Technical report from Automatic Control at Linkdpings universitet

Regressor and Structure Selection in
NARX Models Using a Structured ANOVA
Approach

Ingela Lind, Lennart Ljung

Division of Automatic Control

E-mail: ingela@isy.liu.se, 1jung@isy.liu.se

25th June 2007

Report no.: LiTH-ISY-R-2799
Accepted for publication in Automatica, 2007

Address:

Department of Electrical Engineering
Linkopings universitet

SE-581 83 Linképing, Sweden

WWW: http://www.control.isy.liu.se

AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

Technical reports from the Automatic Control group in Linkdping are available from
http://www.control.isy.liu.se/publications.


http://www.control.isy.liu.se/~ingela
http://www.control.isy.liu.se/~ljung
mailto:ingela@isy.liu.se
mailto:ljung@isy.liu.se
http://www.control.isy.liu.se/publications/?type=techreport&number=2799&go=Search&output=html
http://www.control.isy.liu.se
http://www.control.isy.liu.se/publications

Abstract

Regressor selection can be viewed as the first step in the system identifi-
cation process. The benefits of finding good regressors before estimating
complex models are especially clear for nonlinear systems, where the class
of possible models is huge. In this article, a structured way of using the
tool Analysis of Variance (ANOVA) is presented and used for NARX model
(nonlinear autoregressive model with exogenous input) identification with
many candidate regressors.
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1 Introduction

The general setting considered in this article is a nonlin-
ear black-box system identification problem. We assume
that the measurements Z = {y(t), u(t)}4=1,.. .~ can be
reasonably well described by a static nonlinear function

y(t) = g(e(t) + e(t), (1)

where e(t) is Gaussian noise and () is a regression vec-
tor formed from Z. Regressor selection is to select the es-
sential elements of p(t) (the regressors) to be included in
the model, preferably without simultaneously estimat-
ing g. Structure selection is to get a basic idea of which
regressors interact with each other and which do not, in
order to keep the complexity of g(p(t)) down.

The reason to bother about regressor and structure selec-
tion is to significantly reduce the effort needed to choose
the function g and estimate its parameters. The cost re-
duction depends heavily on the number of candidate re-
gressors considered. For a system with three candidate
regressors, seven (23—1) different regressor combinations
should be compared, while for a system with twenty can-
didate regressors there are 22° — 1 ~ 1.05 - 105 regressor
combinations. Any more refined structure identification,
such as e.g. ordering of the regressors or considering in-
teractions between regressors, results in an even higher
growth rate of the problem size. With high-dimensional
system descriptions, we also encounter the problem that
the measurement data may not give sufficient basis for
parameter estimation in the entire regressor space. This
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means that there is reason to preselect the regressors
and do the time consuming parameter estimation with
a fixed regression vector.

For linear systems, regressor selection is often done with
criteria like AIC (Akaike, 1974), MDL (Rissanen, 1978,
1986) or several others. In recent years also nonlinear
systems have gained more and more interest, e.g., Autin
et al. (1992); Gunn and Kandola (2002); Korenberg et al.
(1988); Piroddi and Spinelli (2003); Rhodes and Morari
(1998); Spinelli et al. (2006). In Haber and Unbehauen
(1990); Lind and Ljung (2005) and Roll et al. (2006),
surveys of methods for regressor selection in nonlinear
systems are given.

In previous work (Lind, 2000; Lind and Ljung, 2005), it
was shown that the statistical tool ANOVA (e.g., Miller
(1997); Montgomery (1991)) is useful for selecting re-
gressors in quite small system identification problems
where the true system is of nonlinear finite impulse re-
sponse (NFIR) type. It has also been shown in a com-
parison with four other methods, selected among the
ones above to give as varying approaches as possible,
that ANOVA gives better and more homogeneous results
on small-size problems (Lind, 2006; Mannale, 2006). All
the methods suffer when the number of regressors to
test grows. The contribution of this article is a system-
atic divide-and-conquer approach called Test of Inter-
actions using Layout for Intermixed ANOVA (TILIA).
This method shows homogeneously good results also for
nonlinear autoregressive systems with exogenous input
(NARX) and many candidate regressors.

June 12, 2007



2 ANOVA

The fundamental idea of ANOVA is to use an over-
parameterised locally constant model to describe the
data, a model that has a constant value for each box in an
axis-orthogonal grid of the regressor space. The tool to
achieve this end is an ANOVA function expansion (Fried-
man, 1991) with piecewise constant basis functions;
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where by ;) is the ith interval relating to the regressor
o and Iy(z) = 1 if ¢ € b and zero otherwise. These
intervals form the axis-orthogonal grid. The parameter
vector ¢ acts as decision variable in ANOVA and its el-
ements can only assume the values 0 or 1. The influence
of a regressor is described by a number of different terms
of increasing complexity. In this expression cyfy is the
total mean, independent of all regressors. The part of
the influence of each regressor, which is independent of
all other regressors, is described by the terms in the first
sum and called the main effects. The part of the influ-
ence of each regressor that also depend on one other re-
gressor is described by the terms in the second sum and
called two-factor interaction effects and so on. The num-
ber of regressors included in an effect is called the inter-
action degree of the effect. Each effect is described by a
set of basis functions. Note that each effect has one cor-
responding parameter in ¢, but can have many param-
eters in #, one for each basis function. Since the model
is strongly over-parameterised, many linear constraints
are needed to give identifiability. These are denoted

Ab =0, (3)

where the details of the very structured matrix A can
be found in Roll et al. (2006).

The same principles as for lasso (Tibshirani, 1996) and
non-negative garrote (Breiman, 1995) can be used to de-
scribe ANOVA (Roll et al., 2006). Start with the model
M(c,0,¢(t)), which is linear in the parameters 6. Use
the objective function

Vie.t) =Y (st - Me.0. o)) @

t=1

In a first step, let 0 be the minimising argument to
V(1,0), subject to (3). In the second step, solve

min  V(c,8) + J||Fcl|s (5)
subject to ¢ € {0, 1}2d.

The penalty factors J and F are computed from V' (1, 6)
and statistical F-tables. Also here, the details are not
important in this context but can be found in Roll et al.
(2006). The resulting model is usually sparse in the num-
ber of used regressors, similar to what is obtained by
using the 1-norm constraints of lasso and non-negative
garrote. The complexity of the obtained model is nat-
urally restricted by the used function expansion, which
forces, e.g., one-dimensional effects to be modelled by
the one-dimensional terms only.

The piece-wise constant basis functions form a grid in
the regressor space. The area in the regressor space that
correspond to a specific combination of active basis func-
tions (one for each regressor) is called a cell. If a data
set covers the regressor space in such a way that all cells
have an equal amount of data points, the data set is
called balanced.

An alternative introduction to ANOVA is given in Lind
and Ljung (2005) and detailed descriptions of both ap-
proaches are given in Lind (2006). Therein, also a dis-
cussion of the properties of the statistical tests, e.g., that
they are robust in a nonlinear setting, and comparisons
to several other regressor selection methods are given.
In Roll et al. (2006) it was shown that ANOVA is not
only similar to non-negative garrote and lasso, but is a
special case of group non-negative garrote (Yuan and
Lin, 2006).

3 TILIA: A Way to Structure the Use of
ANOVA

Recall the problem (1). In Lind and Ljung (2005), the
problem of selecting the elements of ¢(t) among input
time lags was successfully solved by using ANOVA. The
main hindrance for extension of this result to many
candidate regressors is the explosion in the number of
necessary data points needed for the analysis in high-
dimensional regressor spaces, a problem that is not
unique to this method. As will be shown in this con-

tribution, this hindrance can be avoided, although not
deleted.

One of the benefits with ANOVA is that the locally con-
stant model (2) used, can be expressed with only a few
model terms if the interaction degree is low. A rough
model fit is sufficient since only the structure of the sys-
tem is sought at this stage. This gives the hint that the



complexity can be restricted if only interactions of rela-
tively low interaction degree (2—4 regressors) are consid-
ered instead of full order interactions. Since data seldom
offers support for models of higher dimension than this
in the entire regressor space, the restriction on interac-
tion degree will not give large effects on the final system
model.

The idea is to treat the full problem with maybe 20-40
candidate regressors as a large number of small problems
of more friendly sizes, three to seven candidate regres-
sors each, where the number of regressors depends on
correlations between candidate regressors and available
data. Each of the smaller problems will be tested with
ANOVA, a basic test. To test all interactions up to the
restricted level in the full problem, each candidate re-
gressor has to be included in many different basic tests.
How many depends on which interaction degree is con-
sidered and on how many regressors are included in each
basic test. The results from this large number of basic
tests will be intermized to give a composite value for
each tested main and interaction effect for the full prob-
lem. By this divide-and-conquer approach, advice on an
appropriate model structure can be extracted from the
data. To keep the computational complexity down and
give a fair comparison of the candidate regressors it is
important how the basic tests are selected.

The following steps defines Test of Interactions using
Layout for Intermixed ANOVA (TILIA):

(1) Select regressors to test (Section 4.1).
(2) Select intervals (Section 4.2).
(3) Do test design (Section 4.3).
For each test:

(a) Balance data (Section 4.4).

(b) Run basic test (Section 4.5).
(4) Combine basic test results (Section 4.6).
(5) Interpret results (Section 4.7).

The tasks of selecting candidate regressors, selecting in-
tervals and balancing data are all dependent on each
other and closely connected to the spread of the data
in the regressor space. They are also important for the
success of the method.

4 TILIA: Description of the Method
4.1 Orthogonalisation of Regressors

One issue to consider is whether to orthogonalise the re-
gressors before regressor selection or not. If the regres-
sors are strongly correlated, the piecewise constant basis
functions for different regressors will be very close, giving
numerical problems and problems caused by the repre-
sentation of the regressor space. It might then be a better
idea to tilt and skew the axis-orthogonal grid (Figure 1)

Categorisation with original regressors Categorisation with orthogonalised regressors

I S S S

(a) The sample distribution (b) The sample distribution

in the space spanned by the in the space spanned by the

regressors @1 and 2. orthogonal basis vectors g¢i
and g2, which are obtained
by QR-factorisation of ¢
and .

Figure 1. Difference between categorisation of original re-
gressors and orthogonalised regressors. The balance in the
number of data between the different cells is much better in

(b).

in the regressor space formed by the piecewise constant
basis functions. This can easily be done by using a QR-
factorisation of the matrix formed by [¢1, @2, .., w4l
An important drawback is that it matters in which or-
der the regressors are put in the above matrix, since we
consider nonlinear relations. A sparse representation of
the model is only obtained if a good ordering is found.

The advice is to use orthogonalisation if necessary to get
reasonably balanced data, but not otherwise.

4.2 Categorisation of Data

The term categorisation of data is here used for the se-
lection of the intervals for the piecewise constant basis
functions in (2). These functions can be interpreted as
index functions for which cell a data point belongs to.
Think of a cell as a “voxel” in the space of candidate
regressors.

When designing experiments for an intended analysis
with ANOVA, balanced designs are in great demand,
since they are the easiest to analyse and give the most
trustworthy results. The reason is that a balanced de-
sign gives independence in the second optimisation prob-
lem (5), in the sense that each ¢; parameter can be opti-
mised individually and does not influence the other pa-
rameters. See also discussion in Lind (2006). In our case,
balanced design means the same number of data in all
cells. The distribution of the data into the cells depends,
of course, strongly on the choice of cells. A bad choice of
categorisation gives empty cells and large variations of
the number of data in the different cells.

In TILIA, the implemented categorisation is very naive.
Each candidate regressor is treated independently. A
user defined proportion vector, which tells how many
intervals to use and how large proportion of the data
should be in each interval, is used to determine intervals



of the continuous range of each regressor. The proportion
vector, e.g., (a1, e, as], is used together with the values
of the regressor ¢; to find the intervals for the basis func-
tions Ip(;1)(¢;), In(j,2) (@) and Iy 3y (;). The N values
of ¢; in the data set are sorted in ascending order de-
pending on magnitude. The interval b(j, 1) is selected as
the range from the first sorted data point to data point
a1 N and includes the value of data point ayN. b(j,2)
goes from data point a1 N to data point (a1 + ag)N
and b(j,3) from data point («; + a2)N to the last one.
Through the proportion vector, it is possible to choose
the number of categories and to adjust the interval lim-
its to the distribution of data in the regressor space. The
purpose is to get a reasonable balance between the cells,
which then is enhanced by the balancing. In our expe-
rience, three equal proportions suffices in most cases.
There is reason to elaborate with the proportion vec-
tor if the distribution of data is very skewed or there is
strong correlation between the regressors. A good multi-
variable balance is usually obtained by taking a smaller
proportion from the data ranges where there is plenty of
data. The method is not very sensitive to the choice of
proportion vector if data is plentiful, which can be seen
in the simulated examples in Section 5. A huge potential
for improvements of the interval selection is present, es-
pecially multi-variable methods, since the major draw-
back of the chosen categorisation method is that it treats
each regressor independently, which works less well with
correlated regressors.

4.8 Test Design

To illustrate the problem to be solved here, we start with
a small example:

Example 1 Assume that we have a dataset where
we would like to test what candidate regressors
{y(t=1),...,y(t —9),u(t),...,u(t —9)} are important
to explain y(t), that is, 19 candidate regressors. We are
interested in interactions of a degree that is possible
to visualise in some way, which means up to 3-factor
interactions. The amount of data we have got and
the correlation between regressors present in it, limit
the analysis to five regressors at a time, since there
are empty areas in the regressor space. This means
we have (139) = 969 S-factor interactions to test and

(159) = 11628 basic tests with five regressors each to
choose from. Each basic test includes (g) =10 3-factor
interactions. To test all 3-factor interactions means
that the basic tests must overlap a bit and that a single
3-factor interaction might be tested more than once.

What is the best test sequence?

The purpose of the test design is to reduce the compu-
tational complexity while maintaining a good balance
of the number of tests for different candidate regressors.
In the example above, if all possible different basic tests

would be used, each candidate regressor would be in-
cluded in 3060 basic tests, and each 3-factor interaction
would be tested 120 times. It is important that all effects
of the same interaction degree are tested approximately
the same number of times to get comparable composite
values. In TILIA a randomised procedure to reduce the
number of basic tests is used. This test design, which is
given in Algorithm 1, reduces the number of tests to do
and keeps approximately the same number of tests for
all effects of the same interaction degree. A typical run
of the randomised test design in the example above con-
sist of 212-218 basic tests with each candidate regressor
included in 53-60 basic tests and each 3-factor interac-
tion tested 2—4 times.

Algorithm 1 Test design

Let L; be the matrix defining the interactions v that
should be tested, where v is a row vector of the n; re-
gressor symbols that define an interaction. L; is the ma-
trix defining the basic tests to perform. The rows in L,
are vectors of n, > n; regressor symbols. Let int,, ()
denote the effects of interaction degree n; included in
the basic test defined by the row vector [.
If n,. = n; set Ly = L;. Otherwise, begin at step 1.
(1) Set L; to an empty matrix with n, columns.
(2)a. Set [ to an empty row vector.
b. Set I =[l ], where v is a random row in L;.
c. Sort [ and remove replicates of regressor symbols.
d. Repeat from 2b until length(l) > n,, or L; C
int,,, (1).
(3) If n, > length(l), let I = I, otherwise select n,
regressor symbols from [ at random to obtain [.
(4) Delete inty, (1) from L;.
(5) Add ! to L.
(6) Repeat from step 2 until L; is empty.

This procedure has the drawbacks of not having a per-
fectly even coverage (the same number of tests on all in-
cluded regressors) and using more basic tests than what
is strictly necessary, but works satisfactorily. A benefit
is that since the sequence of tests is randomised, a dif-
ferent test sequence will be obtained if the test design
is rerun. This can be used to stabilise the composite re-
sults. For example, four different complete tests (when
all basic tests in a test sequence are run) will still give
even coverage of the effects without repeating exactly
the same test sequence. When the effects with highest
interaction degree are tested more than once, a better
balance between tests of effects with low and high inter-
action degrees is obtained. The tests of the effects with
high interaction degree, that has become significant by
pure chance, has less influence when the effect is tested
more than once. Since also the data points used for each
basic test are selected randomly, better confidence in the
composite values will be obtained. Even with four com-
plete tests, the computational complexity is much lower
than for doing all the possible tests.



Example 2 We will now make a test design for a sim-
ple case. Let n,. = 3, n; = 2 and the number of regres-
sors to test is 4. This means that there are three re-
gressors included in each basic test and the maximum
interaction degree tested is 2. The effects with highest
interaction degree are in this case

®1 902_
P1 ¥3
P1 P4
P2 P3
P2 P4
L P3 P4

To find a sequence of basic tests to run, Algorithm 1 is
used.

1 Ly=1]]
20 1=1]
20 1= [[][p2 3]] (selected randomly)
2¢c l=[p2 3]

2d length(l) < n,,int,, (1) C L;. Repeat from 2b
20 1= [[p2 @3] [e1 2]

2cl=[p1 2 3
2d length(l) = n,. Continue to 3

31l=1
Y1 P4
4 Li= |p2 ¢4
P3 P4

5Le=[p1 w2 3

6 There are entries left in L;. Repeat from 2
20 1=1]
2b l=[[][e2 ]
2c l=[pz 4]
2d length(l) < n,,int,, (1) C L;. Repeat from 2b
20 1= [[p2 4] [p1 4]

2cl=[p1 ¢z ¢4
2d {ength(l) =n,.. Continue to 3

31l=

4 Li = [903 @4}

5L, = 1 P2 %03]
P1 P2 P4

6 There are entries left in L;. Repeat from 2
20 l=1]]

2b 1=[[][ps all
3) ©4]

2cl=1|p
2d inty, (I) = L;. Continue to 3
31l=1

4 Li=1]

1 P2 ¥3
5 Ly= | P2 P4

v3 ¢a []
6 L; is empty. The test sequence Ly is determined.

Now the sequence of basic tests is determined. In the
first basic test, p1, w2 and @3 will be included, in the
second test, p1, wo and w4, and in the third test p3 and
w4. In this case, the interaction between @1 and po will
be tested twice. Note also that all regressors are included
in two tests each.

4.4 Balance data

When the categorisation intervals are defined for all re-
gressors and the sequence of basic tests decided, the ac-
tual balancing can be done. The objective of the balanc-
ing is to get an as equal number of data as possible in
the cells for the basic test. Excess data from the cells are
discarded randomly. The categorisation is determined
once and used for all the basic tests, while the balanc-
ing is remade for each basic test, only considering the
categorisation for the regressors included in the basic
test. Some unbalance due to, e.g., an extremely unusual
regressor value combination works fine. As was shown
in Lind (2006), between four and six data are sufficient
in each cell and good results are also obtained with a
ratio between the maximum and minimum number of
data/cell of 3 to 5. The main considerations when decid-
ing how many data should be the maximum in each cell
are:

e The larger difference between the maximum and min-
imum number of data in the cells — the less reliable
estimates both within each basic test and for the com-
posite values.

e The less data in each cell — the less dependence be-
tween different basic tests, since the probability that
the same data points are reused in different basic tests
is lower.

e The more data in each cell — the more reliable esti-
mates within each basic test, due to higher power.

An important point is that the balancing is made for
each basic test separately. This is the reason why
a data set can be sufficient for TILIA, but not
for a complete analysis with one larger test. It is
much easier to balance data in several lower-dimensional
subspaces than in one high-dimensional subspace.

4.5 Basic Tests

The term basic test refer to an ANOVA test of a spe-
cific combination of candidate regressors to a specified
interaction degree n;. A basic test is a subproblem of a
full structure identification problem with many regres-
sors. First, the data set is balanced with respect to the



included regressors, according to Section 4.2, and then
a fixed-level ANOVA is run. All effects with interaction
degree < n;, formed from the included regressors, are
tested. The result is the probabilities of the null hypoth-
esis (¢; = 0) for ecach tested effect, which means that
the probability values are low for important effects. (The
statistical interpretation of (5) is F-distributed hypoth-
esis tests for each ¢;).

In the implemented version of TILIA, the basic tests are
done with the anovan routine in MATLAB. Empty cells
and (the restricted) unbalance is automatically treated
in this routine. The output is an ANOVA table. In the
table, each tested main and interaction effect is given a
probability value p. An effect is denoted significant if the
value is below a predefined value «, which often is set to
0.05.

When a basic test is analysed, the remaining candidate
regressors are viewed as noise contributions. This is of
course not a valid assumption, since then they would not
have been candidate regressors. By choosing data points
from the data set randomly (in each cell defined by the
candidate regressors included in the basic test) the ef-
fects from the neglected regressors are hopefully min-
imised. A result of neglecting the rest of the candidate
regressors is that the error sum of squares (related to the
variance estimate, see the rows marked Error in Table
1) is estimated as too large. This makes it harder to find
small effects from the included candidate regressors.

4.6 Combining Test Results/Composite Tests

Assume that, as in Example 2, regressors are included in
more than one basic test. In the example we have three
different ANOVA tables, where each main effect and also
the interaction between ¢ and @5 have got two different
probability values, p. If the data set is not large enough
to give each test a unique set of test data, the basic tests
will be dependent. The problem here is how to combine
(or compose) two values of p, obtained in different basic
tests, concerning the same main or interaction effect.
We would like the following properties for the composite
value:

e Several significant basic tests should result in a signif-
icant composite value.

e Some significant and some insignificant basic tests
should result in an insignificant composite value.
(These results can occur when several correlated can-
didate regressors are tested in different basic tests.
If only one of them is present in the basic test, the
test shows significance since the candidate regressor
has explaining power due to its correlation with an
important regressor. If any of the important regres-
sors is included in the same basic test, the candidate
regressor is tested as insignificant.)

e Several insignificant basic tests should result in a not
significant composite value.

e A main or interaction effect included in many ba-
sic tests should not be obviously mistreated by being
tested many times. The probability of Type I errors
in at least one of quite many tests is very large.

Assume that the effect studied has been included in K
basic tests and has got the probability level py from test
k € {1,...K}. If none of the basic tests including this
effect shows significance, the smallest value of py, is larger
than the significance level (1— the probability of Type I
erTor);

mkin Dr > o (6)

This is equivalent to

m]?x(l—pk) <(1—a). (7)

maxy (1 — pg) will be denoted [1 — p] in the tables. The
related quantity ming (1 — pg) will be denoted |1 —p]. If
either the arithmetic average (AA)

1 X
?Z(l —Pr), (8)
k

=1

or the geometric average (GA)

=

K
(TIa-m)" 9)
k=1

is larger than 1 — «, there is reason to believe that the
effect is significant. The geometric average is closest to
what is used in statistics for computing the simultane-
ous confidence level for multiple comparisons. The arith-
metic average is not affected as severely as the geometric
average if a single test has a high value of p;. Also the
median of py could be interesting to investigate. The ef-
fects are ordered in importance by H,I;I(l — pi), which
is denoted [] . A drawback with such an ordering is that
effects tested many times have a disadvantage against
effects tested few times, due to the probability of Type
I errors in each test. Now the procedure is as follows:

(1) Compute the table with the values [], [1—p], [1—
p], arithmetic average and geometric average of (1—
p) for each effect.

(2) Remove effects where [1 — p] < 1 — «, since these
effects are never tested as significant.

(3) Remove effects where both averages are less than
1—ca. This will take care of the cases where an effect
is tested as significant in one regressor set but not
in combination with other regressor sets.

(4) Sort results according to Hszl(l — Dk)-

From the achieved table, it is most often clear what ef-
fects are important for explaining the data (e.g., by a



Table 1

Results from the basic tests in Example 3. These are the
tables given by Matlabs anovan routine. The first columns
give the sums of squares (SS), the corresponding degrees
of freedom (df), mean squares (MS) and corresponding test
variable value (F). The last column state the probability
that there is no significant effect.

Source SS df MS F P

©1 156.517 2 78.2583 60.99 0

P2 65.702 2 32.8509 25.6 0

w3 0.164 2 0.0821 0.06 0.9381
(p1,92) 5.076 4 1.2689 0.99 0.4203
(p1,03) 3.964 4 0991 0.77 0.5473
(p2,p3) 1.556 4 0.3891 0.3 0.8747
Error 79.549 62 1.2831

Total 312.528 80

w1 318.095 2 159.047 115.67 O

P2 97.135 2 48.567 35.32 0

P4 2.059 2 1.029 0.75 0.4772
(p1,p2) 13.062 4 3.266 2.37 0.0616
(p1,04) 11.49 4 2.873 2.09 0.0929
(p2,p4) 3.888 4 0972 0.71 0.5902
Error 85.249 62 1.375

Total 530.979 80

w3 25.674 2 12.8369 2.31 0.1283
P4 34.816 17.408 3.13 0.0682
(p3,04)  9.464 2.3661 0.43 0.7885
Error 100.165 18 5.5647

Total 170.119 26

“gap” in the values in some or all of the columns). Ide-
ally, the significance level « is chosen such that all effects
above the “gap” are included in the table and all effects
below the “gap” excluded. There are cases where it is
not obvious though. In these cases one has to manually
inspect the obtained table and decide which effects seem
reasonable to include in the model.

Example 3 Consider again FExample 2. Assume that
the three basic test in Ly give the ANOVA tables in Ta-
ble 1. Only the last column (p) is considered here. We
compute composite p values using all the measures in
Section 4.6. This yields Table 2, where no pruning or
ordering is done. In this example, the conclusions are
clear cut, since only the effects from @1 and py have got
values of [1 —p]| > 0.95. These are the only effects that
are significant in any test.

More examples are given in Section 6.

In the procedure above, the dependence between the
different tests is neglected. This means that if the data

Table 2

Composite p values for the results in Table 1. The number
of basic test including the effect is denoted by n,and p is
the probability value from the ANOVA table. The different
columns give the product of these probabilities for each ba-
sic test, the minimum probability, the maximum probability
and the arithmetic and geometric averages of the probabili-
ties.

Effect np IT 11—=p] [1-p] AA GA
o1 2 1 1 1 1 1
- 2 1 1 1 1 1
(1, p4) 1 0.907 0.907 0.907 0.907 0.907
(1, 92) 2 0544 0.580 0.938 0.759 0.738
P4 2 0487 0.523 0.932 0.727 0.698
(1, 93) 1 0453 0.453 0.453 0.453 0.453
(2, pa) 1 0410 0.410 0.410 0.410 0.410
(p3,04) 1 0212 0212 0212 0212 0212
(2, ¢3) 1 0.125 0.125 0.125 0.125 0.125
3 2 0.054 0.062 0.872 0.467 0.232

set is small with respect to how many and how complex
basic tests are performed, the neglected dependence is
important, and the results might be badly influenced by
it.

Another approach to compose values would be to weigh
together the sum of squares values directly, keeping track
of the dependence between different tests, and as the
last step perform hypothesis tests, instead of performing
the hypothesis tests first and then weigh them together.
The statistics involved seem quite complicated.

4.7 Interpreting Results

The list obtained in Section 4.6 should include all im-
portant regressors and their interactions. The results get
more stable and reliable if two to four complete test se-
quences are designed using the randomised test design
and combined in the same manner as in Section 4.6. The
balance between the main and higher order interactions
gets better when the latter are tested more than once,
which means that less spurious high order interactions
are tested as significant without missing any main ef-
fects. The price is the higher amount of tests.

There are a few things to keep in mind:

e Due to correlation between regressors, the list of im-
portant effects obtained from the composite values can
also include spurious regressors. The spurious regres-
sors should have a lower value of H,[f:l(l — pk), since
they should have been tested as not significant at least
once. The correlation between regressors can be used
as a warning sign. In further model building, include
the dubious regressors, but scrutinise their contribu-
tions extra carefully.



Table 3
User parameters for TILIA used in the test examples. The
proportion vector is used for categorisation of data, see Sec-
tion 4.2. The number of included regressors in each basic
test is denoted by n, and the tested degree of interaction
with n;.

Test example Proportion vector n, n;

1: Chen 1 [1/3 1/3 1/3] 4
2: Chen 2, test 1 [1/3 1/3 1/3] 4
2: Chen 2, test 2 [1/3 1/3 1/3] 4

[ /3] 5

2
2
3

3: Chen 3 1/3 1/3 1/ 2

e If the number of data grows, the list of important ef-
fects usually grows slowly too, since the power (1 - the
probability of Type II error) of the tests grows with
the number of data. With a fixed number of the max-
imum amount of data in each cell, this consequence
is minimised. Of course, the number of data can be
tuned to get a desired power for a certain model (see
further Lind (2006)).

e Another issue is that the basic tests are dependent,
since they partly will be performed on the same data.
An ill-placed outlier could affect the analysis badly,
especially if placed in a region with few good data.
This means that the influence of the outlier is not
averaged out among many data points in the same
region and also that it is “reused” for different basic
tests more often than a data point from a region with
more data. See also Barnett and Lewis (1978).

In Section 5 we will see how TILIA works on simulated
data and in Section 6 some real data sets will be treated.

5 Structure Selection on Simulated Test Exam-
ples

The following simulated examples are taken from Chen
et al. (1995). These are all nonlinear autoregressive
(NAR) systems. Several more examples, also includ-
ing NAR system with exogenous input (NARX), and
comparisons with other approaches, are given in Lind
(2006). Here, the signal-to-noise ratio varies from exam-
ple to example. Data series with 3000 input/output data
are used for all examples. TILIA was used to identify
the structure, using the parameter settings of Table 3.

5.1 FExample 1: Chen 1

The first example is a nonlinear additive autoregressive
process,

y(t) = 2701 0Dy (t— 1) =1y (1 —2) e(h),

(10)
where e(t) is Gaussian noise with standard deviation 1.
The model is similar to an exponential autoregressive
model, but has different time lags in the exponent so

that it is additive. The model, in its original context,
was used together with Example 2 to test algorithms
for spotting additivity in NAR systems. The candidate
regressors are {y(t — 1),...,y(t — 8)}.

The results from the systematic ANOVA tests were that
y(t — 1) and y(t — 2) should be included additively in
the model, both if the regressors were used as they are,
or if they were orthogonalised in the given order before
the ANOVA tests (see Table 4). This test took less than
one minute to run and about the same amount of time
to interpret.

5.2  Ezxzample 2: Chen 2

The second example is almost the same as the first, but
this is an exponential autoregressive model,

y(t) = e O D2yt — 1) —y(t - 2)) +e(t), (11)

where e(t) is Gaussian noise with standard devi-
ation 1. Also here, the candidate regressors were

{y(t=1),...,y(t—8)}.

All the numerical results from TILIA are given in
Table 4. These results were obtained by running the
method two times; first with candidate regressors
{y(t—1),...,y(t —8)}, both with the regressors as they
are and with orthogonalised regressors in the given or-
der (see Section 4.1). The first approach gave the results
that y(t — 1) interacts with y(t — 2) and with y(¢ — 3)
and that the interaction between y(t — 2) and y(¢t — 4)
also is important. The orthogonalised approach gives
the important interactions y(t— 1) with y(t —2), y(t — 2)
with y(t — 3), and y(¢t — 2) with y(¢ — 5). The results
gave no strong reason to change the orthogonalisation
order, since the important regressors in the results also
are first among the orthogonalised ones.

The regressors {y(t—6), . .., y(t—8)} were then excluded
and the method rerun on the remaining candidate re-
gressors. At the same time, a higher interaction degree
was tested. In the second run, both approaches identified
correctly the interaction between y(t — 1) and y(t — 2),
but with the original regressors, also y(t —3) and y(t—4)
were found as giving additive contributions. The reason
could be the strong correlation with the true lags. (Re-
member that not all regressors are included in all tests.
When y(t — 1) is missing, e.g., y(t — 3) could explain
parts of the contribution from y(¢ — 1).) The number of
tests where these effects are tested, n;, confirm this the-
ory. For all effects with the same interaction degree, the
design gives an approximately equal number of test. De-
pending on the data set, some of the intended tests get
empty cells, resulting in no computed probability levels
and a smaller value of ny, which indicates bad balancing.
The tests with empty cells tend to be the tests where
correlated candidate regressors are tested together, e.g.,



Table 4

Composite p values. The number of basic test including the effect is denoted by mp, and p is the probability, according to
the hypothesis test, that the sum of squares are large not purely by random. The different columns give the product of
these probabilities for each basic test, the minimum probability, the maximum probability and the arithmetic and geometric

averages of the probabilities.

Test example Effect np IT 11—p] [1-p] AA GA
(10) y(t—1) 15 1 1 1 1 1
y(t —2) 15 0.894 0.894 1 0993 0.993
(10) The regressors were orthog-  §(t — 1) 13 1 1 1 1 1
onalised before TILIA. g(t — 2) 14 0.888 0.892 1 0992 0.992
(11) y(t—1) 14 1 1 1 1 1
(y(t —2),y(t — 10 0.890  0.902 1 0989 0.988
(y(t — 1), y(t — 8 0.800  0.854 1 0974 0973
(y(t — 1), y(t — 0.726  0.786 1 0.968 0.965
(11) The regressors were orthog-  g(t — 1) 13 1 1 1 1 1
onalised before TILIA. gt —2) 12 1 1 1 1 1
(Gt —1),5(t—2) 4 0999  0.999 1 1 1
(Gt — 2),5(t — 3)) 0.994  0.994 1 0.999 0.999
(Gt —2),5(t—5) 5 0801  0.896  0.996 0.958 0.957
(11) {y(t —6), ..., y(t — 8)} y(t—1) 14 1 1 1 1 1
excluded. y(t —4) 7 1 1 1 1 1
y(t —3) 0.998  0.999 1 1 1
(yt—1),y(t—2)) 13 0937  0.966 1 0.995 0.995
(11) {y(t —6),...,y(t — 8)} it —2) 19 1 1 1 1 1
excluded. The regressors were gt —1) 19 1 1 1 1 1
orthogonalised before TILIA. (it -1),9(t—2)) 11 0.991 0.993 1 0.999 0.999

y(t — 1) with y(t — 3) which would give a low value of
1 — p and lower composite values of y(t — 3). Based on
the ny-values of the non-orthogonalised test in this case,
orthogonalisation should give better results and also did
SO.

The result was that the interaction between y(t — 1) and
y(t — 2) was correctly identified by using the orthogo-
nalised approach.

5.8 Ezample 3: Chen 8

The third example is an additive threshold autoregres-
sive model (Chen et al., 1995),

y(t) =—2y(t = DI(y(t —1) <0)
+04y(t—DI(y(t—1)>0) +et), (12)
where e(t) is Gaussian noise with standard deviation 1

and I(x) is an indicator such that I(xz) = 1 if = holds.
Candidate regressors are {y(t — 1),...,y(t — 8)}.

The regressor y(t — 1) was found correctly both when
the regressors were tested as they are and when they

were orthogonalised first. No other candidate regressors
were important enough to be included in the table of
composite values and the composite values for the 9 basic
tests including y(¢t — 1) are all 1.

6 Structure Selection on Measured Data Sets
6.1 ’Silver Box’ data

The ’silver box’ data are sampled from an electrical cir-
cuit (looking like a silver box) and should in theory be
described by

2
mTIO g0 ) 4y =) (13)

This dataset is due to Pintelon and Schoukens (2001)
and was studied in a special session at the 6th IFAC-
Symposium on Nonlinear Control Systems (NOLCOS,
2004). The data set consist of a validation data set, the
“arrow head” in Figure 2, with 40000 samples, and an
estimation data set of 86916 samples in the trailing part.
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Figure 2. Silver box data. The first 40000 samples are vali-
dation data and the last 86916 samples are estimation data.

Table 5

The most important regressors and two-factor interactions
for the silver box data when testing candidate regressors
without orthogonalisation. The number of basic test includ-
ing the effect is denoted by ns,and p is the probability, ac-
cording to the hypothesis test, that the sum of squares are
large not purely by random. The different columns give the
product of these probabilities for each basic test, the min-
imum probability, the maximum probability and the arith-
metic and geometric averages of the probabilities. Here y,
and/or ug is short for y(t — z) and u(t — x) respectively.

Effect np II 11—p] [1-p] AA GA
Ya 30 1 1 1 1 1
n 32 1 1 1 1 1
U2 29 1 1 1 1 1
Ys 32 1 1 1 1 1
ys 29 0.948 0.973 1 0.998 0.998
(ya,yo) 6 0.821 0.910 0.998 0.968 0.968
w7 31 0.803 0.864 0.993 0.993
(y2,93) 6 0.743 0.897 1 0.953 0.952
Y2 32 0.721 0.758 1 0991 0.990
U1 29 0.719 0.719 1 0.990 0.989
Yo 32 0.681 0.703 1 0.990 0.988
Ye 30 0.616 0.633 1 0987 0.984
Y7 27 0.576 0.538 1 0979 0.973
Y3 28 0.451 0.750 1 0975 0.972
u3 30  0.197 0.239 1 0969 0.947
Ug 34 0.026 0.049 1 0.958 0.899

The sampling period is 0.0016384 seconds. The valida-
tion data are chosen to give the ability to test the gen-
eralisation capability of the estimated models . TILIA
was applied to the estimation data set. Candidate regres-
sors were {y(t —1),...,y(t—9),u(t),...,u(t—9)}, that
is, 19 candidates. The proportion vector was chosen as
[1/3 1/3 1/3] for all regressors, the number of regressors
included in each basic test was 5 and second order inter-
actions were tested. To stabilise the result, the complete
test was repeated four times (see Section 4.3). Each com-
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Figure 3. The vane process. The fan to the left blows at the
vane to the right. The vane swings about its upper edge.

plete test consist of 27 to 29 basic tests. The most im-
portant effects are given in Table 5. In this case, no good
ordering for orthogonalised regressors was found. The re-
sult is that all output regressors, {y(t—1),...,y(t—9)},
and the input regressors {u(t—1),...,u(t—3)}, u(t—6)
and u(t—7) should be included in the model. Most of the
effects are additive. The important interaction effects
are between y(t — 2) and y(t — 3) and between y(t — 4)
and y(t — 9). The suggested model structure is then

y(t) =g1 (y(t — 1)) + g2 (y(t — 2), y(t — 3))
+93(y(t —4),y(t —9)) + ga(y(t — 5))
+95(y(t —6)) + g6 (y(t — 7)) + g7 (y(t — 8))
+ gs(u(t — 1)) + go(u(t — 2)) + g1o(u(t — 3))
+ g11 (u(t — 6)) + gr2(u(t — 7). (14)

This model structure uses almost the same regressors
as the two best (in RMSE sense) models of Table 1 in
Ljung et al. (2004) of the NOLCOS comparison. Note
that quite many old outputs are needed in the model.

6.2 Nonlinear Laboratory Process

The vane process consists of an air fan mounted 15 cm in
front of a 20 x 20 cm vane (see Figure 3). The input signal
is the voltage over the motor and the output signal is the
output voltage from the angle meter. To give the process
a more nonlinear behaviour, the motion of the vane is
blocked by a slightly damping object. Both the range
of the input and the range of the output are limited to
—10V to 10V, due to limitations in the instrumentation.

6.2.1 Input Selection

The chosen input signal is a pseudo-random multi-level
input signal with three levels. To get all 37 = 2187 signal
level combinations in the sequence u(t), u(t—1), u(t—2),
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Figure 4. Simulated outputs from the linear model. The solid
line is the measured output and the dashed line is the sim-
ulated output from the linear model.

u(t—3), u(t —

4), u(t — 5), u(t — 6) the equation

u(t) = mod(u(t — 5) + 2u(t — 7),3) (15)
is used to generate the signal. Here mod(x, 3) stands for
modulo three. This equation can only generate 37 —1 dif-
ferent signal level combinations, since if there are seven
or more zeros in a row, the output will be constantly
zero. Since it is important in the intended analysis to
have measurements of all signal level combinations, a
zero is appended in each period of the signal. Then the
three signal levels {0, 1,2} are mapped to the desired
levels {5,1,9} of the signal.

The sampling period is chosen such that 4-8 samples
can be taken during the rise time (= 0.3s) of a step
response. With 4 samples during the rise time this gives
the sampling period 0.08s.

6.2.2 Linear identification

Several linear models of different orders were tried out.
To handle the offset from zero mean, a second, con-
stant, input was included in the models. The model that
showed the best performance on validation data was a
state space model of order three;

z(t +1) = Az(t) + Bu(t) + Ke(t)
y(t) = Cu(t) + e(t),

where A is a 3 X 3 matrix, B is a 3 x 2 matrix, K isa3x 1
matrix and C'is a 1 x 3 matrix. This third order, two in-
put, one output system has 12 identifiable parameters.
The model was estimated using the first half (8086 sam-
ples) of the data set as estimation data. The fit for the
linear model was 75% on the second half of the data set
(see Figure 4) for a zoom in on 175 data points. The lin-
ear model does not handle the saturation caused by the
blocking of the vane very well, giving large overshoots
when the measured signal saturates and not enough am-
plitude in the other oscillations. The residuals from the
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Figure 5. Residual analysis for the linear model.

Table 6

Results from TILIA on data from the vane process. Table
headings are explained in Table 2. Here y, and/or u, is short
for y(t — z) and u(t — =) respectively.

Effect  ny IT 11—=p] [1-p] AA GA
i 428 1 1 1 1 1
Uy 450  0.795 0.962 1 1 1
Y2 402 0.207 0.374 1 0.997 0.996
us 420 0.035 0.343 1 0994 0.992
us3 435  0.002 0.200 1 0.988 0.985
ys 397 0.000 0.176 1 0971 0.961
Table 7

Results from TILIA on data from the vane process. The
candidate regressors are orthogonalised. Column headings
are explained in Table 2. The orthogonalised regressors are
denoted by 9, and u, respectively.

Effect  ny IT 11—-p] [1-p] AA GA
i 451 1 1 1 1 1
Y2 421 1 1 1 1 1
U3 433  0.003 0.333 1 0989 0.987

linear model almost pass a whiteness test and the cor-
relation between the residuals and the input is insignif-
icant, see Figure 5. This means that there is essentially
nothing more to gain from a linear model.

6.2.3 TILIA

TILIA was applied to the entire data set. Candidate re-
gressors were {y(t —1),...,y(t —9),u(t),...,u(t —9)},
that is, 19 candidates. The proportion vector was chosen
as [1/3 1/3 1/3] for all regressors, the number of regres-
sors included in each basic test was 4 and third order
interactions were tested. The balance of the tests was
enforced by only using three samples from each cell. To
stabilise the result, the complete test was repeated four
times. Each complete test consisted of about 480 to 530
basic tests. The most important effects are given in Ta-
ble 6, for the candidate regressors tested directly and
in Table 7, for the candidate regressors tested after or-
thogonalisation by QR-factorisation in the order given



Table 8

Results from TILIA on data from the vane process. The
candidate regressors are orthogonalised in the order y(t —
1)7 y(t - 2)7 y(t - 3)7 u(t - 4), u(t - 5)7 ’Lb(t - 3)7 y(t -
8)7 y(t - 4)7 y(t - 5)7 ’U,(t), ’LL(t - 1)7 y(t - 6)7 y(t - 7)7 u(t -
2), u(t —6), y(t —9), u(t —7), u(t —8), u(t —9). The
results almost maintain the order among the regressors, so
a truncation after the seventh regressor is possible. Column
headings are explained in Table 2.

Effect np IT 11—-p] [1-p] AA GA
T 422 1 1 1 1 1
U2 427 1 1 1 1 1
(i1, 14, 5) 7 0.96 0.98 1 099 0.99
Y3 433 0.00 0.47 1 098 0.98
Us 423 0.00 0.03 1 098 0.96
Us 460 0.00 0.04 1 095 0.93
Table 9

Results from TILIA on data from the vane process. The
candidate regressors are orthogonalised in the order y(t —
1)7 y(t_2)7 y(t_3)7 u(t_4)7 u(t_5)7 y(t_g)a u(t_?’)' The
order of the regressors is maintained in the results, so the
orthogonalisation is successful and a final regressor selection
is reached. Column headings are explained in Table 2.

Effect np IT 11—-p [1-p] AA GA
T 32 1 1 1 1 1
U2 30 1 1 1 1 1
(G1, @4, @5) 5 0.95 0.98 1 099 0.99
Y3 31 0.52 0.70 1 098 0.98
Us 30 0.15 0.38 1 095 094

above. To get a more sparse representation, the regres-
sors were reordered according to the order in Table 7
(and the last ones according to Table 6). After rerunning
TILIA, the most important effects were among the first
seven candidate regressors in Table 8. After truncation
of superfluous regressors, the results in Table 9 were ob-
tained. The now maintained ordering of the regressors
makes the orthogonalised test useful for regressor selec-
tion. The suggested model structure is

9(t) =91(J1, U4, U5) + g2(T2)

+ 93(93) + 94(Js), (16)

where the tilde-denoted regressors are the original can-
didate regressors QR-factorised in the order
[1717 g27 g3a ’&'47 17/5, gS]R:A (17)

with A = [y(t - 1)7 y(t - 2)a y(t - 3)a u(t - 4)7
u(t —5), y(t —8)].

6.2.4 Nonlinear Estimation

A nonlinear model with the structure of (16) using an
artificial neural network with totally 40 sigmoids in the
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Figure 6. Simulated outputs from the nonlinear model. The
dashed line is the measured output and the dashed line is
the simulated output from the nonlinear model.

hidden layers was estimated. The fit of the model was
85% and it was able to model the saturations in the
measured data, see Figure 6. The time needed to run
TILTA with nineteen candidate regressors is about the
same as the time needed to estimate one or two of these
nonlinear models.

7 Conclusions

A systematic method (TILIA) for regressor selection
using ANOVA has been presented and tested both on
simulated and measured data sets with many candi-
date regressors. In earlier work (Lind, 2006; Mannale,
2006), ANOVA has been compared with other methods
on small-size identification problems, and given better
and more homogeneous results. All methods for regres-
sor selection have more or less severe problems with ex-
tensions to many regressors. TILIA is a way to reduce
large problems to sets of sub-problems, which can be
treated by ANOVA. It has been shown here that TILTA
gives homogeneously good results in test cases with up
to 19 candidate regressors. As pointed out, for example
in Section 4.2, there are nevertheless many possible im-
provements to TILIA. These include improvements of
the categorisation, a more structured way to order re-
gressors for orthogonalisation, the methods to combine
probability values, and computational aspects.
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