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Abstract
Semidefinite programs and especially those derived from the Kalman-Yakubovich-

Popov lemma are quite common in control applications. KYPD is a dedicated

solver for KYP-SDPs. It solves the optimization problem via the dual SDP.

The solver is iterative. In each step a Hessian is formed and a linear system

of equations is solved. The calculations can be performed much faster if we

utilize sparsity and low rank structure. We show how to transform a dense

optimization problem into a sparse one with low rank structure. A customized

calculation of the Hessian is presented and investigated.

Keywords: Semidefinite programming, Kalman-Yakubovich-Popov lemma,

low rank



Utilizing low rank properties when solving KYP-SDPs

Janne Harju, Ragnar Wallin and Anders Hansson

Abstract— Semidefinite programs and especially those de-
rived from the Kalman-Yakubovich-Popov lemma are quite
common in control applications. KYPD is a dedicated solver
for KYP-SDPs. It solves the optimization problem via the
dual SDP. The solver is iterative. In each step a Hessian
is formed and a linear system of equations is solved. The
calculations can be performed much faster if we utilize sparsity
and low rank structure. We show how to transform a dense
optimization problem into a sparse one with low rank structure.
A customized calculation of the Hessian is presented and
investigated.

I. INTRODUCTION

The need to solve semidefinite programs derived from
the Kalman-Yakubovich-Popov lemma (KYP-SDPs) often
arise in control and signal processing. In fact, some of the
most important applications of semidefinite programming
in control involve KYP-SDPs. Some examples are linear
system design and analysis (Boyd and Barratt, 1991; Hindi
et al., 1998), robust control analysis using integral quadratic
constraints (Rantzer, 1996; Megretski and Rantzer, 1997;
Jönsson, 1996; Balakrishnan and Wang, 1999), quadratic
Lyapunov function search (Boydet al., 1994) and filter
design (Alkire and Vandenberghe, 2002).

As the size of the semidefinite programs (SDPs) in this
problem class usually is very large it is often hard or even
impossible to solve them using general-purpose software.
The solver KYPD (Wallin and Hansson, 2004) is a dedicated
solver for KYP-SDPs and utilizes the special stucture in the
problem. In this paper we will exploit sparseness and low
rank properties in order to solve KYP-SDPs efficiently.

Other efficient solvers for KYP-SDPs have been devel-
oped. They are based on cutting plane methods (Parrilo,
2000; Kaoet al., 2001; Kao and Megretski, 2001; Hachez,
2003; Wallin et al., 2005), interior-point methods with
an alternative barrier (Kaoet al., 2001) and interior-point
methods combined with conjugate gradients (Hansson and
Vandenberghe, 2001; Wallinet al., 2003; Gillberg and Hans-
son, 2003). Preliminary results on the approach used in
KYPD has been presented in (Wallinet al., 2003) and
(Vandenbergheet al., 2005). In (Vandenbergheet al., 2005)
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low rank properties are also exploited. However, the method-
ology used is only explained for systems with one input and
a system matrix with real eigenvalues. To get such a matrix
pole placement is used. The approach in this paper is more
straightforward and possibly more numerically well-behaved.

A KYP-SDP in the variablesP ∈ S
n and x ∈ R

p has the
following structure

min cT x+ 〈C,P〉
s.t. X = F (P)+M0 +G (x) ≥ 0 (1)

where the inner product〈C,P〉 is Trace(CP),

F (P) =

[
AT P+PA PB

BT P 0

]

and

G (x) =
p

∑
k=1

xkMk

with A ∈ R
n×n, B ∈ R

n×m, C ∈ S
n and Mk ∈ S

n+m, k =

0,1, . . . , p. In fact, there can be several constraints of the
type above but for simplicity we only treat SDPs with one
constraint in this paper. A generalization is straightforward.
The number of variablesnvar are n(n+1)

2 + p.
Solving this optimization problem using an interior-point

solver involves forming and solving a linear system of
equations in each iteration. Let us assume thatn is large
compared top and m which is most often the case. The
number of variables are then of ordern2. Hence, solving
the system of equations can be done in ordern6 operations
but forming the system has a computational complexity
proportional ton8. Our approach has complexity of order
n3.

II. ASSUMPTIONS

To make the presentation of the theory more streamlined
we make two assumptions. The first assumption is that the
pair (A,B) is controllable. This implies that the operator
F has full rank, (Vandenbergheet al., 2005). The second
assumption is that the operatorA (P,x) defined as

A (P,x) = F (P)+G (x)

has full rank, see (Wallin and Hansson, 2004) for details.
Neither of the assumptions are restrictive. The controlla-

bility assumption can be relaxed to stabilizability of the pair
(A,B), provided the range ofC is in the controllable subspace



of (A,B) and if the operatorA (P,x) does not have full rank
it is possible to convert the problem to an equivalent reduced
order problem for which the corresponding operator has full
rank.

III. THE IDEA BEHIND KYPD

The solver KYPD is based on solving a problem equivalent
to the SDP dual of (1). This equivalent dual has considerably
fewer variables than the primal SDP and can be solved using
any primal-dual solver.

The dual SDP

The dual of (1) is

max −〈M0,Z〉
s.t. F ∗(Z) = C (2)

G
∗(Z) = c (3)

Z =

[
Z11 Z12

ZT
12 Z22

]

≥ 0 (4)

with

F
∗(Z) = AZ11+Z11AT +BZT

12+Z12BT

G
∗
k (Z) = 〈Mk,Z〉

The operatorsF ∗ and G ∗ are the adjoint operators ofF
andG , respectively. AsZ is a symmetric matrix of size(n+

m)× (n+m) the dual problem has even more variables than
the primal problem if

p < nm+
m(m+1)

2

which is usually the case. Hence, we should reduce the
number of variables in order to solve the dual SDP efficiently.

Reduction of the number of dual variables

We want to find a parsimonious parametrization

Z = F0 +
kmax

∑
k=1

zkFk (5)

of all feasibleZ. One such parametrization is given by

Fk =







[

Ek(11) 0

0 0

]

k = 0

[

Ek(11) Ek(12)

ET
k(12) 0

]

k = 1,2, . . . ,mn

[

0 0

0 Ek(22)

]

k = mn+1, . . . ,kmax

where kmax = mn +
m(m+1)

2 , Ek(12) is the standard basis for
unstructuredn×m matrices,Ek(22) is the standard basis for

symmetricm×m matrices and eachEk(11), k = 1,2, . . . ,mn,
is related toEk(12) through

F
∗(Fk) = 0

Moreover,F0 solves

F
∗(F0) = C

Thus, to get the parsimonious parametrization we have to
solvemn+1 Lyapunov equations with respect toEk(11).

As the operatorA has full rank we know that the
nullspace ofA ∗ is spanned bykmax− p basis matrices.
Thus, we can further reduce the number of variables by
finding basis matrices that also fulfil (3). However, this extra
reduction will destroy any additional structure present inthe
basis matrices as, for example, sparsity or low rank. As the
purpose of this paper is to exploit such properties we will
not further reduce the number of variables. The interested
reader can find a description of the procedure in (Wallin and
Hansson, 2004).

The SDP equivalent to the dual is

min dT z

s.t. Gz = c (6)

Z = F0 +
kmax

∑
k=1

zkFk ≥ 0

where the entries ofd are

dk = 〈M0,Fk〉

the entries ofG are

Gik = 〈Mi,Fk〉

and z =
[
z1 z2 . . . zkmax

]T
.

Reconstructing x and P

Primal-dual SDP solvers deliver the dual as well as the
primal variable. The dual solution,X , of the above SDP is ac-
tually also a solution to (1), see (Vandenbergheet al., 2005).
Hence, we haveX in (1), but we are really interested inP and
x. It turns out that they can be reconstructed using the basis
matrices. Remember thatF ∗(Fk) = 0 for all k = 1,2, . . .kmax.
Hence, from the definition of adjoint operators it follows that

〈Fk,F (P)〉 = 〈F ∗(Fk)
︸ ︷︷ ︸

=0

,P〉 = 0

Thus we have

〈Fk,X〉 = 〈Fk,F (P)+M0 +G (x)〉
= 〈Fk,M0〉+ 〈Fk,G (x)〉

= 〈Fk,M0〉+
p

∑
j=1

x j〈Fk,M j〉



This can be rewritten as

GT x = g

whereG is the same matrix as in (6) and

gk = 〈Fk,X −M0〉

When this overdetermined but consistent system of equations
is solved we havex and can computeP, for example, by
solving the Lyapunov function corresponding to the (1,1)-
block of the constraint in (1).

IV. INTRODUCING ADDITIONAL STRUCTURE

By insisting on the system matrix to have a special
structure, for exampel being diagonal or block diagonal the
basis matricesFk will be both sparse and have low rank.
Both properties can be utilized to form the Hessian more
efficiently. A diagonalA-matrix will in addition let us solve
the Lyapunov equations in a computationally cheaper way.

Diagonalization of A

If the A-matrix is not diagonalizable we can always, as the
pair (A,B) is controllable, apply a congruence transformation
to the KYP-LMI to makeÃ = A−BL diagonalizable. The
operatorF (P) will be transformed as

[
ÃT P+PÃ PB

BT P 0

]

=

[
I 0
−L I

]T

F (P)

[
I 0
−L I

]

(7)

The matrix M0 and the operatorG (x) will be transformed
analogously. Then apply another congruence transformation

[
ĀH P̄+ P̄Ā P̄B̄

B̄H P̄ 0

]

=

[
T 0
0 I

]H [
ÃT P+PÃ PB

BT P 0

][
T 0
0 I

]

to makeĀ = T−1ÃT diagonal. We also have that̄P = T HPT
and B̄ = T−1B.

Two negative aspects with the diagonalization are that the
basis matrices will be complex ifA has complex valued
eigenvalues and not every matrix can be diagonalized in a
numerically well conditioned way. There are two remedies to
the first dilemma. Either we can solve a real SDP involving
LMIs with twice as many rows and columns as the original
one (Boyd and Vandenberghe, 2004) or we can transform
the complex diagonalA-matrix into a real block diagonal
one of the same size. We prefer the second alternative. The
numerical issues with diagonalizing theA-matrix may not be
as severe as it seems though. As is mentioned above we can
always do a congruence transformation to change the system
matrix to Ã = A−BL. We thus have a freedom to chooseL
to get a matrix that has good numerical properties when it
comes to diagonalization. How to chooseL has however to
be investigated.

Block diagonal A-matrix

Let us first assume that the eigenvalues are ordered on
the diagonal. First we have all real eigenvalues and then
the complex ones follow in complex conjugated pairs. To
transform theA-matrix from being complex diagonal to
being real block diagonal we only have to do a congruence
transformationÃ = V HAV . The matrixV has ones on the
diagonal for all rows with real eigenvalues and blocks

S =
1√
2

[
1 −i
1 i

]

on the diagonal for rows with complex conjugated eigenval-
ues. If we have a complex conjugated block in theA-matrix
it will be trasformed as

SHAkS =

[
1 1
i −i

][ a+ib
2 0
0 a−ib

2

][
1 −i
1 i

]

=

[
a b
−b a

]

The congruence transformation will also result in a realB-
matrix. The Lyapunov matrices we have to solve to get the
basis matrices can be solved in ordern2 operations when
the A-matrix is diagonal. Hence, the total cost for forming
the basis is of ordern3. If the matrix Ek(12) has a one in a
row corresponding to a block of dimension one, i.e. a real
eigenvalue, the resulting basis matrice will be of at most rank
two and can be written as

Fk = u1eT
j + e ju

T
1 = v1vT

1 + v2vT
2 (8)

wheree j is the jth unit vector. Thus, in addition to having
low rank the basis matrix is also sparse, having only one row
and one column with nonzero elements. If the matrixEk(12)

has a one in a row corresponding to a block of dimension
two the resulting basis matrice will be of at most rank four
and can be written as

Fk = u1eT
j + e ju

T
1 +u2eT

j+1 + e j+1uT
2 (9)

= v1vT
1 + v2vT

2 + v3vT
3 + v4vT

4 (10)

Also in this case the basis matrices are sparse.

V. PRIMAL-DUAL SOLVERS

A general-purpose primal-dual solver applied to (6) gener-
ates iterates ofz∈R

kmax, λ ∈R
p and the positive semidefinite

matrixX ∈ S
m+n. The vectorλ and the matrixX are variables

in the Dual to (6). At each iteration a linear system of



equations

−W∆XW −
kmax

∑
k=1

∆zkFk = R






〈F1,∆X〉
...

〈Fkmax,∆X〉




+GT ∆λ = r1

GT ∆λ = r2

is solved. The positive definite matrixW and the righthand
sidesR, r1 and r2 change at each iteration and also depend
on the particular algorithm used. These equations are solved
by eliminating ∆X from the first equation and substituting
∆X = ∑kmax

k=1 ∆zkW−1FkW−1−R into the second. This yields
[

H G
GT 0

][
∆z
∆λ

]

=

[
r1 +h

r2

]

where

Hi j = 〈W−1Fi,W
−1Fj〉, i, j = 1,2, . . . ,kmax

hi = 〈W−1Fi,W
−1R〉, i = 1,2, . . . ,kmax

In general the cost for solving this system of equations is
proportional to(kmax+ p)3 and the cost for formingH is
proportional tok4

max. If the number of variables inZ are not
reducedkmax=

(m+n)(m+n+1)
2 and after the reduction we have

kmax= mn+
m(m+1)

2 + p variables. This yields a considerable
reduction in computational complexity. However, when the
Fk-matrices are low rank we can do even better. The cost for
forming H will only be cubic inkmax.

Utilizing low rank of the basis matrices

To utilize low rank the basis matrices are written as a
sum of rank one matrices. Below two separate forms are
presented.

Fk =
2rk

∑
i=1

vikvT
ik =

rk

∑
i=1

eikuT
ik +uikeT

ik (11)

Rewriting the expression forH with the low rank expression
for Fk and using properties for the inner product gives

Hi j =
2ri

∑
k=1

2r j

∑
l=1

vT
ikW

−1v jlv
T
jlW

−1vik =

= 2
ri

∑
k=1

r j

∑
l=1

uT
ikW

−1e jlu
T
jlW

−1eik +uT
ikW

−1u jle
T
jlW

−1eik,

i, j = 1,2, . . . ,kmax

Note that preprocessing can be done by calculatingvTW−1

once. Exploiting sparsity to formH is implemented in
SDPT3. However, ifp is small compared ton, the worst-case

cost to formH is proportional tom5n4. This is independent of
utilizing sparsity or not. Tests imply though that the sparsity
utilizing algorithm is much faster in practice and this is used
when a system is block-diagonalized. CalculatingHi j using
low rank matrices will reduce the cost tom2n3, see (Tohet
al., 1999) for details.

VI. NUMERICAL EXAMPLES

To evaluate the algorithm we compare the computational
times for some numerical examples. The examples are run
on a Sun Sunfire V20z computer with 2Gb RAM running
Linux under CentOS 4.1. They are solved using KYPD
using SDPT3 version 3.1 as the underlying solver. SDPT3
is interfaced using YALMIP version 3 (R20050720). Matlab
version 7.0.1 (R14) is used.

The options for YALMIP defined bysdpsettings.m
were given an extra option to enable block-diagonalizationor
block-diagonalization combined with low rank calculations
of the Hessian. In SDPT3 the possibility to use function-
handles for a Hessian calculation was added inNTpred.m.
To utilize sparsity the settingspdensity is used in SDPT3.
The diagonalization is activated via YALMIP. To utilize
low rank structure the file that performes the calculation
of the Hessian is provided to SDPT3 as a function-handle.
Lyapunov equations in the first example are solved through
a diagonalization of theA-matrix.

In order to improve numerical issues feedback is per-
formed in the Seismic isolation example. SDPT3 terminates
when the primal-dual gap is less than 10−7.

In the examples KYP-SDPs are solved using four different
settings. SDPT3 denotes that the primal problem is solved
using SDPT3 interfaced via YALMIP. KYPD denotes that the
equivalent dual is solved using KYPD with SDPT3 as an un-
derlying solver. Sparsity denotes that the dual is solved using
KYPD after a transformation is done. This transformation
block-diagonalizes the system matrixA. Lowrank is similar
tp Sparsity butspdensity is set to 1 and in every step the
interior-point method forms the Hessian using a special low
rank algorithm.

The solution time is obtained by using the matlab com-
mandcputime before and after a call to the solver. Each
solver has obtained the problem data on the primal form to
make a comparison fair. Preprocessing such as transforma-
tions and any rewritings of the problem are included in the
solution time.

Randomly generated KYPs

This numerical example is based on randomly generated
KYPs. The problem to be solved is 1 where the matricesA ∈
R

n×n and B ∈ R
n are generated with the Matlab command

rand. In order to get comparable results infeasible problems
and problems where the condition number of the controlla-
bility matrix exceeds 106 are rejected. The components of
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Fig. 1. Solution times for the randomly generated KYPs example vs
system order. For every system ordern ten generated problems are solved.
The average solution time is presented. Used solvers are primal problem
using SDPT3, solving the dual with KYPD, solving the dual with KYPD
after a block-diagonalization and finally solving the problem using a block-
diagonalization and low rank calculations of the Hessian.

c is drawn from a uniformly distributed (.2− 1.2) random
variable. The matricesM ∈ S

n×n are linearly independent
and also generated byrand. For every system sizen,
ten generated problems are solved and the mean time is
calculated. In Figure 1 it can be seen that we reach the
theoretical total cost of ordern3 for the block-diagonalization
combined with a low rank calculation of the Hessian. The
initial cost for theese calculations is due to the preprocessing
done when calculating the low rank matrices in Equation
11. An implementation in C of these calculations would
lower the preprocessing time significantly. Doing the block-
diagonalization and utilizing sparsity when forming the Hes-
sian also has complexityn3.

Seismic isolation control

This example deals with seismic isolation control of an
story building and is taken from (Kao, 2002). The building
is modeled as a series connection of masses, springs and
dampers as is illustrated in Figure 2. The equations describ-
ing the dynamics of the system are

m1ẍ1 + c1ẋ1 + k1x1− c2(ẋ2− ẋ1)− k2(x2− x1) = −u+ v

mr ẍr + crẋr + krxr − cr+1(ẋr+1− ẋr)− kr+1(xr+1− xr) = 0,

(for r = 2,3, . . . ,n−1)

mnẍn + cn(ẋ−ẋn−1)+ kn(xn − xn−1) = 0

whereu is the control force applied between the ground and
the first floor of the building, andv is the earthquake’s force
applied to the ground. The spectrum ofv lies in the frequency
span 1/3 to 3 Hz. Seismic isolation controllers are designed
for buildings of 6, 8 and 10 stories. An accelerometer is
available at each floor of the building. The values ofmr, cr

and kr in the examples are given in Table I. The controller
is based onH2 design and is carried out using the Matlab

m1

m2

m3

mn−1

mn

k1

k2

k3

kn−1

kn

c1

c2

c3

cn−1

cn

u

v

Fig. 2. Each story is modeled as a mass, a spring and a damper. The
stories are then connected in series. The forceu is the control force and the
force v is moving the ground and is due to the earthquake

r mr cr kr

1 44.2 18.3 91.6
2 44.2 18.3 91.6
3 44.2 17.7 88.3
4 44.2 17.8 89.2
5 44.2 15.8 79.1
6 44.2 14.6 73.1
7 44.2 13.2 66.1
8 44.2 11.6 58.0
9 44.2 9.8 48.8

10 44.2 7.6 38.1

TABLE I

THE VALUES OF MASSES, SPRING AND DAMPER CONSTANTS FOR THE

DIFFERENT STORIES

the µ-Analysis and Synthesis Toolbox (Balaset al., 1993).
We assume that the constantscr and kr have a 10 %
uncertainty forr = 1 to 5. We analyze the system robustness
by computing an upper bound on the inducedL2-gain from
v to the acceleration vector ¨x, as described in (Kao, 2002).
If the number of stories ares the number of KYP-LMIs are
11, out of which the first ten are due to the uncertainties
in the damping coefficients and spring constants and are of
size 2×2 and the last one is of size(4s + 34)× (4s + 34).
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Fig. 3. Block diagram for the robustness analysis of the seismic isolation
control system.

The decision variables arex ∈ R
41, Pi ∈ R

1, i =1, 2,. . . ,10,
P11 ∈ S

4s+23. We compute an upper bound on the induced
L2-gain with three correct digits. The computational results
are shown in Table II. The first column shows the number
of storys and then the solution times in seconds are shown.
It can be seen that solving the equivalent dual as is done in
KYPD gives a major improvement. To block diagonalize the
A-matrix and utilize sparsity further improves the efficiency.
The numerical issues are severe in this example and therefore
the low rank utilization is not realiable.

# storys SDPT3 [s] KYPD [s] Sparsity [s]
6 1438.9 113.2 71.3
8 4569.0 203.0 159.2

10 9831.6 385.5 187.1

TABLE II

COMPUTATIONAL RESULTS FOR THE SEISMIC CONTROL PROBLEM.FIRST

COLUMN SHOWS THE NUMBER OF STORYS AND THEN THE SOLUTION

TIMES IN SECONDS ARE SHOWN. TIME INIDICATES A SOLUTION TIME

LARGER THAN 104.

VII. ACKNOWLEDGMENTS

The authors would like to thank Johan Löfberg, for a
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