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Abstract

Identi�cation of time-continuous models from sampled data is a long stand-

ing topic of discussion, and many approaches have been suggested. The

Maximum Likelihood method is asymptotically and theoretically superior to

other methods. However, it may su�er from numerical inaccuracies at fast

sampling and it also requires reliable initial parameter values. A number

of e�cient and useful alternatives to the maximum-likelihood method have

been developed over the years. The most important of these are State-

Variable �lters, combined with Instrumental Variable methods, including

the simpli�ed re�ned IV method. In this contribution we perform unpre-

tentious numerical experiments to comment on these methods, and their

mutual bene�ts.

Keywords: System Identi�cation
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Abstract: Identification of time-continuous models from sampled data is a long standing topic
of discussion, and many approaches have been suggested. The Maximum Likelihood method
is asymptotically and theoretically superior to other methods. However, it may suffer from
numerical inaccuracies at fast sampling and it also requires reliable initial parameter values.
A number of efficient and useful alternatives to the maximum-likelihood method have been
developed over the years. The most important of these are State-Variable filters, combined with
Instrumental Variable methods, including the simplified refined IV method. In this contribution
we perform unpretentious numerical experiments to comment on these methods, and their
mutual benefits.

1. INTRODUCTION

The problem considered is to estimate continuous time
(CT) transfer functions

y(t) = G(p)u(t)

G(s) =
b0s

m + b1s
m−1 + . . . + bm

sn + a1sn−1 + . . . + an

(1)

from discrete time (DT) input output data {u(tk), y(tk)}.
In general, G will be a multiple-input-multiple-output
(MIMO) transfer function.

It may be noted that multiple outputs pose no problems:
each output channel can be treated as a separate problem.
Multiple inputs, though, mean conceptual and algorithmic
problems: It is a matter of distinguishing the contributions
of each input to the output.

The input and output signals are CT functions, but
sampled at discrete time instants tk. For the problem to be
well posed it is formally necessary to know the intersample
behavior of the input signal, so that the continuous time
input can be inferred from the sampled values. There are
three typical intersample behaviors:

• zoh (zero order hold): The input is piecewise constant
between the samples.

• foh (first order hold): The input is piecewise linear
between the samples

• bl (bandlimited): The CT input is bandlimited, con-
tains no frequencies above the Nyquist frequency, and
can hence be reconstructed by the sampling theorem.

One can distinguish between two approaches to the prob-
lem:

(1) The formal approach with Maximum Likelihood cal-
culations including sampling taking adequate account
of the inter-sample behavior

(2) Various approaches based on state-variable filtering
and Instrumental Variable methods.

This contribution discusses pros and cons of these ap-
proaches, and how they can complement each other. We
first describe the two approaches in somewhat more detail.

2. THE MAXIMUM LIKELIHOOD METHOD

The theoretically optimal solution is to apply the maxi-
mum likelihood (ML) method. It has long been known how

to do this, e.g. Mehra and Tyler (1973), Ljung (1999) and a
recent discussion is given in Ljung and Wills (2008). If the
disturbances on the system are Gaussian, the ML method
coincides with the prediction error method (PEM).We
describe it in case the additive disturbances at the output
are white: Collect the transfer function parameters in the
parameter vector θ. Let

ŷ(t|θ) = G(p, θ)u(t) (2)
be the simulated output for a particular set of parameters,
where the simulation is done taking the intersample input
properties into account. Then the ML estimate is

θ̂ = arg min
θ

∑
‖y(tk) − ŷ(tk)‖2

L−1 (3)

where the matrix L is the assumed covariance matrix of
the additive disturbance.

Normally the minimization has to be carried out by
iterative numerical search, and then a reasonable initial
parameter value θ̂0 is required.

If the additive output noise is not white, Kalman filter
techniques should be applied. See the aforementioned
references.

3. METHODS BASED ON STATE VARIABLE
FILTERS

At the same time, a large number of alternative techniques
have been developed, most notedly (simplified refined)
Instrumental Variable methods in conjunction with state
variable filters (SVF), e.g. Young and Jakeman (1980),
Young (1981), Garnier et al. (2003), Young (2008), and
Garnier and Wang (2008). This is not the place for a survey
of such methods, but we refer to the excellent papers, just
mentioned.

To fix the ideas, it is necessary with a brief description of
the main issues. For simplicity we focus on SISO systems.

Let the model be given by

y(t) =
B(s)
A(s)

u(t) (4)

(allowing ourselves to mix time functions with Laplace
variables.)

y(n)(t) + a1y
(n−1)(t) + . . . + any(t) =

b1u
(m−1)(t) + b2u

(m−2)(t) + . . . + bmu(t)
(5)



We disregard for the moment any influence from a noise
source. Here, y(k)(t) denotes the k:th derivative of y(t)
with respect to time. Assume n ≥ m. If these derivatives
were all reliably accessible, it would be a simple task to
phrase (5) as a linear regression and compute/estimate
the parameters ak and bk accordingly. To handle this, we
low pass the whole equation by a continuous time filter
L(s). Let the pole excess of this filter be at least n. Then
the variables

zk(t) = L(s)y(k)(t)

wk(t) = L(s)u(k)(t)
(6)

are all well defined signals, that can be computed by proper
filters.

These variables obey exactly
zn(t) + a1zn−1(t) + . . . + anz0(t) =

b1wm−1(t) + . . . + bmw0(t)
(7)

(except for a possible transient.) Note also, that if equation
error noise e(t) is present in (5), it will simply appear as
L(s)e(t) in (7). With w and z known, the equation (7) is
a perfect linear regression.

Now, we have only sampled measurements of y and u
available and the question is whether we can compute w
and z from those. As mentioned in the introduction, it is
necessary to know the inter-sample behavior of the input,
for example that is zoh. Then it is perfectly straightfor-
ward to compute exactly the variable wk(t) by standard
software, regardless of the sampling interval. It is more
cumbersome to compute zk(t) exactly, though, since the
inter-sample behavior of y(t) is unknown and depends on
the system. If the sampling interval is small compare to
the system’s time constants, it may be reasonable to treat
y(t) as foh, though.

The question is how to choose L(s). Common ideas are

• SVF: Basic State Variable Filter

L(s) =
(

λ

s + λ

)n

(8)

• GPMF: Generalized Poisson Moment Function

L(s) =
(

λ

s + λ

)n+1

(9)

• Refined: Refined choice of filter (the denominator of
the system)

L(s) =
1

A(s)
(10)

For the first two methods λ reflects the dynamics of the
system, often taken as somewhat larger than the guessed
bandwidth. In the third case, the denominator polynomial
is of course unknown, and must be replaced by estimates,
typically iteratively improved.

With any of these choices, (7) will have well defined
quantities zk(t) and wk(t) at the sampling instants t = tj ,
and there is a linear relationship between them and the
parameters. If there is no noise present, the parameters
can easily be solved for by the least squares method:

θ̂ =

∑
j

ϕ(tj)ϕT (tj)

−1 ∑
j

ϕ(tj)zn(tj) (11)

with the usual notation of ϕ built up from zk and wk. In
the normal case that a disturbance is present in (7) that
is not a white noise sequence, the LS method will lead to
biased results. A common solution to this problem is to use

the Instrumental Variable (IV) method, e.g. Section 7.6
in Ljung (1999). Then the noise effected outputs zk are
replaced by “instruments” ẑk to form an instrument vector
ζ(tj) of the same format as ϕ(tj) giving the IV estimate:

θ̂ =

∑
j

ζ(tj)ϕT (tj)

−1 ∑
j

ζ(tj)zn(tj) (12)

Typically the instruments are formed from u analogously
to z, often based on a model of the system, sometimes
complemented with appropriate pre-filtering. This is not
the place to go into detail with such choices, but we refer
to the earlier mentioned references.

4. METHODS IN EXISTING TOOLBOXES

4.1 CONTSID and CAPTAIN

The CONTSID Toolbox, Garnier et al. (2008), and the
CAPTAIN toolbox, Young (2009) are probably the best
known toolboxes devoted primarily to CT model estima-
tion from DT data. They estimate multiple input, single
output, (MISO) transfer function models of the kind (1).
They offer many routines, primarily of the type mentioned
in Section 3.

CONTSID have among many examples the following com-
mands, relevant for the current discussion:

• SRIVC: A routine based on the Simplified Refined
IV method (10). Could be initialized by the result of
IVGPMF or by a DT model obtained by SRIV.

• IVSVF: A routine based on the basic SVF method (8)
with auxiliary model-based instrumental variables.

• IVGPMF: A routine based on the GPMF method (9)
with auxiliary model-based instrumental variables.

• COE: A routine which appears to be a variant of the
PEM/ML method (3). See Mensler (1999). Typically
initialized by the result of IVGPMF.

CAPTAIN has related commands, like rivc, that esti-
mates continuous time MISO models based on the refined
IV approach (10).

4.2 The System Identification Toolbox: SITB

Continuous time models are supported in the Matlab’s
system identification toolbox Ljung (2007) in various ways:

• Estimate a DT model and transform to continuous
time by d2c. This is generally available, but has two
disadvantages:
· All DT systems cannot be transformed to CT,

and the mapping may be ill conditioned
· The number of poles and zeros cannot be indi-

vidually assigned to the CT system. Typically it
leads to a pole excess of 1.

• Estimate Process models of the type (idproc)
K

1 + sT
e−sD (13)

· This is limited to models of at most order 3.
• Define and estimate CT grey box models using
idgrey, or structured or canonical idss models, like
in
m = pem(data,4,’ss’,’can’,’ts’,0)

• Directly estimate CT output error models (transfer
functions) from CT frequency domain data.
· This is limited to frequency domain data, but a

route via transfer function estimation has been
possible, as in



g = spa(data);
g.ts=0;
m = oe(g,[nb nf])

The methods in the SITB are based on maximum likeli-
hood/prediction error techniques.

4.3 Estimating CT MIMO Transfer Functions with
Arbitrary Orders in the SITB

Suppose we would like to identify a MIMO transfer func-
tion

y(t) = G(p)u(t)

Gij(s) =
b0s

m + . . . + bm

sn + a1sn−1 + . . . + an

(14)

where Gij is the transfer function from input j to output i.
(We have suppressed those indices in the coefficients.) We
can then define a structured state-space model for these
channels (illustrated for m = 1 , n = 3):

A =

[−a1 1 0
−a2 0 1
−a3 0 0

]
B =

[
0
b0
b1

]
C = [1 0 0]

As =

[
NaN 1 0
NaN 0 1
NaN 0 0

]
Bs =

[
0

NaN
NaN

]
Cs = [1 0 0]

The CT state space model for this block of the transfer
function is then

ms = idss(A,B,C,0,zeros(3,1),’As’,As,’Bs’,Bs,...
’Cs’,Cs,’ts’,0);

The MIMO model is built of from these submodels by
block matrices in an obvious way. With ms thus defined,
CT MIMO models can be estimated using the ML/PEM
method by

m = pem(data,ms);

They only question is how to find the initial parameter
values ai, bi. They could be obtained from IV/SVF meth-
ods, described in Section 3. Within the SITB, they could
be found by applying d2c to discrete time models obtained
by e.g. oe or n4sid.

A very simple way is to estimate a DT oe model, apply
d2c and trow away numerator parameters that exceed the
desired numerator orders:

m = oe(data,[n n 1]);
mc = d2c(m);
mc.b(1:n-m) = zeros(1,n-m)

and use mc when constructing the state-space model as
above.

The possible down side of this is that the d2c transforma-
tion may be ill-conditioned, and/or that throwing away
numerator coefficients may not be the best way of taking
care of the information.

5. SOME ASPECTS OF D2C

The transformation from discrete time to continuous time
models (the Matlab command d2c) hovers over the
problem of constructing CT models from DT data. Such
estimation, as we have seen, could involve explicit use of
this command, but even if it does not, the properties of
this transformation are relevant: Estimating CT models
from DT data is a d2c operation. It is well known that
d2c need not be a unique transformation, in the sense
that several different CT models may have the same DT

counterpart for a certain sampling interval. Conversely,
there exist DT models (e.g. with poles on the negative
real axis) that do not have a CT counterpart (of the
same order). All of this is reflected, mathematically, by
the fact that d2c involves matrix logarithms which may
pose several numerical problems. In this section we shall
illustrate some such properties.

5.1 Sensitivity of c2d/d2c

Let us consider a simple example

>> m0=tf([1 2],[1 1 1])

Transfer function:
s + 2

-----------
s^2 + s + 1

This system has a bandwidth of around 1.4 rad/s, and fol-
lowing a simple rule of thumb (Ljung (1999), Section 13.8)
a suitable sampling frequency for identification is ten times
the bandwidth. So good sampling rates should be around
0.5 sec. To transform to discrete time and then back with
a sampling interval up to around the time constant should
be safe, but not necessary with longer sampling intervals:

>> d2c(c2d(m0,3))

Transfer function:
s + 2

-----------
s^2 + s + 1

>> d2c(c2d(m0,4))

Transfer function:
s + 1.493

----------------
s^2 + s + 0.7467

>> d2c(c2d(m0,10))

Transfer function:
s + 0.613

----------------
s^2 + s + 0.3065

We show the step responses of the original system and
of this transformed system in Figure 1. Clearly, the true
nature of the step response can not be revealed from a
sampling interval of 10.

Of course, this is confirmed when CT model is estimated
from data with different sampling intervals:

>> u=iddata([],randn(1000,1),’ts’,0.1)

Time domain data set with 1000 samples.
Sampling interval: 0.1

Inputs Unit (if specified)
u1

>> z1=[sim(m0,u),u];;
>> tf(d2c(pe(z1,[2 2 1])))

s + 2
-----------
s^2 + s + 1



Fig. 1. Step responses of m0 (thin line) and of
d2c(d2c(m0,10)) (thick line).

>> u.ts = 1;
>> z2=[sim(m0,u),u];
>> tf(d2c(oe(z2,[2 2 1])))

s + 2
-----------
s^2 + s + 1

>> u.ts=10;
>> z3=[sim(m0,u),u];
>> tf(d2c(oe(z3,[2 2 1]))

s + 0.613
----------------
s^2 + s + 0.3065

5.2 Sensitivity of State Variable Filter (LS)

So, let’s see what happens with the equation based meth-
ods in Section 3. Two simple Matlab routines have
been written for this: lssvf(data,[nb na],lambda) and
lsref(data,[nb na],Apol) that implement (8) and (10),
respectively, both for LS solutions.

>> mls = lssvf(z1,[2 2],0.1/z1.ts)
0.9992 s + 2.002
----------------
s^2 + s + 1.001

>> mls = lssvf(z2,[2 2],0.1/z2.ts)
1.063 s + 2.017

------------------
s^2 + 1.079 s + 1.009

>> mls = lssvf(z3,[2 2],0.1/z3.ts);
0.3065 s + 0.06406

------------------------
s^2 + 0.3117 s + 0.03203

As the sampling interval increases from 0.1 to 1 to 10, the
estimates deteriorate, despite the fact that the relation (7)
is exact for all sampling rates. The reason must be that the
filtering to zk in (6) does not use the correct intersample

behavior. Let us now try the refined svf, with the correct
numerator polynomial:

mls = lsref(z3,[2 2],[1 1 1]);

0.9994 s + 2
--------------
s^2 + s + 1

Surprisingly, this gives an (almost) correct estimate de-
spite the long sampling interval. The reason must be that
wk are computed with the correct intersample behavior,
so actually Bwk = y, and y = Azk, so the incorrect
intersample behavior does not enter the picture. Now try
the numerator from d2c(c2d(m0,10)):

>> mls = lsref(z,[2 2],[1 1 0.3065]);
s + 0.613

----------------
s^2 + s + 0.3065

and we see that we obtain the “simplistic” transfer func-
tion d2c(c2d(m0,10)).

6. SOME CASE STUDIES

6.1 Experimental Setup

Some tests of routines for estimating CT models were set
up as follows

(1) 10 randomly selected 2-input 1-output continuous
time, stable systems were generated. The number of
poles for each of the two transfer functions varied
from 1 to 10. The number of zeros was randomly
selected from 0 to the number of poles - 1 for each
of the transfer functions. The generated systems are
listed in the Appendix. Note that the two transfer
functions have different denominators, as is usually
the case for oe model. For the SRIVC method this is
discussed, e.g. in Garnier et al. (2007).

(2) Each system was simulated with two Random Bi-
nary Signal inputs, with a mutual correlation of 0.5
between the inputs . For each system, a “natural
identification sampling interval” T found as follows.
The bandwidth of each of the two transfer func-
tions were determined. (Could be quite widely apart).
The sampling frequency 2π/T was determined as ten
times the maximum of these. In three separate sets
of experiments, it was tested to use T as sampling
interval (normal sampling), T/10 (fast sampling) and
10T (slow sampling). (The same systems were used
in the three sets of experiments). 1000 data were
generated.

(3) To the simulated outputs were added white noise
corresponding to (amplitude) signal-to-noise ratio of
about 10. For each system ten data set were gener-
ated, corresponding to ten different random distur-
bances.

(4) For each of the 300 (10 systems, 3 sampling intervals
and 10 noise realizations) data sets a CT model was
estimated using the “correct” model orders. Four
methods were tried: (1) SRIVC (Contsid) with default
initialization (SRIV). (2) COE (Contsid) initialized
with IVGPMF (with λ = 0.5/sampling interval.) (3)
PEM (SITB) initialized from DT OE as described in
Section 4.3 and (4) PEM initialized in the estimate
from SRIVC (Method called S/PEM below). The
calculations were performed in Matlab (with the



system identification toolbox) Version R2008 and
CONTSID5-0.

(5) All commands were used in their default form. The
bandwidth parameter λ required fo the startup COE
was chosen as half of the sampling frequency (five
times the bandwidth for normal sampling). No doubt
each model could have been improved by individual
attention to tuning the optional parameters in the
method, but that was not done.

(6) Each model was evaluated by the fit to the corre-
sponding noise-free data (the simulated data without
the additive measurement noise). The following mea-
sure was calculated:

fit = 100 ∗
[
1 − norm(ŷ(t) − y(t))

norm(y(t) − mean(y(t)))

]
(15)

where ŷ is the model’s simulated output for the input
in question. A fit of 100% thus means that the model’s
output coincides with the measured output. A fit
of 0% means that the model does no better than
guessing the output to be its mean. A fit of less
than −100% is considered to be a “failure”, and was
replaced by −100%. The medians of the fits over the
ten different noise realizations were formed and these
are shown in the tables below.

6.2 Fast Sampling

Medians of the fits over the ten runs, for each system and
method.(Ts = sampling interval)

# Ts SRIVC COE PEM S/PEM
1 0.0045 99.2903 99.4246 99.4724 99.4242
2 0.0209 99.1587 99.0884 84.3475 99.1587
3 0.0045 98.2369 63.0385 90.2109 99.1446
4 0.0208 97.1395 87.7728 82.5816 98.1756
5 0.0058 97.8705 36.6399 1.3654 98.4043
6 0.1291 84.7125 90.7202 72.8593 98.4951
7 0.0607 90.9173 66.2241 41.3407 91.1278
8 0.0826 97.5910 80.0920 -63.5990 98.1465
9 0.1144 67.4782 71.5483 17.1539 67.7454

10 0.0066 77.7634 -26.4090 -100.0000 19.7961

6.3 Normal Sampling

# Ts SRIVC COE PEM S/PEM
1 0.0451 99.3128 99.3128 99.4466 99.3128
2 0.2086 99.0851 99.0853 99.2109 99.1981
3 0.0451 99.0016 96.1341 98.9337 99.0023
4 0.2081 98.7129 98.3360 97.1051 98.7129
5 0.0576 85.8352 43.9570 81.1964 87.9092
6 1.2914 53.0971 56.4459 98.0792 97.7056
7 0.6068 97.4537 82.7733 89.5411 98.0286
8 0.8261 90.8069 87.7111 98.1496 90.9662
9 1.1444 30.8549 28.3197 80.6335 30.6140

10 0.0659 92.3024 60.6496 -37.9357 96.7195

6.4 Slow Sampling

# Ts SRIVC COE PEM S/PEM
1 0.451 99.4058 99.4587 99.4176 99.4058
2 2.086 2.4571 3.1343 99.1803 4.3494
3 0.451 98.9098 98.3843 98.9250 98.9528
4 2.081 20.3322 15.8173 97.4486 98.3417
5 0.576 69.2093 97.5522 98.5972 98.6086
6 12.914 69.9063 61.0590 51.6331 70.2159
7 6.068 79.6647 79.7018 80.1545 79.9483
8 8.261 24.0774 41.6909 -100.0000 24.0332
9 11.444 20.9608 20.9828 -100.0000 21.3846

10 0.659 97.4926 97.7061 94.2959 96.8638

6.5 Variability

What is striking in the runs is that they show considerable
variations between the different noise realizations, even
though the SNR is as high as 10. We show here the ten
different runs for model number 5, in the case of “normal
sampling”.

run # SRIVC COE PEM S/PEM
1 88.1053 20.3460 96.2996 88.1058
2 88.6402 45.8884 24.1037 98.6481
3 86.4322 57.4648 73.7396 89.0804
4 86.4986 40.9107 -100.0000 87.1612
5 52.9565 93.4966 98.2055 86.9474
6 79.0969 78.0857 -100.0000 87.6296
7 85.2383 44.6478 96.5217 96.4723
8 75.7232 35.1760 83.9547 84.9565
9 97.7383 34.7705 78.4381 98.6895

10 84.2291 43.2662 84.3672 87.7127
median 85.8352 43.9570 81.1964 87.9092

mean 82.4659 49.4053 43.5630 90.5403
std 11.8957 21.6987 78.5948 5.2426

6.6 Comments on the Results

The cases of bad performance of the PEM method are all
preceded by warnings from d2c that it is ill-conditioned,
has poles on the negative real axis or other problems. So
the failure is announced in advance so to speak. (There
are also cases with such warnings which eventually lead to
good results). It is clear that it is quite necessary to offer
to provide the PEM method with initial value estimates
that are not dependent on d2c. The S/PEM is such a good
complement to PEM.

7. DISCUSSION

The numerical experimentation shows a number of things
to think about. One is that the larger examples are some-
what fragile. We had quite small amount of noise. Still,
the estimates do not show a smooth behavior of “mean
± variance” character over the different realizations, (and
over the different systems). Instead we see rather non-
smooth effects of occasional outlier-like performance. No
doubt, one reason for this are nonlinear threshold effects,
like stability. It is also likely that the non-smooth trans-
formation d2c plays a role here. As a result, it is not easy
to compare different methods.

One might discuss what is the natural and best way to
evaluate the quality of CT models. We have here chosen
the common measure of the ability to reproduce output
signals for the same input as used in the estimation.
This is also, via Parseval, a measure for how close the
model frequency function is to the true one in a quadratic
norm given by the input spectrum. (Actually, since the
simulation by necessity is DT, the closeness of the sampled
frequency functions). The reason for building CT models
could be a particular interest in certain parameters of
physical interest. We have not at all considered that aspect
here, but only evaluated the input-output behavior. If
that is the focus, it is worth while to comment on how
discrete time modeling performs. We have repeated the
experiments with the same data (“normal sampling”) for
two DT model structures: (1) An OE model with two inde-
pendent transfer functions (command oe(data,[nb na 1
1]) in the SITB) (2) An OE State-space model (command
pem(data,2*na,’disturbancemodel,’none’)) giving the
following result (no tuning of any optional variables):



# OE OE-SS
1 99.3905 99.1740
2 99.0295 96.5609
3 97.1118 93.6404
4 97.7562 96.6918
5 65.3220 37.2948
6 98.2538 97.9743
7 84.0135 97.6200
8 98.1353 97.5071
9 97.6030 97.5198

10 50.8909 63.9668

It is interesting to note that for some systems, the best
CT-model outperforms the corresponding DT-model.

A final word of caution: the randomly generated test
systems may very well have artifacts that are not so
relevant for data from real-life systems.
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8. APPENDIX: THE TEST SYSTEMS

All code and data for the tests in Section 6 can
be downloaded from www.control.isy.liu.se\~ljung\
cttf. The k:th randomly generated test systems has the
form

y(t) = G
(k)
1 (s)u1(t) + G

(k)
2 (s)u2(t)

=
B

(k)
1 (s)

A
(k)
1 (s)

u1(t) +
B

(k)
2 (s)

A
(k)
2 (s)

u2(t)

with the transfer functions/polynomials given below:

G
(1)
1 =

0.3928

s + 13.95
G

(2)
2 =

9.528

s + 1.2

G
(2)
1 =

−1.688s− 2.764

s2 + 2.761s + 1.279
G

(2)
2 =

3.213s− 4.325

s2 + 0.02755s + 2.033

G
(3)
1 =

−3.934s2 − 0.2401s− 0.5596

s3 + 3.09s2 + 3.113s + 1.738
G

(3)
2 =

−7.847s2 + 1.502s + 6.023

s3 + 8.894s2 + 16.32s + 8.404

G
(4)
1 =

−0.8471s3 + 0.9081s2 − 5.972s + 5.519

s4 + 3.115s3 + 5.036s2 + 4.577s + 2.254

G
(4)
2 =

−6.253s3 − 4.68s2 + 3.012s− 3.671

s4 + 2.066s3 + 2.909s2 + 2.858s + 1.054

G
(5)
1 =

−2.188s4 + 5.463s3 − 11.21s2 − 5.098s + 5.282

s5 + 4.158s4 + 6.742s3 + 6.222s2 + 3.534s + 0.9117

G
(5)
2 =
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G
(6)
1 =
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B
(8)
1 =1.634s
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4 − 3.528s

3 − 5.012s
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(8)
1 =s

8
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2
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B
(8)
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A
(8)
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B
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A
(9)
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8
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5
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4

+ 5.853s
3
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A
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