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Abstract

Semidefinite programs and especially those derived from the Kalman-Yakubovich-
Popov lemma are quite common in control applications. KYPD is a dedicated
solver for KYP-SDPs. It solves the optimization problem via the dual SDP.
The solver is iterative. In each step a Hessian is formed and a linear system
of equations is solved. The calculations can be performed much faster if we
utilize sparsity and low rank structure. We show how to transform a dense
optimization problem into a sparse one with low rank structure. A customized
calculation of the Hessian is presented and investigated.

Keywords: Semidefinite programming, Kalman-Yakubovich-Popov lemma,
low rank
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Abstract— Semidefinite programs and especially those de- low rank properties are also exploited. However, the method
rived from the Kalman-Yakubovich-Popov lemma are quite  ology used is only explained for systems with one input and
common in control applications. KYPD is a dedicated solver a system matrix with real eigenvalues. To get such a matrix

for KYP-SDPs. It solves the optimization problem via the . . . .
dual SDP. The solver is iterative. In each step a Hessian pole placement is used. The approach in this paper is more

is formed and a linear system of equations is solved. The Straightforward and possibly more numerically well-bescv
calculations can be performed much faster if we utilize sparsity A KYP-SDP in the variable® € S" andx € RP has the
and low rank structure. We show how to transform a dense following structure

optimization problem into a sparse one with low rank structure.

A customized calculation of the Hessian is presented and min CTX+<C, P)
investigated. st.X=.7(P)+Mo+%(x) >0 0
I. INTRODUCTION where the inner produdC, P) is Trac€CP),

The need to solve semidefinite programs derived from 7 p) _ [ATPT+ PA PB}
the Kalman-Yakubovich-Popov lemma (KYP-SDPs) often B'P 0

arise in control and signal processing. In fact, some of thgng

most important applications of semidefinite programming p

in control involve KYP-SDPs. Some examples are linear ¥(x) = szMk

system design and analysis (Boyd and Barratt, 1991; Hindi k=1

et al., 1998), robust control analysis using integral quadratiwith A € R™", B € R™™ C € S" and M, € S™™, k =
constraints (Rantzer, 1996; Megretski and Rantzer, 199@;1,...,p. In fact, there can be several constraints of the
Jonsson, 1996; Balakrishnan and Wang, 1999), quadratigpe above but for simplicity we only treat SDPs with one
Lyapunov function search (Boydt al., 1994) and filter constraint in this paper. A generalization is straightfare
design (Alkire and Vandenberghe, 2002). The number of variables,y are ”“‘—2“) +p.

As the size of the semidefinite programs (SDPs) in this Solving this optimization problem using an interior-point
problem class usually is very large it is often hard or evegolver involves forming and solving a linear system of
impossible to solve them using general-purpose softwareguations in each iteration. Let us assume thas large
The solver KYPD (Wallin and Hansson, 2004) is a dedicategompared top and m which is most often the case. The
solver for KYP-SDPs and utilizes the special stucture in theumber of variables are then of ordef. Hence, solving
problem. In this paper we will exploit sparseness and lokhe system of equations can be done in omfepperations
rank properties in order to solve KYP-SDPs efficiently. ~ but forming the system has a computational complexity

Other efficient solvers for KYP-SDPs have been deveProportional ton®. Our approach has complexity of order
oped. They are based on cutting plane methods (ParriIB?-
2000; Kaogt al., 2001; Kao a!’]d Megret_ski, 2001; Hachez, . ASSUMPTIONS
2003; Wallin et al., 2005), interior-point methods with
an alternative barrier (Kaet al., 2001) and interior-point To make the presentation of the theory more streamlined
methods combined with conjugate gradients (Hansson aM make two assumptions. The first assumption is that the
Vandenberghe, 2001; Walliet al., 2003; Gillberg and Hans- pair (A,B) is controllable. This implies that the operator
son, 2003). Preliminary results on the approach used iy nas full rank, (Vandenberghet al., 2005). The second
KYPD has been presented in (Walliet al., 2003) and 2assumption is that the operatof (P, x) defined as
(Vandenberghet al., 2005). In (Vandenberghet al., 2005) o (PX) = Z(P)+9(x)

This work was supported by the Swedish Research Councilrddent  has full rank, see (Wallin and Hansson, 2004) for details.
No. 40469101 and by CENIIT. _ , Neither of the assumptions are restrictive. The controlla-
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of (A,B) and if the operator/ (P, x) does not have full rank symmetricmx m matrices and eacBy1), k=1,2,...,mn,
it is possible to convert the problem to an equivalent reduces related toEy ;5 through

order problem for which the corresponding operator has full
rank. 7 (R) =0

lIl. THE IDEA BEHIND KYPD Moreover,Fp solves

The solver KYPD is based on solving a problem equivalent F*(Fo)=C

to the SDP dual of (1). This equivalent dual has Considerabl}zhus to get the parsimonious parametrization we have to

fewer variables than the primal SDP and can be solved usin% . .
. solvemn+ 1 Lyapunov equations with respect g1
any primal-dual solver.

As the operatores has full rank we know that the
The dual SDP nullspace of«™* is spanned bykmax— p basis matrices.
The dual of (1) is Thus, we can further reduce the number of variables by
finding basis matrices that also fulfil (3). However, thisraxt
max — (Mo, Z) reduction will destroy any additional structure presenthia
st.Z%(2)=C ) basis matrices as, for example, sparsity or low rank. As the
purpose of this paper is to exploit such properties we will

g2)=c 3) not further reduce the number of variables. The interested
7_ [Z#l Z12] >0 (4) reader can find a description of the procedure in (Wallin and
Z1p Z22 Hansson, 2004).
with The SDP equivalent to the dual is
F(Z) = AZy1+Z11AT +BZ],+ Z1B7 min d"z
% (2) = My, Z) st.Gz=c (6)
Kmax
The operators#* and ¢* are the adjoint operators o Z=Fy+ ZaZka >0
and¥, respectively. AZ is a symmetric matrix of sizén+ k=1

m) x (n+m) the dual problem has even more variables thafhere the entries of are
the primal problem if

dx = (Mo,
o M D k = (Mo, F)
P 2 the entries ofG are
which is usually the case. Hence, we should reduce the Gk = (Mi, R
number of variables in order to solve the dual SDP efficiently the= A
T
Reduction of the number of dual variables andz= [Zl 2 .- z"max] '
We want to find a parsimonious parametrization Reconstructing x and P
Kmax Primal-dual SDP solvers deliver the dual as well as the
Z=Fo+ ) zh (5)  primal variable. The dual solutioiX, of the above SDP is ac-
K=1

_ S tually also a solution to (1), see (Vandenberghal., 2005).
of all feasibleZ. One such parametrization is given by ~ Hence, we hav in (1), but we are really interested ihand

E 0 X. It turns out that they can be reconstructed using the basis
k(1Y) ] k=0 matrices. Remember th&*(F,) =0 forallk=1,2, ... knax-
L 0 0 Hence, from the definition of adjoint operators it followsith
- T *
E E <Fka</(P)> = <§ (Fk),P> =0
Fo= Eﬁ(m k(lz)] k=1,2,...,mn i
k(12
-2 Thus we have
0 0 X) = 7Z(P)+M
] L. Ko (Fe. X) = (e, 7 (P) Mo+ (x))
10 By = (Fx, Mo) + (R ¥ (X))

p
where kmax = mn+ m<”;+1>, Ex(12) is the standard basis for = (R, M) + Z Xj (A, Mj)
unstructuredh x m matrices,Ey,») is the standard basis for =1



This can be rewritten as Block diagonal A-matrix

G'x=g Let us first assume that the eigenvalues are ordered on

the diagonal. First we have all real eigenvalues and then

the complex ones follow in complex conjugated pairs. To
gk = (F, X — Mo) transform theA-matrix from being complex diagonal to

being real block diagonal we only have to do a congruence

When this overdetermined but consistent system of equatiotignsformationA = VHA/. The matrixV has ones on the

is solved we havex and can computd®, for example, by diagonal for all rows with real eigenvalues and blocks

solving the Lyapunov function corresponding to the (1,1)-

block of the constraint in (1). S_ 11 i
V21

whereG is the same matrix as in (6) and

IV. INTRODUCING ADDITIONAL STRUCTURE

By insisting on the system matrix to have a specia‘i’n the diagonal for rows with complex conjugated eigenval-

structure, for exampel being diagonal or block diagonal thieS- If we have a complex conjugated block in fenatrix
basis matricedi will be both sparse and have low rank.it Will be trasformed as

Both properties can be utilized to form the Hessian more 1 11ratb 1 ) 5
efficiently. A diagonalA-matrix will in addition let us solve SAS= [ } {2 aib} { __'] = [ a ]
the Lyapunov equations in a computationally cheaper way. b 0 S —b a

Diagonalization of A The congruence transformation will also result in a réal
matrix. The Lyapunov matrices we have to solve to get the
Basis matrices can be solved in ordeér operations when
"he A-matrix is diagonal. Hence, the total cost for forming
the basis is of ordend. If the matrix Ex(12 has a one in a
row corresponding to a block of dimension one, i.e. a real
ATPLPA PB | o’ I 0 eigenvalue, the resulting basis matrice will be of at moskra

[ BTp 0} = [—L J 7 (P) [—L J (7)  two and can be written as

If the A-matrix is not diagonalizable we can always, as th
pair (A,B) is controllable, apply a congruence transformatio
to the KYP-LMI to makeA = A— BL diagonalizable. The
operator.# (P) will be transformed as

The matrixMp and the operato/(x) will be transformed
analogously. Then apply another congruence transformatio Fo—uy ejT 1o UI _ V1VI +V2v£ ®)
[/KH5+F?K 5@} _

P+ T 0]" [ATP+PA PB][T 0
BP0

0 | B'P 0|10 |] wheree; is the jth unit vector. Thus, in addition to having
_ N _ low rank the basis matrix is also sparse, having only one row
to makeA=T~*AT diagonal. We also have thBt=T"PT 304 one column with nonzero elements. If the makiy o)
andB=T'B. has a one in a row corresponding to a block of dimension

Two negative aspects with the diagonalization are that thg,o the resulting basis matrice will be of at most rank four
basis matrices will be complex A has complex valued znd can be written as

eigenvalues and not every matrix can be diagonalized in a
numerically well conditioned way. There are two remedies to
the first dilemma. Either we can solve a real SDP involving
LMIs with twice as many rows and columns as the original
one (Boyd and Vandenberghe, 2004) or we can transform
the complex diagonah-matrix into a real block diagonal Also in this case the basis matrices are sparse.

one of the same size. We prefer the second alternative. The

numerical issues with diagonalizing thematrix may not be

as severe as it seems though. As is mentioned above we can V. PRIMAL-DUAL SOLVERS

always do a congruence transformation to change the system

matrix to A= A— BL. We thus have a freedom to chodse A general-purpose primal-dual solver applied to (6) gener-
to get a matrix that has good numerical properties when iétes iterates afe Rkmax, A € RP and the positive semidefinite
comes to diagonalization. How to choolsénas however to matrix X € S™". The vectorr and the matrixX are variables
be investigated. in the Dual to (6). At each iteration a linear system of

T T T T
Fc=u1€] +eju; + €)1 +€j 11Uy ©)
=iV} +Vov) +vavd +vav) (10)



equations cost to formH is proportional tan®n®. This is independent of
Kmax utilizing sparsity or not. Tests imply though that the sfigrs
—WAXW — Z AR =R utilizing algorithm is much faster in practice and this i®ds

k=1 when a system is block-diagonalized. Calculatihig using

low rank matrices will reduce the cost t?n?, see (Tohet

(F1,AX) al., 1999) for details.
T
+G A =1y VI. NUMERICAL EXAMPLES
(Fgnao OX) To evaluate the algorithm we compare the computational
times for some numerical examples. The examples are run
G'AN =1, on a Sun Sunfire V20z computer with 2Gb RAM running

. - o . Linux under CentOS 4.1. They are solved using KYPD

sidesR, ry andr, change at each iteration and also depeng jnterfaced using YALMIP version 3 (R20050720). Matlab

on the particular algorithm used. These equations are 80lVggrsion 7.0.1 (R14) is used.

by eliminating AX from the first equation and substituting The options for YALMIP defined bysdpset ti ngs. m

AX = 3,3 Az W TRW ™ — R into the second. This yields ere given an extra option to enable block-diagonalization
H Gl [Az ri+h block-diagonalization combined with low rank calculason
GcT o = of the Hessian. In SDPT3 the possibility to use function-

AA ro
handles for a Hessian calculation was addedlliipr ed. m

where To utilize sparsity the settingpdensi ty is used in SDPT3.
Hij :<W*1F.,W*1Fj>7 i,j=1,2,... Knax The diagonalization is activated via YALMIP. To utilize
h = (WlF,WIR), i=1.2,... Knax low rank structure the file that performes the calculation

of the Hessian is provided to SDPT3 as a function-handle.
Lyapunov equations in the first example are solved through
In general the cost for solving this system of equations i@ diagonalization of thé-matrix.
proportional to(kmax+ p)° and the cost for formingH is In order to improve numerical issues feedback is per-
proportional tOkﬁmx- If the number of variables i@ are not formed in the Seismic isolation example. SDPT3 terminates

reducekmay = %;M“H) and after the reduction we have When the primal-dual gap is less than 10

Kmax = mMn+ L(";rl) + p variables. This yields a considerable N the examples KYP-SDPs are solved using four different

reduction in computational complexity. However, when théettings. SDPT3 denotes that the primal problem is solved
F-matrices are low rank we can do even better. The cost f&6ing SDPT3 interfaced via YALMIP. KYPD denotes that the

forming H will only be cubic inkmax. equivalent dual is solved using KYPD with SDPT3 as an un-
o _ _ derlying solver. Sparsity denotes that the dual is solvéaus
Utilizing low rank of the basis matrices KYPD after a transformation is done. This transformation

To utilize low rank the basis matrices are written as #&lock-diagonalizes the system matiéx Lowrank is similar
sum of rank one matrices. Below two separate forms atp Sparsity buspdensi ty is set to 1 and in every step the

presented. interior-point method forms the Hessian using a special low
2 e rank algorithm.

R = Zvikvﬁ( = Zle,kuﬁjtuikq]—( (11) The solution time is obtained by using the matlab com-

i= i= mandcput i me before and after a call to the solver. Each

Rewriting the expression fdd with the low rank expression solver has obtained the problem data on the primal form to
for R and using properties for the inner product gives make a comparison fair. Preprocessing such as transforma-
2 2] tions and any rewritings of the problem are included in the
Hij = kZ“ZlV&W*lVJIV,ﬂWAVik = solution time.
Randomly generated KYPs

ri Tj
= Zkle lu&w_leiluﬁw_le'k*“&W_luilejTIW_lakv This numerical example is based on randomly generated
=12 Ko KYPs. The problem to be solved is 1 where the matrides
’ B R™™ andB € R" are generated with the Matlab command
Note that preprocessing can be done by calculatiy~1  r and. In order to get comparable results infeasible problems
once. Exploiting sparsity to formH is implemented in and problems where the condition number of the controlla-

SDPT3. However, i is small compared to, the worst-case bility matrix exceeds 19 are rejected. The components of



Randomly generated KYPs
T T T

Primal

= = = Sparsity |: . g . R
Lowrank 4
10° : : H : 7 3 kn Cn

Solution time [s]
=
5]

10 16 25 35 50 75 100 130 165 200
Size of A-matrix.

Fig. 1. Solution times for the randomly generated KYPs examgle v mg
system order. For every system oraeten generated problems are solved.

The average solution time is presented. Used solvers are Ippiroblem Ks % H'j Cs

using SDPT3, solving the dual with KYPD, solving the duallwKYPD
after a block-diagonalization and finally solving the perhl using a block-
diagonalization and low rank calculations of the Hessian. mp

% u
c is drawn from a uniformly distributed.Z — 1.2) random ko C2

variable. The matriced € S™" are linearly independent
. m
and also generated byand. For every system size,
ten generated problems are solved and the mean time is . % Hj
1 C1

calculated. In Figure 1 it can be seen that we reach the
theoretical total cost of order for the block-diagonalization
combined with a low rank calculation of the Hessian. The A deled dad )
o . . . Fig. 2. Each story is modeled as a mass, a spring and a damper. The
initial cost for theesg calculations is due to Fhe preprgcg;s_ stories are then connected in series. The forcethe control force and the
done when calculating the low rank matrices in Equatiofbrce v is moving the ground and is due to the earthquake

11. An implementation in C of these calculations would

lower the preprocessing time significantly. Doing the block [ r m[ o k]|
diagonalization and utilizing sparsity when forming thesHe ; ji-; igg gig
sian also has complexity®. 3t 2221177 T 883

o 4442 178 89.2
Seismic isolation control 52425 158 | 79.1

This example deals with seismic isolation control ofia 3 ji; ig'g ;2'1
story building and is taken from (Kao, 2002). The building 8 4221 116 | 58.0
is modeled as a series connection of masses, springs and 9 [[ 442 98] 488
dampers as is illustrated in Figure 2. The equations describ 10 ] 442 | 76 381
ing the dynamics of the system are TABLE |

MyXq + C1Xg 4 KaXq — Co(%o — X1) — ko (X — X1) = —U—+V THE VALUES OF MASSES SPRING AND DAMPER CONSTANTS FOR THE

My + Gk + KeXe — Crat (k1 — %) — K1 (Xrs1 — %) =0, DIFFERENT STORIES

(forr=2,3,...,n—-1)

Mon + Cn(X-Xn-1) + kn% —Xn-1) =0 the p-Analysis and Synthesis Toolbox (Balasal., 1993).
whereu is the control force applied between the ground antive assume that the constants and k. have a 10 %
the first floor of the building, ang is the earthquake’s force uncertainty for =1 to 5. We analyze the system robustness
applied to the ground. The spectrumwdfes in the frequency by computing an upper bound on the inducgf-gain from
span 1/3 to 3 Hz. Seismic isolation controllers are designedto the acceleration vectot, as described in (Kao, 2002).
for buildings of 6, 8 and 10 stories. An accelerometer i$f the number of stories arethe number of KYP-LMIs are
available at each floor of the building. The valuesmpf ¢, 11, out of which the first ten are due to the uncertainties
andk; in the examples are given in Table I. The controllein the damping coefficients and spring constants and are of
is based orH; design and is carried out using the Matlabsize 2x 2 and the last one is of siz@s+ 34) x (4s+ 34).



Fig. 3. Block diagram for the robustness analysis of thensieissolation
control system.

Balakrishnan, V. and F. Wang (1999). Efficient computatioa guaranteed

lower bound on the robust stability margin for a class of utaier
systems|EEE Transactions on Automatic Control 44(11), 2185-2190.

Balas, G., J. C. Doyle, K. Glover, A. Packard and R. Smith (3998

Analysis and Synthesis Toolbox. The MathWorks Inc.

Boyd, S. and C. Barratt (1991)inear controller design: Limits of perfor-

mance. Prentice Hall.

Boyd, S. and L. Vandenberghe (2004onvex Optimization. Cambridge

University Press. New York, New York, USA.

Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan (19940ear matrix

inequalities in system and control theory. SIAM. Philadelphia, USA.

Gillberg, J. and A. Hansson (2003). Polynomial complexityddiesterov-

Todd potential-reduction method with inexact search dioest In:
Proceedings of the 42nd IEEE Conference on Decision and Control.
Maui, Hawaii, USA.

Hachez, Y. (2003). Convex optimization over nonnegativeympaii-

The decision variables arec R4, B e R, i =1, 2,...,10,

Pr1 € S*t23, We compute an upper bound on the induced
£-gain with three correct digits. The computational results’

are shown in Table Il. The first column shows the numbe

of storys and then the solution times in seconds are showlg.

It can be seen that solving the equivalent dual as is done

KYPD gives a major improvement. To block diagonalize the

A-matrix and utilize sparsity further improves the efficignc

. . . . JO
The numerical issues are severe in this example and therefor

the low rank utilization is not realiable.

# storys | SDPT3 [s] | KYPD [s] | Sparsity [s]

6 1438.9 113.2 71.3

8 4569.0 203.0 159.2

10 9831.6 385.5 187.1
TABLE I

COMPUTATIONAL RESULTS FOR THE SEISMIC CONTROL PROBLENFIRST
COLUMN SHOWS THE NUMBER OF STORYS AND THEN THE SOLUTION
TIMES IN SECONDS ARE SHOWN TIME INIDICATES A SOLUTION TIME
LARGER THAN 10%.
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