe‖ < δ ⇒ ‖x(t)− xe‖ < ε for all t ≥ 0

• unstable, if it is not stable;

• asymptotically stable, if it is stable and in addition there exists r > 0 such
that

‖x(0)− xe‖ < r⇒ x(t)→ xe as t→∞

• globally asymptotically stable (GAS), if it is asymptotically stable for all initial
states.

�

Global asymptotic stability (GAS) is what we will strive towards in our control
design. We will refer to a control law that yields GAS as globally stabilizing,
dropping the word “asymptotically” for convenience.

How can we show a certain type of stability? The definitions above involve
x(t), the explicit solution to (3.1), which in general cannot be found analytically.
Fortunately there are other ways of proving stability.

The Russian mathematician and engineer A. M. Lyapunov came up with the
idea of condensing the state vector x(t) into a scalar function V (x), measuring how
far from the equilibrium the system is. V (x) can be thought of as representing the
energy contained in the system. If V (x) can be shown to continuously decrease,
then the system itself must be moving towards the equilibrium.

This approach to showing stability is called Lyapunov’s direct method (or sec-
ond method) and can be found in any introductory textbook on nonlinear control
such as those by Slotine and Li [70], Khalil [40], Isidori [36], and Vidyasagar [76].
Lyapunov’s original work can be found in [52]. Let us first introduce some useful
definitions.
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Definition 3.2
A scalar function V (x) is said to be

• positive definite if V (0) = 0 and

V (x) > 0, x 6= 0

• positive semidefinite if V (0) = 0 and

V (x) ≥ 0, x 6= 0

• negative (semi-)definite if −V (x) is positive (semi-)definite

• radially unbounded if

V (x)→∞ as ‖x‖ → ∞

�

We now state our main theorem for proving stability.

Theorem 3.1 (LaSalle-Yoshizawa)
Let x = 0 be an equilibrium point for (3.1). Let V (x) be a scalar, continously
differentiable function of the state x such that

• V (x) is positive definite

• V (x) is radially unbounded

• V̇ (x) = Vx(x)f(x) ≤ −W (x) where W (x) is positive semidefinite

Then, all solutions of (3.1) satisfy

lim
t→∞

W (x(t)) = 0

In addition, if W (x) is positive definite, then the equilibrium x = 0 is GAS.

Proof See Krstić et al. [46]. �

For showing stability when V̇ (x) is only negative semidefinite, the following
corollary due to LaSalle is useful.

Corollary 3.1
Let x = 0 be the only equilibrium point for (3.1). Let V (x) be a scalar, continously
differentiable function of the state x such that

• V (x) is positive definite

• V (x) is radially unbounded
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• V̇ (x) is negative semidefinite

Let E = {x : V̇ (x) = 0} and suppose that no other solution than x(t) ≡ 0 can stay
forever in E. Then x = 0 is GAS.

Proof See Krstić et al. [46]. �

Note that these results are non-constructive, in the sense that they give no clue
about how to find a V satisfying the conditions necessary to conclude GAS. We
will refer to a function V (x) satisfying the itemized conditions in Theorem 3.1 as
a Lyapunov function for the system.

3.2 Lyapunov Based Control Design

Let us now add a control input and consider the system

ẋ = f(x, u) (3.2)

Given the stability results from the previous section, it would be nice if we could
find a control law

u = k(x)

so that the desired state of the closed loop system

ẋ = f(x, k(x))

becomes a globally asymptotically stable equilibrium point. For simplicity, we will
assume the origin to be the goal state. This can always be achieved through a
suitable change of coordinates.

A straightforward approach to finding k(x) is to construct a positive definite,
radially unbounded function V (x) and then choose k(x) such that

V̇ = Vx(x)f(x, k(x)) = −W (x) (3.3)

where W (x) is positive definite. Then closed loop stability follows from Theorem
3.1. For this approach to succeed, V and W must have been carefully selected, or
(3.3) will not be solvable. This motivates the following definition:

Definition 3.3 (Control Lyapunov function (clf))
A smooth, positive definite, radially unbounded function V (x) is called a control
Lyapunov function (clf) for (3.2) if for all x 6= 0,

V̇ = Vx(x)f(x, u) < 0 for some u

�
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Given a clf for the system, we can thus find a globally stabilizing control law. In
fact, the existence of a globally stabilizing control law is equivalent to the existence
of a clf. This means that for each globally stabilizing control law, a corresponding
clf can be found, and vice versa. This is known as Artstein’s theorem [4].

If a clf is known, a particular choice of k(x) is given by Sontag’s formula [72]
reproduced in (3.5). For a system which is affine in the control input

ẋ = f(x) + g(x)u (3.4)

we can select

u = k(x) = −a+
√
a2 + b2

b
(3.5)

where

a = Vx(x)f(x)
b = Vx(x)g(x)

This yields

V̇ = Vx(x)
(
f(x) + g(x)u

)
= a+ b

(
−a+

√
a2 + b2

b

)
= −

√
a2 + b2 (3.6)

and thus renders the origin GAS.
A closely related approach is the one by Freeman and Primbs [22] where u is

chosen to minimize the control effort necessary to satisfy

V̇ ≤ −W (x)

for some W . The minimization is carried out pointwise in time (and not over some
horizon). Using an inequality constraint rather than asking for equality (as in
(3.6)) makes it possible to benefit from the system’s inherent stability properties.
If f(x) alone drives the system (3.4) towards the equilibrium such that

V̇ |u=0 = Vx(x)f(x) < −W (x)

it would be a waste of control effort to achieve V̇ = −W (x).

3.3 Backstepping

The control designs of the previous section rely on the knowledge of a control
Lyapunov function for the system. But how do we find such a function?

Backstepping answers this question in a recursive manner for a certain class
of nonlinear systems which show a lower triangular structure. We will first state
the main result and then deal with user related issues like which systems can be
handled using backstepping, which design choices there are and how they affect the
resulting control law.



34 Backstepping

3.3.1 Main result

This result is standard today and can be found in, e.g, Sepulchre et al. [66] or
Krstić et al. [46].

Proposition 3.1 (Backstepping)
Consider the system

ẋ = f(x, ξ) (3.7a)

ξ̇ = u (3.7b)

where x ∈ Rn, ξ ∈ R are state variables and u ∈ R is the control input.
Assume that for the subsystem (3.7a), a virtual control law

ξ = ξdes(x) (3.8)

is known such that 0 is a GAS equilibrium of (3.7a). Let W (x) be a clf for (3.7a)
such that

Ẇ |ξ=ξdes = Wx(x)f(x, ξdes(x)) < 0, x 6= 0

Then, a clf for the augmented system (3.7) is given by

V (x, ξ) = W (x) +
1
2
(
ξ − ξdes(x)

)2
(3.9)

Moreover, a globally stabilizing control law, satisfying

V̇ = Wx(x)f(x, ξdes(x)) −
(
ξ − ξdes(x)

)2
is given by

u =
∂ξdes(x)
∂x

f(x, ξ) −Wx(x)
f(x, ξ) − f(x, ξdes(x))

ξ − ξdes(x)
+ ξdes(x)− ξ (3.10)

Before presenting the proof, it is worth pointing out that (3.10) is neither the
only nor necessarily the best globally stabilizing control law for (3.7). The value
of the proposition is that it shows the existence of at least one globally stabilizing
control law for this type of augmented systems.

Proof We will conduct the proof in a constructive manner to clarify which design choices
that can be made during the control law construction.

The key idea is to use the fact that we know how to stabilize the subsystem (3.7a) if we
were able to control ξ directly, namely by using (3.8). Therefore, introduce the residual

ξ̃ = ξ − ξdes(x)

By forcing ξ̃ to zero, ξ will tend to the desired value ξdes and the entire system will be
stabilized.



3.3 Backstepping 35

In terms of ξ̃, the system dynamics (3.7) become

ẋ = f(x, ξ̃ + ξdes(x)) , f(x, ξdes) + ψ(x, ξ̃)ξ̃ (3.11a)

˙̃ξ = u− ∂ξdes(x)

∂x
f(x, ξ̃ + ξdes(x)) (3.11b)

where

ψ(x, ξ̃) =
f(x, ξ̃ + ξdes(x))− f(x, ξdes(x))

ξ̃

In (3.11a) we have separated the desired dynamics from the dynamics due to ξ̃ 6= 0.

To find a clf for the augmented system it is natural to take the clf for the subsystem, W ,
and add a term penalizing the residual ξ̃. Let us select

V (x, ξ̃) = W (x) +
1

2
ξ̃2

and find a globally stabilizing control law by making V̇ negative definite.

V̇ = Wx(x)
[
f(x, ξdes(x)) + ψ(x, ξ̃)ξ̃

]
+ ξ̃
[
u− ∂ξdes(x)

∂x
f(x, ξ̃ + ξdes(x))

]
= Wx(x)f(x, ξdes(x)) + ξ̃

[
Wx(x)ψ(x, ξ̃) + u− ∂ξdes(x)

∂x
f(x, ξ̃ + ξdes(x))

] (3.12)

The first term is negative definite according to the assumptions. The second part, and
thereby V̇ , can be made negative definite by choosing

u = −Wx(x)ψ(x, ξ̃) +
∂ξdes(x)

∂x
f(x, ξ̃ + ξdes(x))− ξ̃

This yields

V̇ = Wx(x)f(x, ξdes(x))− ξ̃2

which proves the sought global asymptotic stability. �

The key idea in backstepping is to let certain states act as “virtual controls”
of others. The same idea can be found in cascaded control design and singular
perturbation theory [42].

The origin of backstepping is not quite clear due to its simultaneous and often
implicit appearance in several papers in the late 1980’s. However, it is fair to say
that backstepping has been brought into the spotlight to a great extent thanks to
the work of Professor Petar V. Kokotović and his coworkers.

The 1991 Bode lecture at the IEEE CDC, held by Kokotović [43], was devoted
to the evolving subject and in 1992, Kanellakopoulos et al. [39] presented a math-
ematical “toolkit” for designing control laws for various nonlinear systems using
backstepping. During the following years, the textbooks by Krstić et al. [46], Free-
man and Kokotović [21], and Sepulchre et al. [65] were published. The progress of
backstepping and other nonlinear control tools during the 1990’s were surveyed by
Kokotović [41] at the 1999 IFAC World Congress in Beijing.

Let us now deal with some issues related to practical control design using back-
stepping.



36 Backstepping

3.3.2 Which systems can be handled?

Input nonlinearities

An immediate extension of Proposition 3.1 is to allow for an input mapping to be
present in (3.7b):

ξ̇ = g(x, ξ, u) , ũ

ũ can now be selected according to (3.10) whereafter u can be found given that

g(x, ξ, u) = ũ

can be solved for u. If this is possible, we say that g is invertible w.r.t. u.

Feedback form systems

Also, we see that the system (3.7) can be further augmented. Assume that u is not
the actual control input to the system, but merely another state variable obeying
the dynamics

u̇ = v (3.13)

Then (3.10) becomes a virtual control law, which along with the clf (3.9) can be
used to find a globally stabilizing control law for (3.7) augmented by (3.13).

Now, either v is yet another state variable, in which case the backstepping
procedure is repeated once again, or v is indeed the control input, in which case
we are done.

Thus, by recursively applying backstepping, globally stabilizing control laws
can be constructed for systems of the following lower triangular form, known as
pure-feedback form systems:

ẋ = f(x, ξ1)

ξ̇1 = g1(x, ξ1, ξ2)
...

ξ̇i = gi(x, ξ1, . . . , ξi, ξi+1)
...

ξ̇m = gm(x, ξ1, . . . , ξm, u)

(3.14)

For the design to succeed, a globally stabilizing virtual control law, ξ1 = ξdes
1 (x),

along with a clf, must be known for the x subsystem. In addition, gi, i = 1, . . . ,m−
1 must be invertible w.r.t. ξi+1 and gm must be invertible w.r.t. u.
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Systems for which the “new” variables enter in an affine way, are known as
strict-feedback form systems:

ẋ = a(x) + b(x)ξ1

ξ̇1 = a1(x, ξ1) + b1(x, ξ1)ξ2
...

ξ̇i = ai(x, ξ1, . . . , ξi) + bi(x, ξ1, . . . , ξi)ξi+1

...

ξ̇m = am(x, ξ1, . . . , ξm) + bm(x, ξ1, . . . , ξm)u

Strict-feedback form systems are nice to deal with and often used for deriving
results related to backstepping. Firstly, the invertability condition imposed above
is satisfied given that bi 6= 0. Secondly, if (3.7a) is affine in ξ, the control law (3.10)
reduces to

u =
∂ξdes(x)
∂x

(a(x) + b(x)ξ) −Wx(x)b(x) + ξdes(x)− ξ

Dynamic backstepping

Even for certain systems which do not fit into a lower triangular feedback form,
there exist backstepping designs. Fontaine and Kokotović [18] consider a two di-
mensional system where both states are affected by the control input:

ẋ1 = ψ(x1) + x2 + φ(u)
ẋ2 = u

Their approach is to first design a globally stabilizing virtual control law for the
x1-subsystem, considering η = x2 + φ(u) as the input. Then backstepping is used
to convert this virtual control law into a realizable one in terms of u. Their design
results in a dynamic control law, and hence the term dynamic backstepping is used.

3.3.3 Which design choices are there?

The derivation of the backstepping control law (3.10) leaves a lot of room for
variations. Let us now exploit some of these.

Dealing with nonlinearities

A trademark of backstepping is that is allows us to benefit from “useful” nonlin-
earities, naturally stabilizing the system. This can be done by choosing the virtual
control laws properly. The following example demonstrates this fundamental dif-
ference to feedback linearization.
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Figure 3.1 The dynamics of the uncontrolled system ẋ = −x3 + x. The
linear term acts destabilizing around the origin.

Example 3.1 (A useful nonlinearity I)
Consider the system

ẋ = −x3 + x+ u

where x = 0 is the desired equilibrium. The uncontrolled dynamics, ẋ = −x3 +
x, are plotted in Figure 3.1. For the system to be stable, the sign of ẋ should be
opposite that of x for all x. This holds for large values of x where the cubic term
−x3 dominates the dynamics, but near the origin, the linear term x dominates
and destabilizes the system.
Thus, to make the origin GAS, only the linear dynamics need to be counteracted
by the control input. This can be achieved by selecting

u = −x (3.15)

A clf is given by

W =
1
2
x2 (3.16)
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which yields

Ẇ = −x(−x3 + x+ u) = −x4

proving the origin to be GAS according to Theorem 3.1.
Applying feedback linearization would have rendered the control law

u = x3 − kx, k > 1 (3.17)

Obviously, this control law does not recognize the beneficial cubic nonlinearity
but counteracts it, thus wasting control effort. Also, the feedback linearizing
design is dangerous from a robustness perspective – what if the true system
dynamics are ẋ = −0.9x3 + x+ u and (3.17) is applied...

Weighting the clf

When constructing the combined clf (3.9), we can choose any weighted sum of the
two terms,

V = cW +
1
2

(ξ − ξdes)2, c > 0

In our designs, we will use the weight c to cancel certain terms in Equation (3.12).
A technical hint is to put the weight on W since it yields nicer expressions.

Non-quadratic clf

Although quadratic clf:s are frequently used in backstepping, they do not always
make up the best choice as the following example demonstrates.

Example 3.2 (A useful nonlinearity II)
Consider the system in Example 3.1 augmented by an integrator:

ẋ1 = −x3
1 + x1 + x2

ẋ2 = u

To benefit from the useful nonlinearity −x3
1, let us reuse (3.15) as our virtual

control law, i.e.,

xdes
2 (x1) = −x1

As it turns out, the choice of clf for the x1-subsystem will strongly affect the
resulting control law. To see this we first reuse (3.16) and pick

W =
1
2
x2

1
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Introducing

x̃2 = x2 − xdes
2 (x1) = x2 + x1

we can rewrite the system as

ẋ1 = −x3
1 + x̃2

˙̃x2 = u− x3
1 + x̃2

Following the proof of Proposition 3.1, we add a quadratic term to W , to
penalize the deviation from the suggested virtual control law:

V (x1, x2) = W (x1) +
1
2
(
x2 − xdes

2 (x1)
)2 =

1
2
x2

1 +
1
2
x̃2

2

Differentiating w.r.t. time yields

V̇ = x1(−x3
1 + x̃2) + x̃2(u− x3

1 + x̃2)

= −x4
1 + x̃2(x1 + u− x3

1 + x̃2)

To render V̇ negative definite, u must clearly dominate the x̃2 term using a
control input of, e.g., −3x̃2. In addition, since the mixed terms between x1 and
x̃2 are indefinite, there seems to be no other choice than to cancel them using
the control law

u = x3
1 − x1 − 3x̃2 = x3

1 − 4x1 − 3x̃2

We note that this control law does not recognize the fact that x1-subsystem
is naturally stabilized for high values of x1 but instead counteracts this effect,
thereby wasting control effort.
So how should we pick W (x1) to avoid this cancellation? One idea is not to
specify the clf beforehand, but instead let the choice of W be decided by the
backstepping design. Thus, we let W be any function satisfying Definition 3.3.
As before, use

V (x1, x2) = W (x1) +
1
2
x̃2

2

and compute its time derivative.

V̇ = W ′(x1)(−x3
1 + x̃2) + x̃2(u − x3

1 + x̃2)

= −W ′(x1)x3
1 + x̃2(W ′(x1) + u− x3

1 + x̃2)

We now use our extended design freedom and select a W so that the indefinite
mixed terms cancel each other. This is satisfied by

W ′(x1) = x3
1, W (x1) =

1
4
x4

1
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which indeed is a valid choice. We now have

V̇ = −x6
1 + x̃2(u + x̃2)

Clearly, the control u no longer has to cancel the cubic x1 term but can be
chosen linear in x1 and x2.

u = −3x̃2 = −3x1 − 3x2

renders V̇ = −x6
1 − 2x̃2

2 negative definite and thus makes the origin GAS.

This refinement of backstepping is due to Krstić et al. [45]. The technique of
designing a non-quadratic clf will be used for flight control design in Chapter 5,
where some of the aerodynamic forces also have the property of being nonlinear
but still stabilizing.

Implicit residuals

In (3.9) the deviation from the desired virtual control law is penalized through the
difference ξ − ξdes(x). Another way of forcing ξ towards ξdes is to instead penalize
the implicit residual

α(ξ) − α(ξdes(x)) , α(ξ) − αdes(x)

where α(ξ) is an invertible and strictly monotone mapping. This leads to the clf

V (x, ξ) = W (x) +
1
2
(
α(ξ)− αdes(x)

)2
An equivalent way of reaching this clf is to replace ξ by α(ξ) in the system

description (3.7):

ẋ = g(x, α)
α̇ = α′(ξ)u

Here, g(x, α(ξ)) = f(x, ξ) has been introduced. Applying (3.10) now gives us

u =
1

α′(ξ)

[∂αdes(x)
∂x

g(x, α)−Wx(x)
g(x, α) − g(x, αdes(x))

α− αdes(x)
+ αdes(x)− α

]
(3.18)

Example 3.3
Consider the system

ẋ1 = x3
1 + x5

2 + x2

ẋ2 = u
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A clf for the x1-subsystem is given by W (x1) = 1
2x

2
1 which gives

Ẇ = x1(x3
1 + x5

2 + x2)

In terms of α = x5
2 +x2, a globally stabilizing virtual control law is easy to find.

Pick, e.g., αdes(x1) = −2x3
1 which yields Ẇ = −x4

1 negative definite. Inserting
this into (3.18) gives the control law

u =
1

5x4
2 + 1

[
−6x2

1(x3
1 + x5

2 + x2)− x1 − 2x3
1 − x5

2 − x2

]

In [2], this technique was used for speed control of a switched reluctance motor
where it was convenient to formulate the virtual control law in terms of the square
current i2.

Optimal backstepping

In linear control, one often seeks control laws that are optimal in some sense, due
to their ability to suppress external disturbances and to function despite model
errors, as in the case of H∞ and linear quadratic control [79].

It is therefore natural that efforts have been made to extend these designs to
nonlinear control. The difficulty lies in the Hamilton-Jacobi-Bellman equation that
needs to be solved in order to find the control law.

A way to surpass this problem is to only require the desired optimality to hold
locally around the origin, where the system can be approximated by its lineariza-
tion. In the global perspective, one settles for optimality according to some cost
functional that the designer cannot rule over precisely. This is known as inverse
optimality, which is the topic of Chapter 4.

Contributions along this line can be found for strict-feedback form systems.
Ezal et al. [17] use backstepping to construct controllers which are locally H∞-
optimal. Löfberg [51] designs backstepping controllers which are locally optimal
according to a linear quadratic performance index.

One advantage of using an optimality based approach is that the designer then
specifies an optimality criterion rather than virtual control laws and the clf:s them-
selves. This enhances the resemblance with linear control.

3.4 Related Lyapunov Designs

Besides state feedback backstepping, several other constructive nonlinear control
designs have been developed during the last decade. We will now outline some of
these.
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3.4.1 Forwarding

The backstepping philosophy applies to systems of the form (3.7). Another class
of nonlinear systems for which one can also construct globally stabilizing control
laws are those that can be written

ẋ = f(x, u) (3.19a)

ξ̇ = g(x, u) (3.19b)

A clf and a globally stabilizing control law for the x-subsystem (3.19a) are assumed
to be known. The question is how to augment this control law to also stabilize the
integrator state ξ in (3.19b). This problem, which can be seen as a dual to the one
in backstepping, can be solved using so called forwarding [67].

By combining feedback (3.7) and feedforward (3.19) systems, interlaced systems
can be constructed. Using backstepping in combination with forwarding, such
systems can also be systematically stabilized [66].

3.4.2 Adaptive, robust, and observer backstepping

So far we have only considered the case where all the state variables are available
for feedback and where the model is completely known. For the non-ideal cases
where this is not true, there are other flavors of backstepping to resort to.

For systems with parametric uncertainties, there exists adaptive backstepping
[46]. Here, a parameter estimate update law is designed such that closed loop
stability is guaranteed when the parameter estimate is used by the controller. In
Section 6.3 we will see how this technique can be used to estimate and cancel
unknown additive disturbances on the control input.

Robust backstepping [21] designs exist for systems with imperfect model infor-
mation. Here, the idea is to select a control law such that a Lyapunov function
decreases for all systems comprised by the given model uncertainty.

In cases where not all the state variables can be measured, the need for observers
arises. The separation principle valid for linear systems does not hold for nonlinear
systems in general. Therefore, care must be taken when designing the feedback law
based on the state estimates. This is the topic of observer backstepping [39, 46].

3.5 Applications of Backstepping

Although backstepping theory has a rather short history, numerous practical ap-
plications can be found in the literature. This fact indicates that the need for
a nonlinear design methodology handling a number of practical problems, as dis-
cussed in the previous section, has existed for a long time. We now survey some
publications regarding applied backstepping. This survey is by no means com-
plete, but is intended to show the broad spectrum of engineering disciplines in
which backstepping has been used.
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Backstepping designs can be found for a wide variety of electrical motors [2, 10,
11, 33, 34]. Turbocharged diesel engines are considered in [20, 37] while jet engines
are the subject of [45].

In [25, 75], backstepping is used for automatic ship positioning. In [75], the
controller is made locally H∞-optimal based on results in [17].

Robotics is another field where backstepping designs can be found. Tracking
control in considered in [38] and [9] where the latter is a survey of approaches valid
for various assumptions regarding the knowledge of the model.

There also exist a few papers, combining flight control and backstepping. [68]
treats formation flight control of unmanned aerial vehicles. [69] and [73] use back-
stepping to design flight control laws which are adaptive to changes in the aero-
dynamic forces and moments due to, e.g., actuator failures. Also, the Lyapunov
functions used contain a term penalizing the integral of the tracking error, enhanc-
ing the robustness.



4

Inverse Optimal Control

This chapter is preparatory for the upcoming control designs. The tools we develop
in this chapter will be used to show that the control laws derived in Chapter 5 each
minimize a certain cost functional. This route of first deriving a control law and
then determining which cost it minimizes, and thus in which sense it is optimal, is
known as inverse optimal control.

The material in this chapter will be presented in a rather intuitive manner.
A mathematically strict treatment of the subject can be found in, e.g., Sepulchre
et al. [65]. In Section 4.1 the general infinite horizon optimal control problem
is introduced. In Section 4.2, systems which are affine in the control input are
considered, and some standard inverse results are derived for cost functionals which
are quadratic in the input. Finally, the well known gain margin result of optimal
control is shown in Section 4.3.

4.1 Optimal Control

A general idea within control design is to select a control law which is optimal in
some sense. Given a dynamic system

ẋ = f(x, u)

45
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where x ∈ Rn is the state vector and u ∈ Rm is the control input, we seek the
control law u(x) that minimizes the cost functional

J =
∫ ∞

0

L(x, u)dt

By choosing L properly, the system is guaranteed to reach steady state as t→∞.
J , representing the cost to get there, the cost-to-go, will depend on the initial state
of the system, x(0). We therefore write this cost J(x).

The optimal control law is denoted by u∗(x). When this optimal control law is
applied, J(x) will decrease along the trajectory, since the cost-to-go must continu-
ously decrease by the principle of optimality [6]. This means that V (x) = J(x) is
a Lyapunov function for the controlled system. At steady state it must hold that
V = 0. Hence, the following holds:

V (x(0)) =
∫ ∞

0

L(x, u∗)dt = −
[
V (x(∞))︸ ︷︷ ︸

=0

−V (x(0))
]

= −
∫ ∞

0

V̇ (x)dt

Clearly, when the optimal control law is used, L and −V̇ coincide. This motivates
the Hamilton-Jacobi-Bellman (HJB) equation

0 = min
u

[
L(x, u) + Vx(x)f(x, u)

]
(4.1)

for finding the optimal control law u∗ along with a Lyapunov function V (x) for the
controlled system.

4.2 Inverse Optimal Control

It is well known that in general, it is not feasible to solve the HJB equation (4.1).
We therefore restrict our discussion to dynamic systems of the form

ẋ = f(x) + g(x)u (4.2)

For these systems, the HJB equation is greatly simplified if L is chosen quadratic
in u according to

L(x, u) = q(x) + uTR(x)u

where q(x) > 0, x 6= 0 and R(x) is symmetric matrix, positive definite for all x.
Inserting this into (4.1) yields

0 = min
u

[
q(x) + uTR(x)u + Vx(x)(f(x) + g(x)u)

]
(4.3)

The equation is solved in two steps. First we find the minimizing u, and then we
solve for equality to zero. The minimization can be done by completion of squares:

q + uTRu+ Vxf + Vxgu =

q + Vxf +
[
u+

1
2
R−1(Vxg)T

]T
R
[
u+

1
2
R−1(Vxg)T

]
− 1

4
VxgR

−1(Vxg)T
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The control input u only appears in the “square”, positive definite term. The
minimum therefore occurs when this term is set to zero, which is achieved by

u∗ = −k(x) = −1
2
R−1(Vxg)T (4.4)

What remains is to insert this control law into (4.3). This gives us

0 = q + Vxf −
1
4
VxgR

−1(Vxg)T (4.5)

Equations (4.4) and (4.5) provide the connection between the cost functional,
given by q(x) and R(x), and the optimal control strategy, in terms of k(x) and
V (x). As for the general problem in the previous section, it is in general not
feasible to solve for k(x) and V (x) given q(x) and R(x) of the designer’s choice.
However, we see that the reverse task is simpler. Given a control law k(x) and a clf
V (x) (corresponding to a Lyapunov function for the controlled system), q(x) and
R(x), determining the cost functional that is minimized, can be found by solving

k(x) =
1
2
R−1(x)(Vx(x)g(x))T (4.6)

q(x) = −Vx(x)f(x) +
1
2
Vx(x)g(x)k(x) (4.7)

For a single input system we can explicitly solve for R(x):

R(x) =
Vx(x)g(x)

2k(x)
(4.8)

Example 4.1 (Exploiting useful nonlinearities is optimal)
Let us return to the system considered in Example 3.2 and show that the derived
backstepping control law is indeed optimal w.r.t. a meaningful cost functional.
The original dynamics,

ẋ1 = −x3
1 + x1 + x2

ẋ2 = u

can be written in the form (4.2) with

f(x) =
(
−x3

1 + x1 + x2

0

)
, g(x) =

(
0
1

)
In Example 3.2,

u = −k(x) = −3(x1 + x2)

was shown to be globally stabilizing using the clf

V (x) =
1
4
x4

1 +
1
2

(x1 + x2)2
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which satisfies

Vx(x) =
(
x3

1 + x1 + x2 x1 + x2

)
Inserting this into (4.7) and (4.8) yields

R(x) =
x1 + x2

2 · 3(x1 + x2)
=

1
6

q(x) = −(x3
1 + x1 + x2)(−x3

1 + x1 + x2) +
1
2

(x1 + x2) · 3(x1 + x2)

= x6
1 +

1
2

(x1 + x2)2

Thus, the suggested control law minimizes the cost functional

J =
∫ ∞

0

(x6
1 +

1
2

(x1 + x2)2 +
1
6
u2)dt

4.3 Robustness of Optimal Control

Besides optimal control being an intuitively appealing approach, the resulting con-
trol laws inherently possess certain robustness properties [24]. One important prop-
erty regards the gain margin.

Assume that the prescribed optimal control input (4.4) cannot be produced
exactly, but that the actual control input is

u = Γ(x)u∗ (4.9)

where Γ(x) > 0 is a scalar, see Figure 4.1. Actuator saturation, for example, can
be modeled as gain reduction, Γ(x) < 1. Are optimal controllers robust to such
changes in the gain? The control law (4.9) is globally stabilizing provided that

V̇ = Vxf + Vxgu = Vxf + ΓVxgu∗

is negative definite. From the assumptions and (4.7) we know that

−q = Vxf +
1
2
Vxgu

∗

is negative definite. Combining these two equations yields

V̇ = −q + (Γ− 1
2

)Vxgu∗ = −q(x)− (Γ(x) − 1
2

) · 1
2
Vx(x)g(x)R−1(x)(Vx(x)g(x))T︸ ︷︷ ︸

positive (semi-)definite

Apparently, V̇ is negative definite (at least) for all Γ(x) ≥ 1
2 . Thus, all state

feedback control laws which solve an optimal control problem of the type considered
in Section 4.2, have a gain margin of [1

2 ,∞].
Note that the actual tolerable gain reduction may be more than 50%. In Ex-

ample 3.2, any control law u = −kx̃2 where k > 1 makes V̇ negative definite and
hence is globally stabilizing. The selected control law u = −3x̃2 thus has a gain
margin of ]1

3 ,∞].



4.3 Robustness of Optimal Control 49

u∗ = −k(x) Γ(x)
u

ẋ = f(x) + g(x)u
x

Figure 4.1 The optimal control law u∗ = −k(x) remains globally stabiliz-
ing for any gain perturbation Γ(x) ≥ 1

2 .
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5

Backstepping Designs for

Flight Control

In the previous chapters we have introduced the aircraft dynamics, the backstep-
ping design procedure and inverse optimality tools for evaluating state feedback
laws. We now have the toolbox we need to live up to the title of the thesis, and do
flight control design using backstepping. This chapter is the core of the thesis.

We will design flight control laws for two different objectives – for general ma-
neuvering (control of α, β, and ps) and for flight path angle control (control of γ).
The two presentations in Sections 5.1 and 5.2 follow the same outline. First, the
relevant dynamics from Chapter 2 are reproduced and the assumptions needed for
making the control design feasible are stated. The flight control problem of inter-
est is then viewed as a more general nonlinear control problem and backstepping is
used to derive globally stabilizing control laws, whose properties are investigated.
We finally return to the flight control context and investigate which practical con-
sequences applying the derived control laws leads to.

5.1 General Maneuvering

We begin by designing flight controllers for general purpose maneuvering, useful,
e.g., in dogfight situations where maneuverability is very important in order to
get a first shot opportunity. Sharp turns imply high angles of attack and a prime
feature of our design is that stability is guaranteed for all angles of attack, including
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post-stall, given that enough pitching moment can be produced.

5.1.1 Objectives, dynamics, and assumptions

Following the discussion in Section 2.2 on relevant variables to be controlled for
this type of general maneuvering we set up the following objectives:

• Fore-and-aft control stick deflections should demand angle of attack.

• Side-to-side control stick deflections should demand stability axis roll rate.

• The sideslip should be kept zero at all times.

The controlled variables are illustrated in Figure 2.3. With these objectives, the
task of the control system is to make

α = αref

β = 0

ps = pref
s

a globally asymptotically stable equilibrium. Speed control is assumed to be han-
dled separately and will not be dealt with.

The relevant dynamics consist of the angular rate dynamics in (2.6) and the α
and β dynamics in (2.7b) and (2.7c). Trading the scalar moment equations (2.6)
for the compact vector description (2.2) yields

α̇ = q − (p cosα+ r sinα) tanβ +
1

mVT cosβ
(−L− FT sinα+mg2) (5.1a)

β̇ = p sinα− r cosα+
1

mVT
(Y − FT cosα sinβ +mg3) (5.1b)

M = Iω̇ + ω × Iω (5.1c)

where

g2 = g(cosα cos θ cosφ+ sinα sin θ)
g3 = g(cosβ cos θ sinφ+ sinβ cosα sin θ − sinα sinβ cos θ cosφ)

For backstepping to be applicable, the system dynamics must comply with the
pure-feedback form (3.14). We therefore need the following assumption:

A1. Control surface deflections only produce aerodynamic moments, and not
forces. Also neglecting the dependence on the angular rates, the aerody-
namic force coefficients can be written

lift force coefficient: CL(α)
side force coefficient: CY (β)

whose characteristics are shown in Figure 5.1.
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Figure 5.1 Typical lift force coefficient vs. angle of attack and side force
coefficient vs. sideslip characteristics.

To simplify the design we also make the following assumptions:

A2. The speed, altitude, and orientation of the aircraft vary slowly compared to
the controlled variables. Therefore, their time derivatives can be neglected.

A3. Longitudinal and lateral commands are assumed not to be applied simul-
taneously. Hence, when α is controlled, β and ps are considered constant.
Conversely, when β and ps are controlled, α is considered constant.

A4. The control surface actuator dynamics are assumed to be fast enough to be
disregarded.

Assumption A3 certainly does not hold in practice but allows us to decouple the
control design. As we will show using simulations in Chapter 7, the resulting control
laws work well in practice.

Since the roll rate to be controlled, ps, is expressed in the stability-axes co-
ordinate system, we need to establish the relationship to the body-axes angular
velocity, ω. The stability-axes angular velocity,

ωs =
(
ps qs rs

)T
is related to the body-axes angular velocity

ω =
(
p q r

)T
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through the transformation

ωs = Rsbω, Rsb =

 cosα 0 sinα
0 1 0

− sinα 0 cosα

 (5.2)

Note that the transformation matrix Rsb satisfies R−1
sb = RTsb.

Inspecting the dynamics (5.1), we see that it is more convenient to work with
ωs rather than ω. Introducing

u =
(
u1 u2 u3

)T = ω̇s

we can rewrite the aircraft dynamics (5.1) as

ṗs = u1 (5.3a)

α̇ = qs − ps tanβ +
1

mVT cosβ
(−L(α)− FT sinα+mg2) (5.3b)

q̇s = u2 (5.3c)

β̇ = −rs +
1

mVT
(Y (β)− FT cosα sinβ +mg3) (5.3d)

ṙs = u3 (5.3e)

These are the dynamics we will use for the control design.
The relationship between u, which will be considered as the control input during

the control design, and the actual control input, δ, can be found by combining (5.1c)
and (5.2). Under assumption A3 above, α, and thereby also Rsb, are considered
constant while realizing u1 and u3 which relate to lateral control. This yields

u = ω̇s = Rsbω̇ = RsbI
−1(M− ω × Iω) (5.4)

Solving for the net moment, M, which depends on the control surface deflections,
δ, we get

M(δ) = IRTsbu+ ω × Iω (5.5)

We will postpone the discussion on how to practically solve for δ given u until
Chapter 7.

5.1.2 Backstepping control design

The nonlinear control problem

To begin with, note the structural similarities between the angle of attack dynamics
(5.3b)–(5.3c) and the sideslip dynamics (5.3d)–(5.3e). Both these second order
systems can be written

ẇ1 = f(w1, y) + w2

ẇ2 = u
(5.6)
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General system α dynamics β dynamics
(5.6) (5.3b)–(5.3c) (5.3d)–(5.3e)
R αref 0
w1 α β
w2 qs −rs
u u2 −u3

y ps, β, VT , h, θ, φ α, VT , h, θ, φ
f(w1, y) fα(α, yα) fβ(β, yβ)

Table 5.1 The relationships between the general nonlinear system (5.6)
and the angle of attack and sideslip dynamics in (5.3).

where y represents the influence of variables that we regard as constant, and w1 = R
is the desired equilibrium. We assume that the reference, R, is constant, which is
the best we can do without making any assumptions regarding the maneuvers that
the pilot wants to perform. Table 5.1 summarizes the relationships between (5.6)
and the original aircraft dynamics (5.3). Here,

fα(α, yα) = −ps tanβ +
1

mVT cosβ
(−L(α)− FT sinα+mg2) (5.7)

fβ(β, yβ) =
1

mVT
(Y (β)− FT cosα sinβ +mg3) (5.8)

have been introduced.
For notational convenience it is favorable to make the origin the desired equi-

librium. We therefore define

x1 = w1 −R
x2 = w2 + f(R, y)

Φ(x1) = f(x1 +R, y)− f(R, y)
(5.9)

which yields Φ(0) = 0. In these coordinates, the dynamics (5.6) become

ẋ1 = Φ(x1) + x2 (5.10a)
ẋ2 = u (5.10b)

The relationships between (5.10) and the original aircraft dynamics (5.3) can be
found in Table 5.2. If the aircraft is assumed to be built symmetrically such that
the side force, Y , is zero for zero sideslip, we get

fβ(0, yβ) =
1
VT

g cos θ sinφ (5.11)

using (2.8).
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General system α dynamics β dynamics
(5.10) (5.3b)–(5.3c) (5.3d)–(5.3e)
x1 α− αref β
x2 qs + fα(αref, yα) −rs + fβ(0, yβ)
u u2 −u3

Φ(x1) fα(α, yα)− fα(αref, yα) fβ(β, yβ)− fβ(0, yβ)

Table 5.2 The relationships between the translated general nonlinear sys-
tem (5.10) and the angle of attack and sideslip dynamics in
(5.3).

In the remainder of this section, we will use backstepping to construct globally
stabilizing state feedback control laws for the system (5.10) assuming a general
nonlinearity Φ. In Section 5.1.3 we will return to the flight control context and
express the control laws in the original coordinates.

The backstepping design

In the case of α and β control, Φ will contain the negative lift force, −L, and
the side force, Y . As seen from Figure 5.1, the gradients of these contributions
are negative (note the sign on the lift force) in large parts of the operating range.
The only exception is the post-stall behavior of the lift force. The key property of
backstepping is that it allows us to benefit from these inherently stabilizing forces
and not cancel them. If we do not have to cancel them, we need less information
about them, which is appealing from a robustness point of view.

Step 1: In the spirit of backstepping, we start by finding a globally stabilizing
virtual control law for the for the x1-subsystem (5.10a). Not to constrain ourselves
at this stage, we pick a general control law

xdes
2 = −Ψ(x1) (5.12)

The idea is to let the necessary demands on Ψ be revealed by the design below.
Temporarily pick the clf

W (x1) =
1
2
x2

1

To make x1 = 0 GAS we must make Ẇ negative definite. Thus, we select a Ψ
satisfying

Ẇ |x2=xdes
2

=
(
Φ(x1)−Ψ(x1)

)
x1 < 0, x1 6= 0 (5.13)

This condition is natural, since for x1 = 0 to be GAS, the desired net x1 dynamics,
ẋ1 = Φ(x1)−Ψ(x1) must lie in the second and fourth quadrants.



5.1 General Maneuvering 57

Step 2: Continue by introducing the residual

x̃2 = x2 − xdes
2 = x2 + Ψ(x1)

and rewrite the dynamics (5.10) in terms of x1 and x̃2.

ẋ1 = Φ(x1)−Ψ(x1) + x̃2

˙̃x2 = u+ Ψ′(x1)
(
Φ(x1)−Ψ(x1) + x̃2

) (5.14)

Remembering the benefits of using a non-quadratic clf (cf. Example 3.2), we select

V (x1, x̃2) = F (x1) +
1
2
x̃2

2

as the clf for the total system (5.14), where F is any valid clf for the x1-subsystem.
Specifically this means that

Ḟ (x1)|x2=xdes
2

= F ′(x1)
(
Φ(x1)−Ψ(x1)

)
= −U(x1) (5.15)

where U(x1) is positive definite. Differentiating V w.r.t. time we get

V̇ = F ′(x1)
[
Φ(x1)−Ψ(x1) + x̃2

]
+ x̃2

[
u+ Ψ′(x1)

(
Φ(x1)−Ψ(x1) + x̃2

)]
= −U(x1) + x̃2

[
F ′(x1) + u+ Ψ′(x1)

(
Φ(x1)−Ψ(x1)

)
+ Ψ′(x1)x̃2

]
We can reduce the complexity of the second term by selecting F such that the x1

terms inside the brackets cancel each other. This is achieved by

F ′(x1) = −Ψ′(x1)
(
Φ(x1)−Ψ(x1)

)
, F (0) = 0

Inserting this into (5.15) yields

U(x1) = Ψ′(x1)
(
Φ(x1)−Ψ(x1)

)2
For U(x1) to be positive definite, Ψ must satisfy

Ψ′(x1) > 0, x1 6= 0 (5.16)

Note that Φ(x1) 6= Ψ(x1) holds according to (5.13). An intuitive interpretation of
this condition is that the virtual control law (5.12) must provide negative feedback
everywhere, even locally. We now have that

V̇ = −U(x1) + x̃2

[
u+ Ψ′(x1)x̃2

]
To make V̇ negative definite, u must dominate the positive definite, destabilizing
term Ψ′(x1)x̃2

2. If Ψ′(x) has an upper bound, u can be selected linear in x̃2.
Choosing

u = −kx̃2 = −k
(
x2 + Ψ(x1)

)
(5.17)
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−Ψ(·)
xdes

2
Σ

+
−

k
u

ẋ2 = u
x2

ẋ1 = Φ(x1) + x2

x1

Figure 5.2 The nonlinear system 5.10 can be globally stabilized through
a cascaded control structure.

where

k > max
x1

Ψ′(x1) (5.18)

renders

V̇ = −U(x1)− (k −Ψ′(x1))x̃2
2

negative definite, thus making the origin of (5.10) GAS. Note the cascaded structure
of the control law as illustrated in Figure 5.2. This way of viewing the control law
motivates the condition (5.18). The condition apparently states that the inner
control loop must have a higher feedback gain than the outer loop.

Before we conclude, let us investigate which system nonlinearities Φ can be
handled using the control law (5.17). If Ψ′(x1) is upper bounded by k as in (5.18),
then the growth rate of Ψ must also be bounded in the sense that

Ψ(x1)
x1

≤ max
x1

Ψ′(x1) < k

and hence, Ψ must be confined to the sectors shown in Figure 5.3(b). Dividing
(5.13) by x2

1 and inserting this inequality yields

Φ(x1)
x1

<
Ψ(x1)
x1

< k

Thus, for the control law (5.17) to be applicable, the growth of the system nonlin-
earity Φ must also be linearly upper bounded as depicted in Figure 5.3(a). Con-
versely, given an upper bound on Φ(x1)/x1 we can always find a Ψ and a k such
that (5.17) is globally stabilizing.

Let us summarize our findings as a proposition.

Proposition 5.1
Consider the system

ẋ1 = Φ(x1) + x2 (5.19a)
ẋ2 = u (5.19b)
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Figure 5.3 Φ and Ψ must be sector bounded for a globally stabilizing
control law of the form (5.17) to exist.

where Φ(0) = 0. Assume there exists a constant κ such that

Φ(x1)
x1

≤ κ for all x1 6= 0 (5.20)

Then, a globally stabilizing control law

u = −k
(
x2 + Ψ(x1)

)
(5.21)

can be found, where (
Φ(x1)−Ψ(x1)

)
x1 < 0, x1 6= 0 (5.22)

and

0 < Ψ′(x1) < k (5.23)

Moreover, a clf is given by

V =
∫ x1

0

−Ψ′(y)
(
Φ(y)−Ψ(y)

)
dy +

1
2

(x2 + Ψ(x1))2

which satisfies

V̇ = −Ψ′(x1)
(
Φ(x1)−Ψ(x1)

)2 − (k −Ψ′(x1))x̃2
2

�
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Inverse optimality

Proposition 5.1 gives us a family of control laws which all globally stabilize the
system of interest. Before discussing which choices of Ψ might be of interest, let
us further examine the properties of the derived control law. Using the tools of
Chapter 4 we will show that (5.21) is actually optimal with respect to a meaningful
cost functional, provided that k is chosen properly.

The control input enters the system (5.10) affinely and thus the tools of Chapter
4 can be used. However, we will use the transformed system (5.14) to compute the
cost functional that is minimized since the expressions become simpler. Comparing
(5.14) with (4.2), we have that

f(x) =
(

Φ(x1)−Ψ(x1) + x̃2

Ψ′(x1)(Φ(x1)−Ψ(x1) + x̃2)

)
, g(x) =

(
0
1

)
We also have that

Vx =
(
−Ψ′(x1)(Φ(x1)−Ψ(x1)) x̃2

)
Inserting this into (4.7) and (4.8) yields

R(x) =
x̃2

2kx̃2
=

1
2k

q(x) = Ψ′(x1)(Φ(x1)−Ψ(x1))(Φ(x1)−Ψ(x1) + x̃2)

+ x̃2Ψ′(x1)(Φ(x1)−Ψ(x1) + x̃2)− 1
2
x̃2 · kx̃2

= Ψ′(x1)(Φ(x1)−Ψ(x1))2 + (
k

2
−Ψ′(x1))x̃2

2

Apparently, to make q(x) positive definite, which is required for the cost functional
to be “meaningful”, k should be chosen such that

k > 2 ·max
x1

Ψ′(x1)

Note that this lower limit for inverse optimality is twice the limit in (5.23) regarding
global stability. This is natural considering the 50% gain reduction robustness of
all optimal controllers, cf. Chapter 4.

Proposition 5.2
The control law (5.21) is optimal w.r.t. a meaningful cost functional for

k > 2 ·max
x1

Ψ′(x1)

The control law then minimizes∫ ∞
0

(
Ψ′(x1)(Φ(x1)−Ψ(x1))2 + (

k

2
−Ψ′(x1))(x2 + Ψ(x1))2 +

1
2k
u2
)
dt

�
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Two special cases

So how should Ψ be chosen? Let us investigate two special choices. One has control
law simplicity in focus while the other aims at linearizing the dynamics.

Corollary 5.1 (Linear control)
Consider the system (5.19). A globally stabilizing control law, linear in the states,
is given by

u = −k2(x2 + k1x1)

where

k2 > k1 > max{0, κ}

with κ as defined in (5.20). In addition, for k2 > 2k1 the control law minimizes a
meaningful cost functional given by∫ ∞

0

(
k1(Φ(x1)− k1x1)2 + (

k2

2
− k1)(x2 + k1x1)2 +

1
2k2

u2
)
dt

Proof Selecting Ψ(x1) = k1x1 and k = k2 yields u = −k2(x2 + k1x1) and leads to the
conditions

• (5.22): (Φ(x1)− k1x1)x1 ≤ (κ− k1)x2
1 < 0, x1 6= 0 ⇐⇒ k1 > κ

• (5.23): 0 < k1 < k2

The cost functional follows directly from Proposition 5.2. �

Note how little information about the system nonlinearity Φ this control law is
dependent of. Only an upper bound on its growth rate, κ, is needed. In particular,
if Φ is known to lie in the second and fourth quadrants only, thus intuitively being
useful for stabilizing x1, we do not need any further information, since then κ < 0
and the parameter restriction k1 > 0 becomes active.

Corollary 5.2 (Linearizing control)
Consider the system (5.19). A globally stabilizing control, partially linearizing the
dynamics, is given by

u = −k2(x2 + k1x1 + Φ(x1))

where

k1 > max{0,−min
x1

Φ′(x1)} (5.24)

and

k2 > k1 + max
x1

Φ′(x1)
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provided that such upper and lower bounds on Φ′ exist. In addition, for k2 >
2(k1 + maxx1 Φ′(x1)) the control law minimizes a meaningful cost functional given
by∫ ∞

0

(
(k1 + Φ′(x1))k2

1x
2
1 + (

k2

2
− k1 − Φ′(x1))(x2 + k1x1 + Φ(x1))2 +

1
2k2

u2
)
dt

Proof Selecting Ψ(x1) = k1x1 + Φ(x1) and k = k2 yields u = −k2(x2 + k1x1 + Φ(x1))
and the conditions

• (5.22): (Φ(x1)− k1x1 − Φ(x1))x1 = −k1x
2
1 < 0, x1 6= 0 ⇐⇒ k1 > 0

• (5.23): The first part of the inequality becomes

0 < k1 + Φ′(x1), x1 6= 0 ⇐⇒ k1 > − min
x1 6=0

Φ′(x1)

The second part of the inequality becomes

k1 + Φ′(x1) < k2, x1 6= 0 ⇐⇒ k2 > k1 + max
x1 6=0

Φ′(x1)

The cost functional follows directly from Proposition 5.2. �

This control law corresponds to choosing the virtual control law

xdes
2 = −Φ(x1)− k1x1

which, as in feedback linearization, cancels the nonlinear dynamics of x1, Φ(x1),
and replaces them with linear dynamics, −k1x1. Condition (5.24) states that it is
alright to cancel the natural dynamics, Φ(x1), as long as the new dynamics, −k1x,
provide at least the same amount of negative feedback. This is sound also from
an optimality point of view. Intuitively, it must be suboptimal to waste feedback
effort in order to slow down the natural system dynamics.

5.1.3 Flight control laws

Let us now return to the flight control context and apply the control laws derived
in the previous section to the aircraft dynamics in (5.3). The boxed control laws
below are the ones that will be implemented and evaluated in Chapter 7.

Angle of attack control

Let us first apply the linear control law in Corollary 5.1. Using Tables 5.1 and 5.2
for translation from x to the proper aircraft variables yields

u2 = −kα,2(qs + kα,1(α− αref) + fα(αref, yα)) (5.25)
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αref

Prefilter
+
−

Σ
u2

α dynamics
α, qs

(k1k2 k2)

Figure 5.4 The backstepping control law (5.25) moves the dependence on
CL outside the control loop, thereby enhancing the robustness.

with fα from (5.7). The control law is illustrated in Figure 5.4. Although im-
plementing this control law requires knowledge of the lift force, and thereby the
lift force coefficient, CL, we note that the lift force dependent computation is per-
formed in the prefilter outside the feedback loop. Therefore, imperfect knowledge
of CL does not jeopardize closed loop stability but only shifts the equilibrium.

The parameters should satisfy

kα,2 > 2 · kα,1, kα,1 > max{0, κα}

for the control law to be globally stabilizing and also minimize a meaningful cost
functional. Here,

κα = max
x1

Φ(x1)
x1

= max
α,αref,yα

fα(α, yα)− fα(αref, yα)
α− αref

The maximum occurs when αref is chosen to be the point where fα has the highest
positive slope and α is selected infinitely close to αref. Then, the fraction above
turns into the derivative w.r.t. α, i.e.,

κα = max
α,yα

∂fα(α, yα)
∂α

In practice, fα in (5.7) is dominated by the lift force term. The contribution to κα
from the lift force becomes

max
α,yα
− 1
mVT cosβ

∂L

∂α
(α) = max

β,VT ,h

ρ(h)VTS
2m cosβ

·max
α
−dCL
dα

(α)

recalling from (2.5) that

L = q̄SCL =
1
2
ρ(h)V 2

T SCL

Since dCL/dα is negative in the post-stall region, see Figure 5.1, κα will be positive.
This means that the higher speed VT , and the larger sideslip β one wants the control
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law to handle, the higher κα becomes, and the higher the control law parameters
kα,1 and kα,2 must be chosen.

To solve this, we impose that yα ∈ Ωyα , where Ωyα ⊂ R6 is selected to represent
the flight envelope of interest. For instance, a practically valid assumption may be
that the sideslip is always less than 10 degrees. The final expression for κα then
becomes

κα = max
α

yα∈Ωyα

∂fα(α, yα)
∂α

Let us now instead apply the linearizing control law in Corollary 5.2. Using
Table 5.2 we get

u2 = −kα,2(qs + kα,1(α− αref) + fα(α, yα)) (5.26)

The only difference to (5.25) is that now fα takes α as its first argument rather
than αref. This causes the feedback loop to depend on CL, and robustness against
model errors in CL becomes more difficult to analyze.

Somewhat surprisingly, the control law in (5.26) is identical1 to the one in (2.15),
which was derived using dynamic inversion and time-scale separation arguments.
Using our Lyapunov based backstepping approach, we have thus shown this control
law to be not only globally stabilizing, but also inverse optimal w.r.t. a meaningful
cost functional, according to Corollary 5.2.

Sideslip regulation

Applying the linear control law in Corollary 5.1, using Table 5.2 along with (5.8)
and (5.11) yields

u3 = kβ,2(−rs + kβ,1β +
1
VT

g cos θ sinφ) (5.27)

The parameters restrictions

kβ,2 > 2 · kβ,1, kβ,1 > max{0, κβ}
ensure the control law to be globally stabilizing and to be optimal w.r.t. a mean-
ingful cost functional. Here,

κβ = max
x1

Φ(x1)
x1

= max
β,yβ

fβ(β, yβ)− fβ(0, yβ)
β

The first two terms of fβ in (5.8) both give negative contributions to κβ. Since these
typically are superior to the gravity contribution, κβ < 0 holds and the parameter
restrictions above simply reduce to

kβ,2 > 2 · kβ,1 > 0

Thus, precise knowledge of the side force is not necessary to implement the globally
stabilizing control law (5.27).

1The slight difference is due to that (2.15) was derived using somewhat simplified dynamics.
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Stability axis roll control

Finally, controlling the stability axis roll is straightforward. Given the dynamics
from (5.3a) and the roll rate command pref

s , simply assign

u1 = kps(p
ref
s − ps) (5.28)

where kps > 0. This corresponds to ordinary proportional control.

5.1.4 Practical issues

Let us now turn to some practically relevant issues regarding the application of the
derived flight control laws.

Tuning

How should the control law parameters kps , kα,1, kα,2, kβ,1, and kβ,2 be selected?
For roll control, kps can be chosen to satisfy a given requirement on the roll time
constant, which becomes 1/kps .

For α control, the closed loop system will not be linear since the nonlinear lift
force L is not cancelled by the control law (5.25). However, since the control law is
linear in α and qs, it is tempting to still use linear techniques. A natural procedure is
to linearize the angle of attack dynamics (5.3b)–(5.3c) around a suitable operating
point and then select kα,1 and kα,2 to achieve some desired linear closed loop
behavior locally around the operating point.

For β regulation, the situation is the same. Here, kβ,1 and kβ,2, determining the
control law (5.27), can be selected by choosing some desired closed loop behavior
using a linearization of the sideslip dynamics (5.3d)–(5.3e).

Saturation

The control laws (5.25), (5.27), and (5.28) all can handle a certain amount of
gain reduction and still remain stabilizing. Thus, even in cases where actuator
saturation makes the moment equation (5.5) infeasible, the control laws remain
stabilizing within certain bounds. The maximum moment that can be produced
depends on the aircraft state, see Figure 2.6. This makes it difficult to determine the
exact part of the state space (in terms of α, β, etc.) where stability is guaranteed,
and we will not further pursue this issue.

5.2 Flight Path Angle Control

We now turn to flight path angle control. This is not a standard autopilot func-
tion, but may still be of interest, e.g., for controlling the ascent or descent of an
unmanned aerial vehicle.
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5.2.1 Objectives, dynamics, and assumptions

The objective is for the flight path angle, depicted in Figure 2.7, to follow a given
command, γref. In other words, we want to make

γ = γref

a globally asymptotically stable equilibrium.
We consider only the longitudinal motion of the aircraft, assuming that the

roll and sideslip angles are zero. Again, speed control is assumed to be handled
separately. The relevant dynamics are then given by (2.9b)–(2.9d). Using the
definition of the flight path angle, γ = θ − α, yields

γ̇ =
1

mVT
(L+ FT sinα−mg cos γ)

θ̇ = q

q̇ =
1
Iy

(M + FTZTP )

(5.29)

Preparatory for the backstepping design, we make the following assumptions
and simplifications.

A1. The lift force coefficient, CL, is assumed to be a function of α alone.

A2. The time derivatives of the aircraft speed and altitude are neglected.

A3. The contribution to γ̇ due to gravity is replaced by its value at the desired
equilibrium, γref. This means cos γ ≈ cos γref is used. The idea is to make γ̇
a function of α = θ − γ alone.

A4. The control surface actuator dynamics are assumed to be fast enough to be
disregarded.

Also introducing

u = q̇ =
1
Iy

(M + FTZTP ) (5.30)

the aircraft dynamics (5.29) become

γ̇ =
1

mVT
(L(α) + FT sinα−mg cos γref) (5.31a)

θ̇ = q (5.31b)
q̇ = u (5.31c)

The control law will be derived considering u as the input. The relationship to
the true control input, δ, affecting the pitching moment, M , is given by

M(δ) = Iyu− FTZTP (5.32)

In Chapter 7 we discuss how to solve for δ given u.
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5.2.2 Backstepping control design

The nonlinear control problem

We begin by posing the control problem above as a more general nonlinear control
problem. We first define new variables such that the origin becomes the desired
equilibrium.

x1 = γ − γref

x2 = θ − (γref + α0)
x3 = q

Φ(x2 − x1) = Φ(α− α0) =
1

mVT
(L(α) + FT sinα−mg cos γref)

(5.33)

α0 is the angle of attack at steady state, solving γ̇ = Φ(0) = 0. This gives us the
dynamics

ẋ1 = Φ(x2 − x1) (5.34a)
ẋ2 = x3 (5.34b)
ẋ3 = u (5.34c)

considering the reference γref as a constant.
The nonlinearity Φ is decided by the lift force, see Figure 5.1, and the contri-

bution due to the thrust force. For α . 90 degrees, a valid conclusion is therefore
that Φ belongs to the first and third quadrants only. Mathematically, this can be
written

xΦ(x) > 0 ⇐⇒ xΦ(−x) < 0, x 6= 0 (5.35)

In the forthcoming design, we will show that this scarce information suffices to
construct a globally stabilizing control law.

The backstepping design

The key idea of the forthcoming design is the following. For x2 = 0, we get
ẋ1 = Φ(−x1), which acts stabilizing since Φ(−x1) is Φ(x1) mirrored about the
y-axis, and thus lies in the second and fourth quadrants. Using backstepping, we
will show how to utilize this inherent stability property.

Below, ki are constants which parameterize the control law, while ci are “dummy
constants” whose values will be assigned during the derivation to simplify various
expressions.

Step 1: As usual, start by considering only the x1-subsystem (5.34a). To find a
globally stabilizing virtual control law, we use the clf

V1 =
1
2
x2

1 (5.36)



68 Backstepping Designs for Flight Control

Considering x2 as our virtual control input

V̇1 = x1Φ(x2 − x1)
= x1Φ(−(1 + k1)x1 + x2 + k1x1)
= x1Φ(−(1 + k1)x1) < 0, x1 6= 0

can be achieved by selecting

x2 = xdes
2 = −k1x1, k1 > −1 (5.37)

The fact that k1 = 0 is a valid choice means that x1 feedback is not necessary
for the sake of stabilization. However, it provides an extra degree of freedom for
tuning the closed loop performance.

Step 2: Since we cannot control x2 directly, we continue by introducing the
deviation from the virtual control law.

x̃2 = x2 − xdes
2 = x2 + k1x1

Including the x2 dynamics (5.34b) we get

ẋ1 = Φ(ξ)
˙̃x2 = x3 + k1Φ(ξ)

where

ξ = −(1 + k1)x1 + x̃2 (5.38)

has been introduced. We will also need

ξ̇ = −(1 + k1)Φ(ξ) + x3 + k1Φ(ξ) = −Φ(ξ) + x3

A regular backstepping design would proceed by expanding the clf (5.36) with a
term penalizing x̃2. We do this, but also add a term F (ξ) as an extra degree of
freedom, where F is required to be positive definite. Hence,

V2 =
c1
2
x2

1 +
1
2
x̃2

2 + F (ξ), c1 > 0

We compute its time derivative to find a new virtual control law, xdes
3 .

V̇2 = c1x1Φ(ξ) + x̃2(x3 + k1Φ(ξ)) + F ′(ξ)(−Φ(ξ) + x3)

= (c1x1 + k1x̃2 − F ′(ξ))Φ(ξ) + (x̃2 + F ′(ξ))xdes
3 + (x̃2 + F ′(ξ))(x3 − xdes

3 )

Although it may not be transparent, we can again find a stabilizing function inde-
pendent of Φ. Choosing

xdes
3 = −k2x̃2, k2 > 0 (5.39)

F ′(ξ) = c2Φ(ξ), F (0) = 0, c2 > 0 (5.40)
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where (5.40) is an implicit but perfectly valid choice of F , yields

V̇2|x3=xdes
3

= (c1x1 + (k1 − k2c2)x̃2︸ ︷︷ ︸
(k1−k2c2)ξ

)Φ(ξ) − c2Φ(ξ)2 − k2x̃
2
2

To make the first term negative definite using (5.35), we select c1 to make the
factor in front of Φ(ξ) proportional to −ξ, see (5.38). This is achieved by

c1 = −(1 + k1)(k1 − k2c2), k2c2 > k1 (5.41)

With this choice,

V̇2|x3=xdes
3

= (k1 − k2c2)ξΦ(ξ)− c2Φ(ξ)2 − k2x̃
2
2

becomes negative definite. The benefit of using the extra term F (ξ) shows up in
Equation (5.41). F (ξ) ≡ 0 (or equally, c2 = 0) leads to c1 = −(1 + k1)k1 > 0 and
the severe restriction −1 < k1 < 0 implying positive feedback from x1.

Step 3: The final backstepping iteration begins with introducing the third resid-
ual

x̃3 = x3 − xdes
3 = x3 + k2x̃2

We also update the system description

ẋ1 = Φ(ξ)
˙̃x2 = x̃3 − k2x̃2 + k1Φ(ξ)
˙̃x3 = u+ k2(x̃3 − k2x̃2 + k1Φ(ξ))

(5.42)

Furthermore,

ξ̇ = −Φ(ξ) + x̃3 − k2x̃2

V3 is constructed by adding a term penalizing x̃3 to V2.

V3 = c3V2 +
1
2
x̃2

3, c3 > 0

We get

V̇3 = c3
[
(k1 − k2c2)ξΦ(ξ)︸ ︷︷ ︸

negative definite

−c2Φ(ξ)2 − k2x̃
2
2 + x̃3(x̃2 + c2Φ(ξ))

]
+ x̃3

[
u+ k2(x̃3 − k2x̃2 + k1Φ(ξ))

]
≤− c2c3Φ2(ξ) − k2c3x̃

2
2 + x̃3

[
u+ k2x̃3 + (c3 − k2

2)x̃2 + (k1k2 + c2c3)Φ(ξ)
]

once again using (5.35). Select c3 = k2
2 to cancel the x̃2x̃3 cross-term and try yet

another linear control law.

u = −k3x̃3, k3 > k2 (5.43)
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is a natural candidate and with this we investigate the resulting clf time derivative.

V̇3 ≤ −k2
2c2Φ2(ξ)− k3

2x̃
2
2 − (k3 − k2)x̃2

3 + (k1k2 + k2
2c2)x̃3Φ(ξ)

In order to investigate the impact of the last cross-term, we complete the squares.

V̇3 ≤ − k3
2x̃

2
2 − (k3 − k2)(x̃3 −

k1k2 + k2
2c2

2(k3 − k2)
Φ(ξ))2

− (k2
2c2 −

(k1k2 + k2
2c2)2

4(k3 − k2)
)Φ2(ξ)

V̇3 is negative definite provided that the Φ2(ξ) coefficient is negative, which is true
for

k3 > k2(1 +
(k1 + k2c2)2

4k2c2
) (5.44)

We now pick c2 to minimize this lower limit under the constraints c2 > 0 and
k2c2 > k1.

For k1 ≤ 0, we can make k1 + k2c2 arbitrarily small whereby Equation (5.44)
reduces to

k3 > k2

i.e., the same restriction as in (5.43). For k1 > 0 the optimal strategy can be shown
to be selecting c2 arbitrarily close to the bound k1/k2. This yields

k3 > k2(1 + k1) (5.45)

Let us summarize this lengthy control law derivation, which resulted in a glob-
ally stabilizing control law (5.43) for the system (5.34), under the parameter re-
strictions in (5.37), (5.39), (5.43), and (5.45).

Proposition 5.3
Consider the system

ẋ1 = Φ(x2 − x1)
ẋ2 = x3

ẋ3 = u

(5.46)

where xΦ(x) is positive definite. A globally stabilizing control law is given by

u = −k3(x3 + k2(x2 + k1x1)) (5.47)

where

k1 > −1
k2 > 0

k3 >

{
k2 k1 ≤ 0
k2(1 + k1) k1 > 0

(5.48)

�

The cascaded structure of the control law is illustrated in Figure 5.5.
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xdes
2 xdes

3
ΣΣ
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−−

k1 k2 k3

−1

u
ẋ1 = Φ(x2 − x1)ẋ2 = x3ẋ3 = u

x1x2x3

Figure 5.5 The nonlinear system (5.46) can be globally stabilized through
a cascaded control structure.

Robustness

For this design we refrain from investigating inverse optimality due to the com-
plicated expressions involved. Regardless of this, it is clear that the control law
(5.47) gives a certain gain margin. E.g., in the case of k1 > 0, we can afford a gain
reduction of

Γ >
k2(1 + k1)

k3
(5.49)

at the input (see Figure 4.1) without violating γk3 > k2(1 + k1) from (5.48).

Backstepping vs. feedback linearization

It is rewarding to compare the preceding backstepping design with a control design
based on feedback linearization. Such a design makes the open loop system a chain
of integrators by defining new coordinates according to

ẋ1 = Φ(x2 − x1) = x̃2

˙̃x2 = Φ′(x2 − x1)(x3 − x̃2) = x̃3

˙̃x3 = Φ′′(x2 − x1)(x3 − x̃2)2 + Φ′(x2 − x1)(u− x̃3) = ũ

We can now select

ũ = −
(
k1 k2 k3

)x1

x̃2

x̃3


to achieve any desired linear relationship between ũ and x1.

However, solving for the actual control input u to be produced, we get

u = x̃3 +
ũ− Φ′′(x2 − x1)(x3 − x̃2)2

Φ′(x2 − x1)
(5.50)
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Two things are worth noting about this expression. Firstly, it depends not only
on Φ (through x̃2), but also on its first and second derivatives, which therefore
must be known. In the aircraft control case, this corresponds to very accurate
knowledge of the lift force, see (5.33). Since L(α) in practice comes with certain
model error, especially at high angles of attack, the estimates of L′(α) and L′′(α)
may be poor. This means that the nonlinear system behavior cannot be cancelled
completely. Unfortunately, it is difficult to analyze the robustness of (5.50), i.e.,
how incomplete cancellation of the nonlinearities affects the controlled system.

Secondly, Φ′ is in the denominator of (5.50) implying that the control law has
a singularity where Φ′ = 0. In the aircraft case, this occurs around the stall angle,
where the lift force no longer increases with α, see Figure 5.1. Thus, global stability
cannot be achieved using feedback linearization.

Our backstepping design did not suffer from any of the problems above, since
all we required from Φ was for xΦ(x) to be positive definite, see (5.35).

5.2.3 Flight control law

We now return to the flight control context. Expressing (5.47) in the original
coordinates using (5.33) gives us

u = −k3(q + k2(θ + k1(γ − γref)− γref − α0)) (5.51)

This control law is globally stabilizing provided that k1, k2, and k3 satisfy (5.48).
Recall that α0 is the angle of attack at steady state, solving γ̇=0 in (5.31a).

5.2.4 Practical issues

We now investigate some practical issues regarding the application of this control
law.

Tuning

For selecting the controller parameters, k1, k2, and k3, we can use the same strategy
as for tuning the general maneuvering control laws, cf. Section 5.1.4. This means
linearizing the dynamics (5.31) around a suitable operating point and selecting the
controller parameters to achieve some desired linear closed loop behavior locally
around this operating point.

Saturation

As shown in Section 5.2.2, the control law (5.51) remains stabilizing in the pres-
ence of a gain certain reduction, given by (5.49) in the case k1 > 0. Thus, even
for a certain amount of control surface saturation, such that the desired pitching
moment in (5.32) cannot be produced, the closed loop system is stable. As noted
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in Section 5.1.4, the maximum moment, M , depends not only on the control sur-
face deflections, δ, but also on the angle of attack, see Figure 2.6. Again, this
makes is difficult to determine the part of the state space within which stability is
guaranteed.
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6

Adapting to Input

Nonlinearities and Uncertainties

The flight control laws developed in Chapter 5 consider the angular accelerations
as the control input, u. To find the corresponding control surface deflections, δ, the
mapping from δ to u must be completely known. Typically this is not the case in
practice. For example, the aerodynamic moment coefficients suffer from inevitable
model errors, and the moment contributions from, e.g., the engine thrust, may
not be measurable. Hence, it is necessary to add integral action in some form to
the control laws to reach the desired equilibrium despite such model imperfections.
This is the topic of the chapter.

In Section 6.1, we further illustrate the problem, and in Section 6.2, we present
its mathematical formulation. Two solutions, based on adaptive backstepping and
nonlinear observer techniques, respectively, are proposed in Sections 6.3 and 6.4.
The two solutions are evaluated in Section 6.5 using a water tank example, and in
Section 6.6 the adaptive schemes to be used for flight control are explicitly stated.

6.1 Background

Many of today’s constructive nonlinear control design methods assume the control
input to enter the system dynamics affinely, i.e., for the model to be of the form

ẋ = f(x) + g(x)u

75
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In many practical cases this is not true. A common solution, see, e.g., [37, 47], is
to find some other entity, a virtual control input v, that does enter the dynamics
linearly, and that depends on the true control input u through a static mapping.
Using, e.g., backstepping or feedback linearization, a globally stabilizing control
law v = k(x) can then be derived. These virtual control inputs are often physical
entities like forces, torques, or flows, while the true input might be the deflection of
a control surface in a flight control case or the throttle setting in an engine control
case.

The remaining problem, how to find which actual control input u to apply, is
often very briefly discussed, typically assuming that the mapping from u to v is
completely known and invertible. In this chapter we investigate the case where the
mapping is only partially known. It might be that the true mapping is too complex
to identify, or that other sources than u contribute to v. Friction might for example
reduce the net torque in a robot control case. Here, we will pragmatically model
the discrepancy between the model and the true mapping as a constant bias. We
propose two different ways of adapting to the bias, and for each case, the issue of
closed loop stability is investigated.

6.2 Problem Formulation

Consider a single input system of the form

ẋ = f(x) +Bv

v = g(x, u)
(6.1)

x ∈ Rn is the measurable state vector and u ∈ R is the true control input.

B =
(
0 · · · 0 1

)T (6.2)

is such that only the last state, xn, is directly affected by the control input through

ẋn = fn(x) + g(x, u)

Assume that the mapping, g(x, u), from the true control input, u, to the virtual
control input, v, is not completely known but only a model, ĝ(x, u), such that

g(x, u) = ĝ(x, u) + e

The model error, e = g(x, u) − ĝ(x, u), is modeled as a constant. This pragmatic
assumption may be more or less realistic but allows us to correct for biases and
reach the correct equilibrium at steady state. With this we can rewrite (6.1) as

ẋ = f(x) +B(w + e) (6.3a)
w = ĝ(x, u) (6.3b)

w is the part of the virtual control input, v, that we are truly in control of.
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ẋ = f(x) +Bv

x

Estimator

Figure 6.1 Illustration of the certainty equivalence controller (6.7). The
shadowed box represents the dynamic system to be controlled.
The dashed box makes up the system that the control designer
actually faces, since e is not known.

From a preceding control design, a control law

v = k(x) (6.4)

is assumed to be known such that the origin is a GAS equilibrium of

ẋ = f(x) +Bk(x)

We also assume that a Lyapunov function V (x) for the closed loop system is known,
such that

V̇ (x) = Vx(x)(f(x) +Bk(x)) = −W (x) (6.5)

where W (x) is positive definite.
Given e, (6.4) could be realized by solving

w = v − e ⇐⇒ ĝ(x, u) = k(x) − e (6.6)

for u. How do we deal with the fact that e is not available? A straightforward solu-
tion is to rely on one of the corner stones of adaptive control and use the certainty
equivalence [46] of (6.6). This means that we replace the unknown parameter e by
an estimate ê and form

w = ĝ(x, u) = k(x) − ê (6.7)

Figure 6.1 illustrates the approach. The strategy is intuitively appealing but leads
to two important questions:
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• How do we estimate e?

• Can we retain global stability using ê for feedback?

Two approaches to the problem will be pursued. In Section 6.3, we will use
standard adaptive backstepping techniques to find an estimator that will guarantee
closed loop stability without having to adjust the control law (6.7). In Section 6.4,
the starting point is that a converging estimator is given. The question then is
how to adjust the control law to retain stability. This approach is due to the
author, but was inspired by the observer backstepping techniques introduced by
Kanellakopoulos et al. [39].

6.3 Adaptive Backstepping

Adaptive backstepping [46] deals with the unknown parameter e by extending the
Lyapunov function V (x) with a term penalizing the estimation error ẽ = e− ê:

Va(x, ẽ) = V (x) +
1
2γ
ẽ2, γ > 0

By cleverly selecting the update rule

˙̂e = τ(x, ê)

closed loop stability can be guaranteed. To see this we investigate V̇a when (6.7)
is used as feedback. Using (6.2) and (6.5) we get

V̇a = Vx(x)
(
f(x) +B(k(x) − ê+ e)

)
− 1
γ
ẽ τ(x, ê)

= −W (x) + ẽ(
∂V (x)
∂xn

− 1
γ
τ(x, ê))

(6.8)

The first term is negative definite according to the assumptions, while the second,
mixed term is indefinite. Since ẽ is not available, the best we can do is to cancel
the second term by selecting

τ(x, ê) = τ(x) = γ
∂V (x)
∂xn

(6.9)

The resulting closed loop system becomes

ẋ = f(x) +B(k(x) + ẽ) (6.10)

˙̃e = −γ ∂V (x)
∂xn

which satisfies

V̇a(x, ẽ) = −W (x)
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Despite V̇a only being negative semidefinite, the origin, x = 0, ẽ = 0, is GAS
according to Corollary 3.1. Since only x = 0 solves V̇a = 0, ẽ = 0 must also hold
for ẋ to be zero.

If V is quadratic in xn, V = . . .+ 1
2x

2
n, the control law (6.7) becomes

w = k(x)− γ
∫ t

0

xn(s)ds

In this case, estimating e and using the estimate for feedback corresponds to adding
integral action from xn.

6.4 Observer Based Adaption

In adaptive backstepping, the estimator was a consequence of assigning a negative
Lyapunov time derivative. In this section, we first design an estimator and then
investigate how to possibly adjust the control law (6.7).

6.4.1 The general case

The idea is to regard e as an unknown but constant state variable. Augmenting
the original dynamics (6.3a) with this extra state yields

ẋ = f(x) +B(w + e)
ė = 0

Although this system is nonlinear, we can design an observer for e with linear error
dynamics, since the nonlinearity, f , is a function of the measurable states x only
[44].

We will use xn alone to measure of the goodness of the estimate. In the presence
of measurement noise, it would be advantageous to utilize the entire state vector,
which is also fully possible. The nonlinear observer becomes

d

dt

(
x̂n
ê

)
=
(
fn(x) + w + ê

0

)
+
(
k1

k2

)
(xn − x̂n) (6.11)

With this, the dynamics of the estimation error

ε =
(
xn − x̂n
e− ê

)
become linear:

ε̇ =
(
−k1 1
−k2 0

)
ε = Aεε (6.12)
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For any asymptotically stabilizing observer gains k1 and k2, making Aε Hurwitz1,
we can find a positive definite matrix P such that

d

dt
εTPε = −εTQε ≤ −qẽ2

by solving the Riccati equation

ATε P + PAε = −Q, Q = qI, q > 0

according to basic linear systems theory, see Rugh [62]. Aε is Hurwitz if and only
if

k1 > 0, k2 > 0

To investigate the closed loop stability, we combine the original Lyapunov func-
tion V (x) with εTPε and form

Vo(x, ε) = V (x) + εTPε

We also augment the control law (6.7) with an extra term, l, to be decided, to
compensate for using ê for feedback.

w = k(x) + l(x, ê)− ê (6.13)

yields

V̇o = Vx(x)
(
f(x) +B(k(x) + l(x, ê)− ê+ e)

)
− εTQε

≤ −W (x) +
∂V (x)
∂xn

(l(x, ê) + ẽ)− qẽ2

By choosing

l(x, ê) = l(x) = −λ∂V (x)
∂xn

, λ > 0 (6.14)

we can complete the squares.

V̇o ≤ −W (x)− λ(
∂V (x)
∂xn

− 1
2λ
ẽ)2 − (q − 1

4λ
)ẽ2

To achieve GAS, we must satisfy q − 1
4λ > 0, which can always be done once λ in

(6.14) has been selected, since q is at our disposal.
Let us summarize our discussion.

Proposition 6.1 (Observer based adaption)
Consider the system

ẋi = fi(x), i = 1, . . . , n− 1
ẋn = fn(x) + w + e

(6.15)

1A matrix is said to be Hurwitz if all its eigenvalues are in the open left half plane.
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where x ∈ R is the measurable state vector, w ∈ R is the control input, and e ∈ R
is an unknown constant. Let w = k(x) − e be a globally stabilizing control law
and let V (x) be a Lyapunov function for the controlled system such that V̇ (x) is
negative definite.

Then, the control law

w = k(x)− λ∂V (x)
∂xn

− ê, λ > 0

where ê is produced by the observer

d

dt

(
x̂n
ê

)
=
(
fn(x) + w + ê

0

)
+
(
k1

k2

)
(xn − x̂n), k1 > 0, k2 > 0

is also globally stabilizing. �

An interesting feature is displayed by computing an explicit expression of the
estimate produced. Using (6.12) we have that

ê(t) = e− ẽ = e−
(
0 1

)
eAεtε(0)

This means that ê evolves independently of the control input u(t) and the state
trajectory x(t). This is not true for the adaptive backstepping estimate.

6.4.2 The optimal control case

Let us consider the case where the original, unattainable control law (6.4) solves
an optimal control problem of the form

V (x) = min
v

∫ ∞
0

q(x) + r(x)v2dt (6.16)

where r(x) ≤ r0 for all x. According to (4.6) it then holds that

k(x) = − 1
2r(x)

∂V (x)
∂xn

We recall from Section 4.3 that a fundamental property of control laws minimizing
a criterion like (6.16) is that they have a gain margin of [1

2 ,∞]. This inherent
robustness means that we do not need to modify the certainty equivalence control
law (6.7) to retain stability, since l(x) in Equation (6.14) is proportional to k(x).
To show this we make the split

k(x) = − 1
2r(x)

∂V (x)
∂xn

+ λ
∂V (x)
∂xn︸ ︷︷ ︸

k̃(x)

−λ∂V (x)
∂xn︸ ︷︷ ︸
l(x)
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u

v−e

x1

x2

√
x1

√
x2

Figure 6.2 Two tanks connected in series.

Now,

v = k̃(x) = −(
1

2r(x)
− λ)

∂V (x)
∂xn

is guaranteed to be globally stabilizing, i.e., to makeW (x) in (6.5) negative definite
given that the gain reduction due to λ is less than 50%. Thus,

1
2r(x)

− λ ≥ 1
2
· 1

2r(x)
⇐⇒ λ ≤ 1

4r0
≤ 1

4r(x)

must hold which does not contradict the only previous requirement from (6.14)
that γ > 0.

An intuitive interpretation of this result is that some of the optimal control effort
can be sacrificed in order to compensate for using the estimate ê for feedback.

6.5 A Water Tank Example

Let us apply the two strategies to a practical example to investigate their pros
and cons. Consider the two tanks in Figure 6.2. The control goal is to achieve a
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certain water level r in the bottom tank. Using Bernoulli’s equation and setting
all constants to unity, the system dynamics become

ẋ1 = −√x1 +
√
x2

ẋ2 = −√x2 + v

where x1 = water level of the lower tank, x2 = water level of the upper tank, and
v = incoming water flow. v is produced by changing the aperture of the valve of
the input pipe.

We assume the dynamics of the valve to be very fast compared to the dynamics
of the tanks, so that the relationship between the commanded aperture radius, u,
and the water flow, v, can be regarded as static. Assuming some external water
supply to keep a constant pressure, v will be proportional to the aperture opening
area, which in turn depends on u2. Again setting all constants to unity we would
have v = u2. In order to be able to account for a possible model error in this static
relationship and for other sources contributing to the net inflow, e.g., leakage, we
assign the model

v = u2 + e

in accordance with (6.3a).
The first step is to find a globally stabilizing control law v = k(x). We do this

using an ad hoc Lyapunov approach. At the desired steady state, x1 = x2 = r.
Therefore consider the control Lyapunov function

V (x) =
a

2
(x1 − r)2 +

1
2

(x2 − r)2, a > 0

Compute its time derivative:

V̇ (x) = a(x1 − r)(−
√
x1 +

√
x2) + (x2 − r)(−

√
x2 + k(x))

By collecting the beneficial terms and cancelling the indefinite ones, one finds that

k(x) =
√
r +

a√
x2 +

√
r

(r − x1) + b(r − x2), a > 0, b ≥ 0 (6.17)

yields V̇ (x) = −W (x) where

W (x) = a(x1 − r)(
√
x1 −

√
r) + (x2 − r)(

√
x2 −

√
r) + b(x2 − r)2

is positive definite.
Let us now evaluate the expressions involved with the two approaches for adapt-

ing to the leakage. The adaptive backstepping update rule (6.9) for estimating e
becomes

˙̂e = γ
∂V (x)
∂x2

= γ(x2 − r), γ > 0 (6.18)
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Adaptive Observer
k(x) backstepping based adaption
a = 1 γ = 0.3 k1 = 1
b = 0.5 k2 = 0.5

λ = 0

Table 6.1 Controller parameter values used in the simulations.

With this, the implicit control law (6.7) becomes

w = u2 = k(x) + γ

∫ t

0

(r − x2(s))ds

Using the observer based approach, the estimator can be designed according to
(6.11). For the actual implementation, we can rewrite this as

d

dt

(
x̂n
ê

)
=
(
−k1 1
−k2 0

)(
x̂n
ê

)
+
(

1
0

)
(−√x2 + w)

which can be implemented using, e.g., Simulink. The implicit control law (6.13)
becomes

w = u2 = k(x) + λ(r − x2)− ê, λ > 0

If b > 0 was selected in the control law (6.17), we do not have to add the term
λ(r−x2) for the sake of stability, since it can be seen as a part of k(x) already. As
in the optimal control case treated in Section 6.4.2, closed loop is then guaranteed
using the original certainty equivalence control law (6.7) without any modification.

In the simulations, the parameter values for the two adaptive controllers were
selected according to Table 6.1. The initial water level, which is also fed to the
observer, is 1 in both tanks. The control goal is to for x1 to reach the reference level
r = 4 and maintain this despite the leakage e = −3 starting at t = 25 s. Figure
6.3 shows the actual control input and the water level of the lower tank when
no adaption is used. Figures 6.4 and 6.5 show the results of applying adaptive
backstepping and observer based adaption, respectively.

There is a striking difference between the initial behaviors of the two leakage
estimates. As pointed out in Section 6.4.1, the observer ê estimate evolves inde-
pendently of u and x. Since ε(0) = 0, the estimation error remains zero until the
leakage starts. The adaptive backstepping estimate on the other hand depends on
the integral of r − x2 over time, causing an oscillatory behavior due to the initial
error of the upper tank water level.

Also, in the presence of actuator saturation, adaptive backstepping will suffer
from the windup problems that generally occur when using integral action in the
feedback loop. This is avoided with the observer based approach if the observer is
fed with the true, saturated value of the control input.
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Figure 6.3 No adaption, pure state feedback.
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Figure 6.4 Adaptive backstepping.
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Figure 6.5 Observer based adaption.
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6.6 Application to Flight Control

Considering the appealing properties of the observer based adaption, as demon-
strated in the previous section, this will be our choice of adaptive scheme for flight
control. All of the state feedback laws to be used along with the observers, (5.25),
(5.27), (5.28), and (5.51), can afford a certain amount of gain reduction and still be
globally stabilizing, as shown in Chapter 5. As shown in Section 6.4.2, this means
that the certainty equivalence control law (6.7) is globally stabilizing.

Let us now state the resulting observers when Proposition 6.1 is applied to the
flight dynamics used for control design in Chapter 5.

6.6.1 General maneuvering

The relevant dynamics are given by (5.3). To handle unmodeled nonlinearities and
uncertainties in the mapping (5.4) from δ to u, we redefine (5.3a), (5.3c), and (5.3e)
as

ṗs = u1 + e1

q̇s = u2 + e2

ṙs = u3 + e3

Comparing these dynamics to (6.15) yields the observers

d

dt

(
p̂s
ê1

)
=
(
u1 + ê1

0

)
+ L1(ps − p̂s)

d

dt

(
q̂s
ê2

)
=
(
u2 + ê2

0

)
+ L2(qs − q̂s)

d

dt

(
r̂s
ê3

)
=
(
u3 + ê3

0

)
+ L3(rs − r̂s)

(6.19)

L1, L2, and L3 are 2 × 1-vectors whose entries must be positive for the estimates
to converge.

6.6.2 Flight path angle control

The dynamics are given by (5.31). As above, (5.31c) is redefined as

q̇ = u+ e

to handle unmodeled nonlinearities and uncertainties in the mapping (5.30) from
δ to u. Using Proposition 6.1, an observer for e is given by

d

dt

(
q̂
ê

)
=
(
u+ ê

0

)
+ L(q − q̂) (6.20)

where L is a 2× 1-vector with positive entries.
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Implementation and Simulation

The control designs of the preceding chapters were based on a number of pragmatic,
simplifying assumptions regarding the aircraft dynamics and the types of model
errors and uncertainties to be handled. Using computer simulations we will now
evaluate the control laws experimentally.

The aircraft models used for simulation are presented in Section 7.1. Some
implementation details are covered in Section 7.2, while Section 7.3 is devoted to
the actual computer simulations.

7.1 Aircraft Simulation Models

Due to the complexity of the dynamics and the military nature of the field, there
exist only a few available aircraft simulation models. Three of these are listed in
Table 7.1.

7.1.1 GAM/ADMIRE

The Generic Aerodata Model (GAM) contains aerodynamic data for a small fighter
aircraft, not unlike JAS 39 Gripen [63]. The model was produced and made avail-
able by Saab AB, Linköping, Sweden. A model description is given by Backström
[5], and the package can be downloaded from [64]. A disadvantage of the GAM is

87
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Simulation Publicly Fighter aircraft
model available dynamics

GAM/ADMIRE Yes Yes
HIRM Not in general Yes
FDC Yes No

Table 7.1 Three existing environments for aircraft simulation.

that aerodynamic data is only recorded for −10◦ ≤ α ≤ 30◦ and −20◦ ≤ β ≤ 20◦.
In this flight envelope, the aerodynamic efforts are not significantly nonlinear, see
Figure 2.6. Basic facts regarding the GAM can be found in Appendix 7.A.

To perform flight simulations based on the GAM, there exists a Simulink

wrapper called ADMIRE. We will use the GAM/ADMIRE environment to evaluate
the general maneuvering control laws developed in Section 5.1. The GAM was
recently used by Cronander [12] to evaluate a pitch rate controller based on dynamic
inversion.

7.1.2 HIRM

The High Incidence Research Model (HIRM) was developed by DERA1 of the
United Kingdom. The model is based on aerodynamic data from wind tunnel
tests and drop tests of a small-scale model. The HIRM was then derived by scal-
ing up these data to create an aircraft of F-18 proportions, see Appendix 7.A.
Aerodynamic data exist for a wide range of angles of attack and sideslip angles,
−50◦ ≤ α ≤ 120◦ and −50◦ ≤ β ≤ 50◦.

The HIRM was used as a benchmark fighter aircraft model in the robust flight
control design challenge [53] initiated by GARTEUR2. A technical description of
the HIRM, which is implemented as Simulink model, can be found in [56].

We will use the HIRM to evaluate the flight path angle control law developed
in Section 5.2. DERA is gratefully acknowledged for granting permission to use
the model for this purpose.

7.1.3 FDC

The Flight Dynamics and Control toolbox (FDC) by Rauw [59] is a Simulink

toolbox for general flight dynamics and control analysis. The toolbox comes with
aerodata from a small, non-military aircraft, but the modular structure of the
toolbox allows the user to plug in external aerodata of his or her choice. Although
promising, FDC has not been used for simulation since for the GAM and HIRM
aerodata, well functioning interfaces already exist.

1Defence Evaluation and Research Agency
2Group for Aeronautical Research and Technology in EURope
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Figure 7.1 Controller configuration.

7.2 Controller Implementation

The controller configuration is shown in Figure 7.1. The backstepping block con-
tains the state feedback control laws derived in Chapter 5, while the bias estimator
block contains the nonlinear observers from Chapter 6, which are used to estimate
and adapt to unmodeled moments acting on the aircraft. The control allocation
block will be discussed in Section 7.2.1. Its function is to translate the desired
angular acceleration,

udes = k(x)− ê

into actual control surface deflections, δ. The signal u, which is fed to the estimator,
is the actual angular acceleration, which differs from udes when udes is not feasible.
By feeding the actual value u to the estimator we avoid wind-up problems.

The observers used are compactly stated in Section 6.6. Let us for convenience
also gather the control laws from Chapter 5. For general maneuvering the control
laws are made up by (5.25), (5.27), and (5.28). Using k(x) to denote these control
laws, we get

k(x) =
(
k1(x) k2(x) k3(x)

)T
where

k1(x) = kps(p
ref
s − ps)

k2(x) = −kα,2(qs + kα,1(α− αref) + fα(αref, yα))

k3(x) = kβ,2(−rs + kβ,1β +
1
VT

g cos θ sinφ)

with fα from (5.7). The flight path angle control law (5.51) reads

k(x) = −k3(q + k2(θ + k1(γ − γref)− γref − α0))
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Let us make two remarks regarding the implementation of these controllers.

• In the control designs in Chapter 5, the force effects due to the control sur-
face deflections and the angular rates were neglected. Here, these effects are
included when fα and α0 are computed in order to improve the accuracy.

• α0, the steady state angle of attack, is obtained by solving γ̇ = 0 in (5.31a) at
each time step, using current values of the variables involved. Although this
ad hoc approach to determine α0 is not guaranteed to converge, successful
simulations provide an alibi.

7.2.1 Control allocation

The control designs in Chapters 5 and 6 considered the angular accelerations of the
aircraft as the control inputs, see (5.4) and (5.30). In (5.5) and (5.32) we solved
for the actual moments to be produced. In most nonlinear aircraft designs it is
assumed that the control surface deflections, δ, affect these moments linearly. In
practice this is not true, since the aerodynamic moments produced by the control
surfaces also suffer from stall effects similar to the ones that are well known for the
lift force. This can be seen in Figure 2.6 where the pitching coefficient, Cm, tends
to saturate for low and high values of the symmetrical elevon deflection, δes.

Here, we will take into account the nonlinear mapping from δ to the aerody-
namic moments and propose numerical algorithms for finding the proper δ given
the moments to be produced. The implementations used are due to Press et al.
[58].

General maneuvering

The equation to be solved for δ is given by (5.5):

M(δ) = IRTsbu
des + ω × Iω

Using the definition of M from Section 2.4, M(δ) can be translated into the desired
aerodynamic moment coefficients,

Cdes =
(
Cdes
l Cdes

m Cdes
n

)T
Introducing

C(δ) =
(
Cl(δ) Cm(δ) Cn(δ)

)T (7.1)

the control allocation problem now becomes to find δ such that

C(δ) = Cdes (7.2)

For simplicity we will only make use of the elevons and the rudder and ignore the
canard wings, see Figure 2.4. Thus, δ = (δes, δed, δr). To handle cases where these
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control surfaces saturate, and (7.2) cannot be satisfied, we reformulate the control
allocation problem as an optimization problem:

δ = arg min
δ∈Ωδ

J(δ)

where J(δ) = ‖C(δ)− Cdes‖2

where Ωδ refers to the set of feasible control surface settings.
Nonlinear optimization is a complex matter and in general no guarantee can be

given that the global optimum is found. However, since in our case the optimization
is performed at each sample time, we can use the solution at one time step as the
initial guess at the next time step. This strategy of each time starting very close
to the optimal solution yields very good performance.

In the implementation, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) variable
metric method [13], a quasi-Newton method, was chosen. This takes J(δ) and
the gradient ∇J(δ) as arguments, where the latter can be numerically computed.
It recursively estimates the inverse Hessian of J and performs a line search in
this direction to update δ. Reusing the inverse Hessian at the next time step
significantly improves the performance.

Flight path angle control

The equation to be solved for δ is given by (5.32):

M(δ) = Iyu
des − FTZTP

where M corresponds to the aerodynamic pitching moment to be produced. Re-
calling that M = q̄Sc̄Cm we can explicitly solve for the desired pitching coefficient:

Cdes
m =

1
q̄Sc̄

(Iyudes − FTZTP )

Again we ignore the canard wings for simplicity, and only make use of the symmet-
rical elevon deflection, δes. The control allocation problem then becomes solving

Cm(δes) = Cdes
m ⇐⇒ Cm(δes)− Cdes

m = 0

for δes. Unlike above, we will use this formulation for finding δes and not use an
optimization framework. In this scalar case, actuator saturation can be handled
separately.

The pitching coefficient, Cm, is usually a complicated function of the arguments
involved. However, given measurements of α, q, etc., Cm becomes a close to mono-
tone function of δes, see Figure 2.6. The only exception is when the aforementioned
stall effects occur and the moment produced saturates. However, given the aero-
data, these regions can be manually removed by virtually saturating δes when Cm
saturates.

Many numerical solvers are well adapted to finding the zero of a monotone scalar
function. For the implementation, the Van Wijngaarden-Dekker-Brent method
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[8, 19] was chosen. This method is a happy marriage between bisection, which en-
sures convergence, and inverse quadratic interpolation, which provides superlinear
convergence in the best-case scenario.

7.3 Simulation

We now turn to the actual simulations performed. Before showing the actual plots
in Section 7.3.3, Section 7.3.1 gives an account of the conditions surrounding the
simulations, and the controller parameters used are listed in Section 7.3.2.

7.3.1 Conditions

The simulations are performed under the following general conditions:

• The simulation models, GAM/ADMIRE and HIRM, are both equipped with
sensor dynamics and actuator dynamics mimicing those encountered in a real
aircraft.

• No noise is added to the models, i.e., we assume perfect sensing (besides the
dynamics of the sensors) and no external disturbances like wind gusts.

• The dynamics of the aircraft model are the fully nonlinear dynamics intro-
duced in Section 2.4 and not the simplified ones used for control design in
Chapter 5 (see Sections 5.1.1 and 5.2.1). Specifically this means that the
control surface deflections affect not only the aerodynamic moments but also
the aerodynamic forces.

• The aerodynamic moment coefficients used for control allocation as described
in Section 7.2.1 agree with the ones in the aircraft models as far as possible.
Since, e.g., α̇ and β̇ are not measured, the effects of these are neglected in
the control allocation schemes.

• Speed control is handled by separate controllers. For the HIRM, the speed
controller by Larsson [49] is used, and for the GAM/ADMIRE, a simple PI-
controller has been implemented.

• The sensor information used by the flight control system is updated at a
frequence of 50 Hz for the GAM/ADMIRE and 80 Hz for the HIRM. The
control surface demands are sent to the aircraft at the same frequency.

7.3.2 Controller parameters

The controller parameters used for the simulations are given in Tables 7.2 and 7.3.
The state feedback parameters kps , kα,1, kα,2, kβ,1, and kβ,2 have been chosen
according to the guidelines in Sections 5.1.4 and 5.2.4, to achieve suitable linear
dynamics around the initial states of the flight cases presented below. The observer
gains L1, L2, and L3 place the poles of the error dynamics (6.12) in −8± i, while
L gives the observer poles −2± i.
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ps control α control β control
kps 2.0 kα,1 2.0 kβ,1 2.0

kα,2 5.0 kβ,2 5.0
L1

(
16.0 65.0

)T
L2

(
16.0 65.0

)T
L3

(
16.0 65.0

)T
Table 7.2 General maneuvering control parameters.

γ control
k1 0.4
k2 1.2
k3 2.1
L

(
4.0 5.0

)T
Table 7.3 Flight path angle control parameters.

7.3.3 Simulation results

General maneuvering

To evaluate the general maneuvering control laws from Section 5.1 we use the
GAM/ADMIRE environment. The simulations are performed at an initial speed
of 0.5 Mach and at an altitude of 1000 m. The assessment maneuvers are the
following:

M1. Roll rate demand, pref
s = 150 deg/s. See Figure 7.2.

M2. Angle of attack demand, αref = 15 deg. See Figure 7.3.

M3. M1 and M2 performed simultaneously. See Figure 7.4. During this maneuver,
both α and ps vary rapidly which means that assumption A3 in Section 5.1.1
is violated.

Let us make some comments regarding the simulation results.

• During M1 and M2, the controlled variables, ps, α, and β all follow their
reference trajectories (given by the dashed curves) well.

• The increase in the aircraft speed, VT , during M1 is due to our strategy of
rolling about the stability x-axis, rather than the body x-axis, as discussed in
Section 2.2. Since β is small, the stability x-axes coincides with the velocity
vector. Initially, α = 2.8 deg is necessary to have the lift force make up for
gravity. But after rolling 180 deg without changing α, the same amount of
lift force is directed towards Earth, which causes the aircraft to dive and the
speed to increase.

• In M2, we see that ps and β are not completely unchanged despite the ma-
neuver being constrained to the body xz-plane. The small perturbations are
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caused by the feedback from the bias estimators. This is also the reason for
the small perturbations of the δed and δr input signals.

• Shifting our attention to M3 we see that the resulting aircraft trajectory is
not quite the superposition of the M1 and M2 trajectories, in terms of the
controlled variables. The roll rate response is still satisfactory, but α and β
oscillate more. The reason is (at least) twofold:

1. According to assumption A3 in Section 5.1.1, the β controller assumes
α to be constant, and vice versa. Since this is not the case here, the
roll axis will not coincide exactly with the stability axis as desired, see
Figure 2.3. As outlined in Section 2.2, this means α and β are no longer
decoupled, but during the roll, part of the angle of attack turns into
sideslip and vice versa.

2. During the initial phase of the step, the parameter estimates, ê1, ê2, and
ê3 oscillate. The 0.2 peak in ê2 causes the α controller to believe some
external source is contributing to the pitching moment. Consequently,
the pitching moment produced by δes is reduced, which leads to a re-
duction in q and that the increase in α is temporarily stopped. Efforts
have been made to tune the observers to avoid these oscillations but the
ultimate solution is yet to be found.

Flight path angle control

The flight path angle control law from Section 5.2 is evaluated using the HIRM.
Here, the initial aircraft state is level flight at Mach 0.3 at an altitude of 1524 m
(5000 ft). A model error in the pitch coefficient, Cm, of −0.03 is introduced on
purpose to examine the robustness of the controller. This is the same error that was
used for evaluating the controllers in the GARTEUR robust flight control design
challenge [53]. The following assessment maneuver is used:

M4. Two consecutive flight path angle demands, γref = 25 deg followed by γref =
15 deg. See Figure 7.5.

Let comment on the simulation results.

• Overall, the flight path angle, γ, follows its reference trajectory well.

• The small initial dip of γ is caused by the model error introduced, which
makes the true pitching moment less than the controller expects. Soon how-
ever, the model error is estimated by the observer, as seen in the ê plot, and
the controller compensates for the error and brings γ back to zero after 4
seconds.

• The maximum angle of attack is 38 deg which is greater than the HIRM stall
angle, see Figure 5.1. In accordance with the GAS property of the control
law shown in Section 5.2.2, this does not cause any stability problems.
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• During the steep ascent just after 5 s, the elevons saturate at −40 deg, which
means that the desired angular acceleration, udes, cannot be produced. The
actual u can be computed by numerically differentiating q from sensor data.
Doing so, the maximum gain reduction during the saturation period is given
by

min
t

u

udes
≈ 0.55

In Section 5.2.2, the backstepping control law was shown to have a certain
amount of gain margin. Using the parameter values of Table 7.3, the bound
(5.49) becomes

k2(1 + k1)
k3

= 0.8

Thus, despite violating (5.49), the system converges to the desired state3.
This indicates that the parameter restrictions (5.48) are sufficient but not
always necessary for closed loop stability.

3One should also note that the robustness results in Chapter 5 only regard the state feedback
laws, not including the observer feedback.
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Figure 7.2 Assessment maneuver M1: roll rate demand, pref
s = 150◦/s.
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Figure 7.3 Assessment maneuver M2: angle of attack demand, αref = 15◦.
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Figure 7.4 Assessment maneuver M3: M1 and M2 combined.
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Figure 7.5 Assessment maneuver M4: flight path angle demands, γref =
25◦ followed by γref = 15◦. The dashed line in the α plot
represents α0.



Appendix

7.A Aircraft Data

Aircraft model properties for the GAM [5] and for the HIRM [56].

Entity GAM HIRM
mass m kg 9100.0 15296.0
moment of inertia Ix kg m2 21000.0

Iy kg m2 81000.0 163280.0
Iz kg m2 101000.0
Ixz kg m2 2500.0

wing planform area S m 45.0 37.16
wing span b m 10.0 11.4
mean aerodynamic chord c̄ m 5.20 3.511
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Conclusions

In this thesis, we have investigated backstepping as a possible framework for aircraft
flight control design. The main result is that by recognizing the naturally stabilizing
parts of the aerodynamic lift and side forces, globally stabilizing control laws can
be designed which rely on less information of these forces than corresponding NDI
designs, based on feedback linearization.

To conclude, let us evaluate the proposed control laws with respect to five
major issues, relevant to all control designs, namely stability, tuning, robustness,
input saturation, and disturbance attenuation.

Stability Backstepping deals explicitly with stability, through the construction
of a Lyapunov function for the closed loop system along with the construction of the
control law itself. The derived state feedback flight control laws yield asymptotic
stability within the entire flight envelope of practical interest, including high angles
of attack.

Tuning Since our backstepping designs focus on utilizing useful nonlinearities
rather than cancelling them, the resulting closed loop systems are not linear. This
means that the aircraft response to the pilot inputs will not be independent of, e.g.,
the angle of attack. However, we have shown that the nominal performance, valid
around an operating point of interest, can be tuned according to one’s requirements.

101
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Robustness Robustness profits greatly from our backstepping approach. Since
cancellation of the nonlinear aerodynamic lift and side forces, L(α) and Y (β), is
avoided, complete knowledge of these forces is not required. We have also proposed
adaptation techniques for handling model errors in the aerodynamic moments.

Input saturation Our backstepping control laws all possess a certain gain mar-
gin. Thus, stability is retained for a certain amount of control surface saturation
leading to a reduction of the moments produced.

Disturbance attenuation A main weakness of nonlinear control design in gen-
eral, including backstepping, is the lack of tools to quantitatively analyze the effects
of disturbances, e.g., wind gusts and sensor noise in our aircraft control case. Fortu-
nately, as reported by Enns et al. [15], a flight controller giving a properly selected
bandwidth generally does a good job of suppressing such disturbances.
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[46] Miroslav Krstić, Ioannis Kanellakopoulos, and Petar Kokotović. Nonlinear
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