
A cutting plane method for solving KYP-SDPs

Ragnar Wallin, Chung-Yao Kao, Anders Hansson

Division of Automatic Control

Department of Electrical Engineering

Linköpings universitet, SE-581 83 Linköping, Sweden

WWW: http://www.control.isy.liu.se

E-mail: ragnarw@isy.liu.se, cykao@ee.unimelb.edu.au,

hansson@isy.liu.se

31st October 2006

REGLERTEKNIK

AUTOMATIC CONTROL

LINKÖPING

Report no.: LiTH-ISY-R-2731

Technical reports from the Control & Communication group in Linköping are

available at http://www.control.isy.liu.se/publications.

http://www.control.isy.liu.se/publications/?type=techreport&number=2731&go=Search&output=html
http://www.control.isy.liu.se/~ragnarw
http://www.control.isy.liu.se/~hansson
http://www.control.isy.liu.se
http://www.isy.liu.se/
http://www.liu.se
http://www.control.isy.liu.se
mailto:ragnarw@isy.liu.se
mailto:cykao@ee.unimelb.edu.au
mailto:hansson@isy.liu.se
http://www.control.isy.liu.se/publications/?type=techreport&number=2731&go=Search&output=html
http://www.control.isy.liu.se/publications

Abstract
Semidefinite programs originating from the Kalman-Yakubovich-Popov lemma

are convex optimization problems and there exist polynomial time algorithms

that solve them. However, the number of variables is often very large making

the computational time extremely long. Algorithms more efficient than general

purpose solvers are thus needed. To this end structure exploiting algorithms has

been proposed, based on the dual formulation. In this paper a cutting plane

algorithm is proposed. It is shown that it in certain cases outperforms both

general purpose solvers and structure exploiting solvers.

Keywords: Semidefinite programming, Kalman-Yakubovich-Popov lemma,

Cutting plane method, Stability analysis.

Avdelning, Institution

Division, Department

Division of Automatic Control
Department of Electrical Engineering

Datum

Date

2006-10-31

Spr̊ak

Language

� Svenska/Swedish

� Engelska/English

�

⊠

Rapporttyp

Report category

� Licentiatavhandling

� Examensarbete

� C-uppsats

� D-uppsats

� Övrig rapport

�

⊠

URL för elektronisk version

http://www.control.isy.liu.se

ISBN

—

ISRN

—

Serietitel och serienummer

Title of series, numbering
ISSN

1400-3902

LiTH-ISY-R-2731

Titel

Title
A cutting plane method for solving KYP-SDPs

Författare

Author
Ragnar Wallin, Chung-Yao Kao, Anders Hansson

Sammanfattning

Abstract

Semidefinite programs originating from the Kalman-Yakubovich-Popov lemma are convex
optimization problems and there exist polynomial time algorithms that solve them. However,
the number of variables is often very large making the computational time extremely long.
Algorithms more efficient than general purpose solvers are thus needed. To this end structure
exploiting algorithms has been proposed, based on the dual formulation. In this paper a
cutting plane algorithm is proposed. It is shown that it in certain cases outperforms both
general purpose solvers and structure exploiting solvers.

Nyckelord

Keywords Semidefinite programming, Kalman-Yakubovich-Popov lemma, Cutting plane method, Sta-
bility analysis.

http://www.control.isy.liu.se

Acuttingplanemethod for solvingKYP-SDPs

Ragnar Wallin a, Chung-Yao Kao b, Anders Hansson a

aDepartment of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden

bDepartment of Electrical and Electronic Engineering, The University of Melbourne, Victoria 3010, Australia

Abstract

Semidefinite programs originating from the Kalman-Yakubovich-Popov lemma are convex optimization problems and there
exist polynomial time algorithms that solve them. However, the number of variables is often very large making the computational
time extremely long. Algorithms more efficient than general purpose solvers are thus needed. To this end structure exploiting
algorithms has been proposed, based on the dual formulation. In this paper a cutting plane algorithm is proposed. It is shown
that it in certain cases outperforms both general purpose solvers and structure exploiting solvers.

Key words: Semidefinite programming, Kalman-Yakubovich-Popov lemma, Cutting plane method, Stability analysis.

1 Introduction

Semidefinite programs derived from the Kalman-
Yakubovich-Popov lemma (KYP-SDPs) are convex
optimization problems and have the following form

vopt = inf
x,P

cT x + Tr(CP)

s.t

[

AT P + PA PB

BT P 0

]

+ M0 +

p
∑

i=1

xiMi > 0

(1)

where A ∈ R
n×n, B ∈ R

n×m, P ∈ S
n and Mk ∈ S

n+m,
i = 0, 1, . . . , p. Notation Tr(·) denotes the trace of the
given matrix and S

n is the set of symmetric n × n ma-
trices. We assume that the pair (A, B) is stabilizable.
Without lack of generality we also assume that A has no
eigenvalues on the imaginary axis. The latter assump-
tion is only made to simplify the presentation of the
algorithm. Due to the stabilizability assumption eigen-
values on the imaginary axis can be relocated by feed-
back; details are given in Appendix B. The matrix C is
assumed to be negative semidefinite, which is the usual
case in applications. Moreover, we assume that the opti-
mal value vopt is finite. In case there are several matrix

Email addresses: ragnarw@isy.liu.se (Ragnar Wallin),
cykao@ee.unimelb.edu.au (Chung-Yao Kao),
hansson@isy.liu.se (Anders Hansson).

variables Pj it is possible to generalize the results to

inf
x,P

cT x +

N
∑

j=1

Tr(CjPj)

s.t

[

AT
j Pj + PjAj PjBj

BT
j Pj 0

]

+ M0,j +

p
∑

i=1

xkMi,j > 0,

j = 1, . . . , N

but for simplicity we only treat the case with one vari-
able. A generalization is straightforward. The only re-
striction is that the matrix Pj must only appear in one
constraint. Note that a standard Linear Matrix Inequal-
ity (LMI)

F = F0 +

p
∑

i=1

xiFi > 0

is a special case of the constraint (1) with n = 0. Thus,
in general, we can handle a mixture of KYP constraints
and standard LMIs.

It may seem that KYP-SDPs are problems of a special
form, but they appear in numerous applications in con-
trol and signal processing. A partial list of applications
includes linear system design and analysis [5,25], ro-
bust control analysis using integral quadratic constraints
[32,26,3], quadratic Lyapunov function search [6], and
filter design [1].

The most common approach for solving SDPs is to use
interior-point methods, e.g. [36,37]. Unfortunately the

number of variables in the SDP often gets very large,
making it hard or even impossible to solve with gen-
eral purpose software. Under the circumstances that n
is much larger than m and p, the computational time for
each iteration in a general purpose interior-point method
is proportional to n6 for the case of KYP-SDPs. There-
fore interior-point algorithms utilizing structure have
been developed, e.g. [43,1,44,21,11,40,24]. It has been
shown that it is possible to reduce the computational
time for each iteration to O(n3). Also iterative methods
have been employed for computing the search directions,
e.g. [22,23,44,12]. For iterative methods it is not possi-
ble to provide any theoretical results on the improve-
ment in computational complexity. The results depend
on the numerical accuracy asked for, and what type of
pre-conditioner is used in the iterative solvers.

In many applications the variable P is of little intrin-
sic value, since it is often only introduced to convert
a semi-infinite frequency domain inequality to a finite
dimensional LMI as in (1). This equivalence is usually
referred to as the KYP lemma. Because of this, sev-
eral researchers have proposed alternatives to standard
interior-point methods for solving KYP-SDPs. These
methods include cutting-plane methods and outer ap-
proximation methods, e.g. [34,41,21,28], and interior-
point methods based on alternative barrier-functions for
the frequency domain constraint, [27]. It was shown that
the per-iteration computation complexity of these algo-
rithm is O(n3), which provides the main saving of the
computational time.

In this paper we extend the work on cutting-plane meth-
ods (CPM) to also cover the case when the variable P
is of intrinsic value. We will later on see an applica-
tion where this is the case. An analytical center cut-
ting plane (ACCP) algorithm is implemented to study
the efficiency of applying CPM to solve KYP-SDPs. We
will show that the per-iteration computational complex-
ity of such an algorithm is O(n3). Furthermore, it is
known that the number of iterations for ACCP algo-
rithm to converge to an ǫ-accurate suboptimal solution
is O(p2/ǫ2), where p is the number of decision variables
to be optimized [15]. The overall complexity in theory is
therefore O(n3p2/ǫ2). The worst-case complexity makes
ACCP algorithm seemingly a rather slow algorithm, es-
pecially when a suboptimal solution with good accuracy
is required. However, the results of numerical experi-
ments have shown that it seems like the computational
complexity in practice is O(n3p| log ǫ|), [28] . We remark
that our results are based on a reformulation of the op-
timization problem such that CPM is applied to a prob-
lem where only the x-variables are present. In case CPM
would have been applied directly to the KYP-SDP, the
complexity would have been O(n6p2/ε2).

The remaining part of the paper is organized as follows.
In Section 2 we review the applications of KYP-SDPs to
the linear quadratic regulator and an extension. In Sec-

tion 3 we rewrite the KYP-SDP to fit the cutting plane
framework. We also present some results on how solu-
tions to algebraic Riccati equations can be used to solve
certain subproblems for fixed value of x. In Section 4
we introduce the cutting plane method and discuss its
computational complexity with respect to the number of
iterations to convergence. In Section 5 we show how to
generate feasibility cuts and value cuts for KYP-SDPs.
In Section 6 we discuss the computational complexity of
the cutting plane method per iteration. We also make a
comparison of its overall complexity with interior-point
methods. In Section 7 implementation issues are ad-
dressed, in Section 8 numerical experimental results are
presented, and finally in Section 9 some conclusions are
made.

2 Linear Quadratic Regulators

As mentioned in the introduction there are numerous
applications of KYP-SDPs. In this section we will focus
on explaining the application to linear quadratic regu-
lators.

Consider the continuous-time dynamical system model

ξ̇ = Aξ + Bu (2)

with initial value ξ(0) = ξ0, A ∈ R
n×n, B ∈ R

n×m,
ξ(t) ∈ R

n, and u(t) ∈ R
m. Assume that (A, B) is con-

trollable.

2.1 Quadratic Objective

Define the cost index

J =

∫ ∞

0

[

ξ

u

]T

M

[

ξ

u

]

dt (3)

where

M =

[

Q S

ST R

]

∈ S
n

with R > 0. It is well-known (see, e.g., [45]), that the
infimal value of J with respect to u(·) subject to (2) and
such that limt→∞ ξ(t) = 0 is, whenever it exists, given
by ξT

0 Pξ0, where P ∈ S
n solves the KYP-SDP

sup ξT
0 Pξ0

s. t.

[

AT P + PA PB

BT P 0

]

+ M > 0.
(4)

The optimal u(·) is given as a state feedback u(t) =
−R−1(PB + S)T ξ(t). Here we see an application where
the variable P is of intrinsic interest and appears in the

2

objective. For this special case, as will be discussed in
detail later on, the optimal P can be found as the max-
imal solution of the algebraic Riccati equation

AT P + PA + Q − (PB + S)T R−1(PB + S) = 0,

Very efficient methods are available for computing this
solution, [30]. The computational complexity of these
methods is in the order of n3. However, slight generaliza-
tions of the above problem formulation require the solu-
tion of general KYP-SDPs. An example is given next.

2.2 Quadratic constraints

Define the cost indices

Ji =

∫ ∞

0

[

ξ

u

]T

Mi

[

ξ

u

]

dt, i = 0, . . . , p (5)

where Mi ∈ S
n. Now consider the constrained optimiza-

tion problem

inf J0

s. t. Ji ≤ ci, i = 1, . . . , p

(2) and limt→∞ ξ(t) = 0

(6)

with respect to u(·). The optimal value to this problem,
whenever it exists, is given by ξT

0 Pξ0, where P solves the
KYP-SDP

sup ξT
0 Pξ0 − cT x

s. t.

[

AT P + PA PB

BT P 0

]

+ M0 +
∑p

i=1 xiMi > 0

xi > 0, i = 1, . . . , p

(7)

(see [6]). Here we see an application where both the vari-
ables P and x are of intrinsic interest. Moreover, we have
multiple constraints, some of which only involve x.

2.3 Riccati equations

We will later on see that for general KYP-SDPs the cut-
ting plane method presented in this paper compute the
solution by solving a sequence of algebraic Riccati equa-
tions. To this end we need the following result proven in
Appendix A. Let us introduce the quadratic matrix

Q(P) = AT P + PA + Q − (PB + S)R−1(PB + S)T

Assume that the pair (A, B) is stabilizable, that there
is a P ∈ S

n such that Q(P) > 0 and that R > 0. Then
there exists a unique solution Pr to the Riccati equation

Q(P) = 0, (8)

such that Ar = A − BR−1(PrB + S)T is Hurwitz. Fur-
thermore, Pr is the maximal solution, i.e.

Pr > P, ∀P such that Q(P) > 0

It is not a good idea to use the iterative method in
Appendix A to compute the solution. Instead, methods
based on the Hamiltonian matrix

H =

[

A − BR−1ST BR−1BT

Q − SR−1ST −(A − BR−1ST)T

]

(9)

are preferred, [30]. These methods compute the solution
based on the real ordered Schur form of the Hamilto-
nian. It will be shown that the existence of P ∈ S

n such
that Q(P) > 0 holds is equivalent to the Hamiltonian
having no eigenvalues on the imaginary axis. This con-
dition is trivially checked once the Schur form has been
computed.

3 Preliminaries

In this section we will reformulate the optimization prob-
lem (1) to fit in the framework of the cutting plane
method. First we will make a separation of the variables
x and P in such a way that we define an optimizaton
problem in terms of only x, where the optimization over
P is made implicit. We show that the optimization prob-
lem in x is convex and that its objective function is conti-
nously differetiable with respect to x. We also show that
the implicit optimization over P for fixed x can be car-
ried out by solving an algebraic Riccati equation. Also,
the dual of the implicit problem is discussed. These re-
sults are the key to efficiently compute value and feasi-
bility cuts in the cutting plane method.

3.1 Separation of variables

Let us first define the operator F : S
n → S

n+m as

F(P) =

[

AT P + PA PB

BT P 0

]

the operator G : R
p → S

n+m and its partitioning as

G(x) = M0 +

p
∑

i=1

xiMi =

[

Q(x) S(x)

ST (x) R(x)

]

=

[

Q0 S0

ST
0 R0

]

+

p
∑

i=1

xi

[

Qi Si

ST
i Ri

]

the adjoint operator F∗ : S
n+m → S

n as

F∗(Z) = AZ11 + Z11A
T + BZT

12 + Z12B
T

3

where Z is partitioned as

Z =

[

Z11 Z12

ZT
12 Z22

]

the set X as

X = {x : ∃P ∈ S
n : F(P) + G(x) > 0}

and the set Z as

Z = {Z : F∗(Z) = C, Z ≥ 0}

The set X is the set of all x for which there exists a feasi-
ble solution to (1). If we then separate the optimization
in x and P and for all x ∈ X define the function

h(x) = cT x + inf
P

Tr(CP)

s.t. F(P) + G(x) > 0
(10)

we can write (1) as

vp = inf
x∈X

h(x) (11)

The optimal solution to the problems (1) and (11) are
identical.

We will frequently need to check if a given x is an element
of X or not. This is equivalent to investigating if there
exists a P ∈ S

n such that F(P)+G(x) > 0. By the Schur
complement formula this is equivalent to

R(x) > 0 (12)

Q(P, x) > 0 (13)

where

Q(P, x) = AT P + PA + Q(x)

−
(

PB + S(x)
)

R−1(x)
(

PB + S(x)
)T

If (12) holds and A has no eigenvalues on the imaginary
axis, then (13) holds if and only if the associated Hamil-
tonian matrix similarly defined as in (9) has no eigenval-
ues on the imaginary axis, [2]. In case the Hamiltonian
has an eigenvalue λ on the imaginary axis it follows from
Lemma 1 and Proposition 12 in [2] that

G(x, λ) =

[

(λI − A)−1B

I

]∗

G(x)

[

(λI − A)−1B

I

]

(14)

is not positive definite.

3.2 Riccati reformulation

We will now for x ∈ X show that

h(x) = cT x + Tr(CPr) (15)

where Pr is the maximal solution to the Riccati equation
Q(P, x) = 0. To see this, first notice that R(x) > 0
since x ∈ X . Hence, there exists, as previously shown, a
unique maximal solution Pr to the Riccati equation. For
this solution it holds that

Pr > P ∀ P such that Q(P, x) > 0

Thus,

Tr(C(Pr − P)) = −Tr(C(P − Pr)) ≤ 0

as C ≤ 0 and P−Pr < 0 and the product of two negative
semidefinite matrices has nonnegative eigenvalues. This
implies that Tr(CPr) ≤ Tr(CP) for any P such that
Q(P) > 0.

3.3 Dual reformulation

For a given x ∈ X we can in (10) replace

inf
P

Tr(CP)

s.t. F(P) + G(x) > 0
(16)

with its dual
sup
Z∈Z

Tr(−ZG(x)) (17)

which will yield the same value as strong duality holds
because vopt is finite by assumption and (1) implies strict
feasibility [4]. Hence, h(x) can also be written as

h(x) = cT x − inf
Z∈Z

Tr(ZG(x)) (18)

We now show that an optimal solution to (17) is

Z̄ =

[

Z̄11 Z̄12

Z̄T
12 Z̄22

]

=

[

I

Fr

]

Z̄11

[

I FT
r

]

where Z̄11 solves the Lyapunov equation

ArZ̄11 + Z̄11A
T
r = C ≤ 0 (19)

Here the matrices Fr and Ar are defined as

Fr = −R−1(xj)
(

Pr(x
j)B + S(xj)

)T

Ar = A + BFr

where Pr is the maximal solution to the Riccati equa-
tion. To show that Z̄ is optimal we first notice that the

4

maximal solution is stabilizing, i.e. Ar is Hurwitz. Since
C is negative semidefinite this implies that Z̄11 is pos-
itive semidefinite. That Z̄11 is positive semidefinite in
turn means that Z̄ ≥ 0 by construction. We also have
that

AZ̄11 + Z̄11A
T + BZ̄T

12 + Z̄12B
T

= ArZ̄11 + Z̄11A
T
r = C

Hence, Z̄ is in Z. As we have assumed that the primal is
bounded from below and strictly feasible a dual feasible
Z̄ is optimal if and only if complementary slackness holds
[4]. This is true as

Z̄

[

AT Pr + PrA + Q(xj) PrB + S(xj)

BT Pr + S(xj)T R(xj)

]

=

[

I

Fr

]

Z̄11M = 0

To see the last equality, note that

M =
[

I FT
r

]

[

AT Pr + PrA + Q(xj) PrB + S(xj)

BT Pr + S(xj)T R(xj)

]

=

[

AT Pr + PrA + Q(xj) + FT
r (BT Pr + S(xj)T)

PrB + S(xj) + FT
r R(xj)

]

=

[

Q(Pr, x
j)

PrB + S(xj) − PrB − S(xj)

]

= 0

The last equality follows from the fact that Pr satisfies
the Riccati equation Q(Pr, x

j) = 0.

3.4 Convexity and differentiability of h(x)

We now show that the function h(x) is convex and con-
tinuously differentiable on X . To see that the function
h(x) is convex we refer to equation (18) in Section 3.3.
Expressed in this form, h(x) can be seen as a pointwise
supremum over a set of convex functions and hence it
is convex [7, page 81]. To see that h(x) is also continu-
ously differentiable, notic that (10) can be rewritten as
in (15). Then the following properties hold:

(1) For any xj ∈ X it is possible to find a Pr ∈ S
n such

that Q(Pr, x
j) = 0.

(2) Q(P, x) is continuously differentiable with respect
to x ∈ X and P ∈ S

n.

If we in addition have that

∂vec
(

Q(Pr, x
j)

)

∂vec(P)T
is invertible ∀xj ∈ X and Pr

such that Q(Pr, x
j) = 0

then, according to the implicit function theorem,
Q(Pr, x

j) = 0 defines a function P (x) in a neighbour-
hood of xj ∈ X which is continuously differentiable.

Hence, let us investigate if
∂vecQ(Pr ,xj)

∂vecP T is invertible. If

we differentiate Q(P, x) with respect to P , we obtain

∂vec
(

Q(Pr, x
j)

)

∂vec(P)T
=In ⊗ AT + AT ⊗ In

− In ⊗ PrBR−1(xj)BT

− PrBR−1(xj)BT ⊗ In

+ In ⊗ S(xj)R−1(xj)BT

− S(xj)R−1(xj)BT ⊗ In

= In ⊗
(

A − BR−1(xj)
(

PrB + S(xj)
)T

)T

+

(

A − BR−1(xj)
(

PrB + S(xj)
)T

)T

⊗ In

= In ⊗ AT
r + AT

r ⊗ In (20)

The matrix in (20) is the matrix we get if we vectorize
a Lyapunov operator L(Ar , Pr) = AT

r Pr + PrAr, since

vec(L(Ar , P)) =
(

In ⊗ AT
r + AT

r ⊗ In

)

vec(P)

The Lyapunov operator is invertible if Ar is Hurwitz.
The matrix Ar is Hurwitz as Pr is a stabilizing solution
to the Riccati equation. Thus, ∂P

∂x
exists and for all x ∈ X

∂h(xj)

∂xi

= ci + Tr

(

C
∂P (xj)

∂xj

)

, i = 1, 2, . . . , p

and furthermore these derivatives are continuous.

4 Cutting plane method

Cutting plane methods can be used for solving convex
optimization problems and were independently intro-
duced in [8] and [29]. The methods rely on polyhedron
approximations of convex sets. An important require-
ment on the optimization problem is that it is compu-
tationally cheap to decide if a so-called trial point is
feasible or not. Furthermore, there must be an efficient
way to produce cuts that generate an increasingly re-
fined polyhedron approximation of the solution set. The
KYP-SDP has those qualities and cutting plane meth-
ods are thus well suited to solve the problem.

4.1 Derivation of algorithm

Let us consider the the problem

inf
x∈X

h(x) (21)

5

where h(x) is a real-valued, continuously differentiable,
convex function and X is a convex set. Assume that
we have a set of feasible points and have computed the
function values and the gradients at those points

h(x1), . . . , h(xk), ∇h(x1), . . . ,∇h(xk)

Affine lower bounds on h(x) are

h(x) ≥ h(xj) + ∇T h(xj)(x − xj) ∀x ∈ X , 1 ≤ j ≤ k

and hence

h(x) ≥ hlb
k (x) := max

1≤j≤k

(

h(xj) + ∇T h(xj)(x − xj)
)

The function hlb
k (x) is piecewise linear, convex and for

all x ∈ X less than or equal to h(x). It follows that

h(xopt) ≥ Lk := inf
x∈X

hlb
k (x)

where h(xopt) is the optimal value of (21). The mini-
mization problem on the right-hand side can be rewrit-
ten using an epigraph formulation

Lk = inf
x∈X , L

L subj. to

L ≥ h(xj) + ∇T h(xj)(x − xj), 1 ≤ j ≤ k
(22)

We call the constraints (22) value cuts as all x with a
lower value of the objective function h(x) than h(xj) lie
in the halfspace {x|∇T h(xj)(x − xj) < 0}. The output
of the program is a lower bound on h(xopt) and a feasible
point. Having this feasible point we can compute a new
function value, a new gradient and add a new value cut.
However, we want to solve an even simpler problem.
Instead of optimizing over x ∈ X we optimize over x
lying in a convex outer approximation of X . This will
also yield a lower bound on h(x). This bound will be
possibly lower as we optimize over a larger set. We will
use a polyhedral outer approximation of X . The kth
relaxed optimization problem is then

Lk = inf
x, L

L

s.t. L ≥ h(xj) + ∇T h(xj)(x − xj), j ∈ Vk

0 > aT
j (x − xj), j ∈ Fk

(23)

where Vk and Fk are mutually exclusive and Vk ∪ Fk =
{1, 2, . . . , Nk}. The last constraints in (23) are called fea-
sibility cuts and describe the polyhedral outer approxi-
mation of X . The output of this linear program is a new
trial point xj , feasible or infeasible, and a lower bound on
h(xopt). If the new trial point is feasible we add a value
cut to the program and if we get an infeasible point in
the outer approximation we can improve the outer ap-
proximation by adding a feasibility cut. A feasibility cut

at xj /∈ X is a linear constraint such that every feasible
point lies in the halfspace

{x|aT (x − xj) + γ ≤ 0}

If γ > 0 the cut is deep and if γ = 0 the cut passes
through xj . Observe that all the constraints in (23) are
linear and describe a polyhedron Pk. Thus, if we define

y =
[

L xT

]T

, the optimization problem can be written
as

Lk = inf
y

y1, subj. to y ∈ Pk (24)

where Pk = {y | dj − cT
j y ≥ 0, j = 1, · · · , Nk}. A

generic cutting plane algorithm is described by

• Initialize
(1) Get an initial upper bound vuand a lower bound vl

on the optimal value h(xopt).
(2) Get an initial relaxed optimization problem (24).
• Repeat
(1) Get a trial point xj and a corresponding lower bound

v+
l . The lower bound is the optimal value of the

relaxed problem.
(2) If xj infeasible, then add a feasibility cut to the poly-

hedron approximation.
(3) If xj feasible, then add a value cut to the polyhedron

approximation and compute an upper bound v+
u .

The upper bound is h(xj).
(4) Update the bounds

(a) If xj feasible, then vu = min{vu, v+
u }.

(b) vl = max{vl, v
+
l }

• Until vu − vl < ǫ

4.2 Analytical Center Cutting Plane Algorithm

In practice, the cutting plane method described in the
previous section may converge fast to the optimal solu-
tion if the relaxed optimization problem is a good ap-
proximation of the original one. If this is not the case
convergenceproperties can be very poor. It is well-known
that the worst-case iteration count is O(1/ǫp) [9]; i.e.,
the algorithm converges to an ǫ-accuracy solution in it-
erations, where p is the number of decision variables to
be optimized. A remedy to this poor convergence prop-
erty is to use a centering method where a certain kind
of center of the polyhedral approximation, Pk, is com-
puted in each iteration to serve as a candidate for the
optimal solution. Centering methods were first intro-
duced in [31]. Many different centering algorithms exist
like the largest inscribed sphere method [10], the volu-
metric method [38] and the analytic center cutting plane
method [17], [13], [14]. To achieve good speed of conver-
gence, one should choose a center which not only allows
the algorithm to refine the polyhedral approximation sig-
nificantly but also can be computed efficiently. Among
all possible centers, the analytic center has proven to be

6

a good choice for that purpose. The concept of analyt-
ical center was introduced by [35], where its use in the
cutting plane methods was also alluded. The analytical
center cutting plane (ACCP) algorithm and its imple-
mentation were then proposed in [13] and [46]. Subse-
quently, the theory underlying the ACCP algorithm has
been studied in depth. The estimates of complexity for
the basic method and several of its enhancements are
provided [15,47,16,18,20].

Let Pk be the polyhedron approximation at the kth it-
eration. The analytical center of Pk is the unique mini-
mizer of

Lk(y) = −
Nk
∑

j=1

log(dj − cT
j y)

over the interior of Pk.

Thus, instead of solving the problem (24) we solve the
analytic center problem corresponding to (24)

inf
x

Lk(x), subj. to

x ∈ Interior(Pk)
(25)

The analytic center problem can be solved efficiently
with, for example, methods described in [48].

Regarding the complexity of ACCP algorithm, it was
shown in [15] that, the basic setup of the algorithm – the
algorithm adds one single central cut in each iteration –
has a complexity estimation of O∗(p2/ǫ2) for the total
number of iterations, where p is the number of decision
variables, and the O∗ notation means that the lower
order terms are ignored. In practice, it often occurs that
the oracle in the cutting plane algorithm can generate
more than one cutting hyperplane upon a single inquiry.
In [19], the case where two central cuts are placed in each
iteration was analyzed. The worst-case iteration count
is also O∗(p2/ǫ2). The case of multiple central cuts was
analyzed in [47]. It is shown that the algorithm converges
after O∗(κ2p2/ǫ2) cutting planes have been generated,
where κ is the maximum number of cuts generated at
any given iteration.

In practice, the ACCP algorithm usually terminates long
before the number of iterations reach the worst-case es-
timation. Some experiments suggest that the O∗(p2/ǫ2)
bound is a very conservative estimation, and the algo-
rithm may converge as fast as O(p| log ǫ|) [28].

5 Computation of feasibility and value cuts

5.1 Feasibility cuts

A feasibility cut should be computed if a trial point xj is
not an element of X . As has been shown above this is the

case if xj yields an R(xj) which is not positive definite
or in case R(xj) is positive definite but the Hamiltonian
matrix (9) has at least one eigenvalue, λ, on the imagi-
nary axis, in which case G(xj , λ) in (14) is not positive
definite.

So whenever a feasibility cut is to be constructed it holds
that an LMI F (xj) = F0+

∑p

i=1 xiFi > 0 is not satisfied.
Then we can generate a cut as in [6, page 13]. There
exists a nonzero vj such that

(vj)T F (xj)vj = (vj)T (F0 +

p
∑

i=1

xiFi)v
j ≤ 0

Define a by

ai = −(vj)T Fiv
j , i = 1, 2, . . . , p

Then for any x satisfying aT (x − xj) ≥ 0 we have
(vj)T F (x)vj ≤ 0 and hence every x in X lies in the
half-space {x|aT (x − xj) < 0} which defines the cut

aT (x − xj) < 0

5.2 Value cuts

To compute the value cut we need to compute ∇h(x).
The components of ∇h(xj) are from (15)

∂h

∂xi

= ci + Tr

(

C
∂Pr(x

j)

∂xi

)

, i = 1, 2, . . . , p

Tedious calculations show that the matrix
∂Pr(xj)

∂xj satis-
fies the Lyapunov equation

AT
r

∂Pr(x
j)

∂xi

+
∂Pr(x

j)

∂xi

Ar + Qr = 0, i = 1, 2, . . . , p

where

Ar =A − BR−1(xj)(Pr(x
j)B + S(xj))T

Qr =Qi − SiR
−1(xj)(Pr(x

j)B + S(xj))T

− (Pr(x
j)B + S(xj))R−1(xj)ST

i + (Pr(x
j)B

+ S(xj))R−1(xj)RiR
−1(xj)(Pr(x

j)B + S(xj))T

and where Pr is the maximal solution to the algebraic
Riccati equation. Hence, ∇h(xj) could be computed by
solving one Riccati equation and p Lyapunov equations.
However, there is a more efficient way to find ∇h(xj).
For all x ∈ X and Z ∈ Z it follows from (18) that

h(x) = cT x− inf
Z∈Z

Tr(ZG(x)) ≥ cT x−Tr(ZG(x)) (26)

7

with equality only for Z = Z̄ where Z̄ ∈ Z maximizes
the righthand side of the inequality. For every other x ∈
X and Z ∈ Z inequality holds. Thus, {y|y = cT x −
Tr

(

G(x)Z̄
)

} defines a supporting hyperplane to h(x). As

h(x) is continuously differentiable there is only one such
hyperplane. Hence,

∂h

∂xi

= ci − Tr
(

MiZ̄
)

Remember that Z̄ can be computed from the solution
to the algebraic Riccati equation.

6 Remarks on Computational Complexity

In this section, we comment on the computational com-
plexities of solving KYP-SDP (1) using cutting plane
methods and the general-purpose SDP solvers. Argu-
ments are given to explain why the cutting plane meth-
ods may perform better than a general-purpose SDP
solver which solves (1) without exploiting the special
structure of the problem. Recall that the dimension of
matrices A and B are n×n and n×m, respectively, and
the number of the decision variables in x is p. We assume
that n is order-of-magnitude larger than m and p.

In a cutting plane algorithm, the two main tasks to be
performed in each iteration are checking feasibility of a
trial point and generating cutting hyperplanes. In the
case of solving KYP-SDPs, the most expensive computa-
tional procedures involved are those to find eigenvalues
and eigenvectors of the the Hamiltonian matrix (9), to
find the stabilizing solution to the algebraicRiccati equa-
tion (8), and to find the solution to the Lyapunov equa-
tion (19). All of these requires O(n3) arithmetic opera-
tions. Hence, the per-iteration computational complex-
ity is estimated to be O(n3). As such, if a standard ana-
lytical center cutting plane algorithm is implemented to
solve KYP-SDPs, the overall worst-case computational
complexity is, according to the discussion in Section 4.2
and above, O∗(p2/ǫ2) · O(n3).

On the other hand, solving KYP-SDP (1) using the
primal-dual interior point algorithms can be proven to
converge in O(

√
n| log ǫ|) Newton steps [33]. In each

Newton step, without utilizing the special structure of
the problem, the computational complexities of find-
ing a Newton descent direction is proportional to n6.
Therefore, the overall computational complexity of
solving KYP-SDPs using a general-purpose SDP solver
is O(

√
n| log ǫ|) · O(n6). Should the special structure

of the KYP-SDP be utilized, the per-iteration com-
plexity could be knocked down to O(n4) or O(n3).
See [43,1,44,21,11,40,24].

From the complexity analysis, we observe a fundamental
difference between the cutting plane methods and the

interior point methods. In a cutting plane algorithm, the
complexity of each iteration is low but the algorithm
requires many iterations to converge. On the contrary,
the interior point algorithm requires only a few iterations
to converge but the computational complexity of each
iteration is much higher if the structure of the KYP-SDP
is not taken into account. If the saving in each iteration
is significant enough, a cutting plane algorithm (such
as the ACCP algorithm) would outperform a general-
purpose SDP solver. We will see that this observation
agrees with the numerical experiments presented in the
next section.

Finally, we note that there are experimental evidences
that in practice, the ACCP algorithm might converge
must faster than O∗(p2/ǫ2) · O(n3). The complexity
might be as good as O(n3p| log ǫ|) [28].

7 Implementation Issues

In this section, we discuss a few implementation issues.

7.1 Bounds on h(xopt) and a stopping criterion

Every feasible solution found give an upper bound on
the optimal solution of (10). Hence the smallest upper
bound is obtained by finding the minimum over the set
of h values evaluated at the available feasible solutions.

Lower bounds of (10) can be found by solving (23). How-
ever, a more efficient way is to solve the dual of (23)
which is also a linear program. The optimal objective of
the dual is equal to the optimal objective of (23), and
more importantly, any suboptimal feasible solution to
the dual problem will provide a lower bound. Thus, we
do not have to solve the dual problem exactly.

The algorithm should terminate when the difference be-
tween the upper bound and the lower bound is suffi-
ciently small.

7.2 Checking feasibility and solving the Riccati equation

As was mentioned earlier, the first condition for a trial
point x to be feasible to the KYP-SDP is that R(x) > 0
and the second condition is that the Hamiltonian matrix
(9) has no eigenvalues on the imaginary axis. Checking
the second condition gets very ill-conditioned when R(x)
is close to being singular. If this is the case, it is better to
compute the generalized eigenvalues of a certain matrix
pencil [39]. It turns out that the finite eigenvalues of this
pencil are the same as the eigenvalues of the Hamiltonian
matrix.

The matlab function CARE checks if R(x) > 0, for a
given x, and also uses the matrix pencil if it is necessary
from a numerical point of view. We have modified the

8

A

B

C

Fig. 1. The shaded area represents the polyhedron which
contain the feasible set,which is contained in an ellipsoid. The
redundant hyperplanes A and B do not intersect theellipsoid,
and hence will be dropped. The redundant hyperplanes C,
on the other hand, is kept because it intersects the ellipsoid.

function CARE to deliver the eigenvalues of R(x) if it is
not positive definite and the eigenvalues of the Hamilto-
nian if the ordered Schur form cannot be computed due
to eigenvalues too close to the imaginary axis. Hence we
can compute the feasibility cuts. The eigenvalues of the
Hamiltonian with smallest magnitude of the real part
are considered as being on the imaginary axis. Of course
this results in conservatism as some feasible points are
ruled out by the tighter condition. However, this conser-
vatism has to be accepted as it is impossible to verify
exactly if the eigenvalues are on the imaginary axis.

7.3 Constraint Dropping

One of the major issues with applying/implementing
cutting plane methods is that the number of cutting
planes (used to refine the approximation of the objec-
tion function and the feasible set) increases as the al-
gorithm proceeds. As such, the complexity of funding
trial points, which in the case of ACCP algorithm are
the analytical centers of the polyhedral approximation
of the feasible set, becomes higher and higher. The way
to avoid such difficulty is to drop all redundant cutting
planes. This, however, turns out the be a computation-
ally costly operation; implementation of such operation
is not practical.

In the case of ACCP algorithm, a heuristic mechanism
can be adopted to drop redundant constraints, which
does not incur much computation burden. The idea goes
as follows. Given a polyhedron and its analytical center,
or an sufficiently accurate approximation, one can iden-
tify an ellipsoid, centered at the analytical center (or the
approximation), which contain the polyhedron. This el-
lipsoid comes with the procedure of finding the analyti-
cal center and hence there is no extra computational cost
for identifying it.The set of hyperplanes which do not
intersect the ellipsoid is obviously redundant and can be
dropped. Note that to check whether a hyperplane in-
tersects an ellipsoid can be done using an algebraic for-

mula, and hence incurs very little computational cost.
This heuristic idea of course does not allow one to drop
all redundant constraints, but indeed helps to speed up
the ACCP algorithm. The idea is illustrated in Figure 1.

8 Numerical example

In this section we compare the analytic center cutting
plane algorithm with other solvers. We solve the KYP-
SDPs using the ACCP algorithm, SDPT3 [37], which
is a general purpose solver, and KYPD [42,24] which is
based on solving the dual problem to (1).

All computations were done in Matlab version 7.1.0.183
(R14) Service Pack 3 running under Linux. The com-
puter used was a Dell Optiplex GX620 with an Intel
Pentium 4 3.20 GHz processor and 2 GB RAM.

The generated optimization problems are on the form
(1). The A and B matrices are randomly selected us-
ing the command rss in the control system toolbox. We
choose to let the matrix B have five columns in all of
the optimization problems.If the matrix A has eigenval-
ues with a real part larger than −0.1 we add −0.1I to
A. The matrices Mi, i = 1, 2, . . . , p are generated as

Mi =

[

0n X

XT Im

]

where the elements of X ∈ R
n×m are drawn from a

uniform distribution [0, 1]. The matrix M0 is chosen as

M0 = N + NT

where the elements of N ∈ R
n+m×n+m are drawn from

a uniform distribution [0, 1]. The elements of the vector
c are drawn from a uniform distribution [0, 1]. Finally to
generate the matrix C we first compute

D = E + ET

where the elements of E ∈ R
n+m×n+m are drawn from

a uniform distribution [0, 1].To make sure that C is neg-
ative definite we define it as

C = D − (λmin(D) − 0.5)I

where λmin(D) is the smallest eigenvalue of D.

SDPT3 can utilize sparsity. To introduce some sparcity
we blockdiagonalize the matrix A. To this end, we first
diagonalize the matrix A by the transformation

Ā = T−1AT

9

Then we transform the first part of the constraint in (1)
as

[

ĀH P̄ + P̄ Ā P̄ B̄

B̄H P̄ 0

]

=

[

T 0

0 I

]H [

AT P + PA PB

BT P 0

][

T 0

0 I

]

with P̄ = T HPT and B̄ = T−1B. The matrices Mi are
transformed analogously.

One negative aspect with the diagonalization is that
the constraint will be complex valued if A has complex
valued eigenvalues. There are two remedies to the this
dilemma. Either we can solve a real SDP involving LMIs
with twice as many rows and columns as the original one
[7] or we can transform the complex diagonal A-matrix
into a real block diagonal one of the same size. We prefer
the second alternative which is performed in the follow-
ing way. Let us first assume that the eigenvalues are or-
dered on the diagonal. First we have all real eigenvalues
and then the complex ones follow in complex conjugated
pairs. To transform the Ā-matrix from being complex
diagonal to being real block diagonal we only have to do

a congruence transformation Ã = V HĀV . The matrix
V has ones on the diagonal for all rows with real eigen-
values and blocks

S =
1√
2

[

1 −i

1 i

]

on the diagonal for rows with complex conjugated eigen-
values. If we have a complex conjugated block in the Ā-
matrix it will be trasformed as

[

1 1

i −i

] [

a+ib
2 0

0 a−ib
2

] [

1 −i

1 i

]

=

[

a b

−b a

]

(27)

The congruence transformation will also result in a real

B-matrix. Express the matrix P as
∑

n(n+1)
2

k=1 x̄kEk, where
Ek is the standard basis for symmetric matrices. Then
the constraint in (1) can be expressed as

n(n+1)
2

∑

k=1

x̄kFk + M̃0 +

p
∑

i=1

xiM̃i > 0

where the matrices Fk are sparse. We solved those sparse
optimization problems using the ACCP method (AC-
CPM) and SDPT3 providing the solver with the infor-
mation that the matrices were sparse.

We also solved the dense optimization problems with
ACCPM, SDPT3 and KYPD. KYPD used SDPT3 as
an underlying solver, and exploits structure and lowrank
properties following from the blockdiagonalization of the
matrix A. For ACCPM it did not matter if the problems

were sparse or dense, and the computational times for
SDPT3 when the matrices were sparse were only slightly
shorter than the computational times when the matrices
were dense. Thus we only show computational times for
the dense problems. The termination criterium was that
the relative error of the objectuve function should be less
than 10−6.

SDPT3 started to swap memory when the size of the
matrix A was greater than 100×100 and KYPD started
to swap memory when the matrix A was greater than
150× 150. The ACCP algorithm can solve considerably
larger problems without starting to swap memory. We
solved a problem with A ∈ R

500×500, B ∈ R
500×5 and

and 5 x-variables in approximately 80 minutes.

In Figure 2 we show computational times for different
values of of n, where A ∈ R

n×n when the number of x-
variables is 5. The times shown are averages over forty
randomly generated optimization problems of each size.

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

n

t

p=5

ACCPM
SDPT3
KYPD

Fig. 2. Computational times when the number of x-variables
is five

In figures 3 and 4 we show the results when the number
of x-variables are 15 and 25, respectively.

It can be seen that both KYPD and ACCPM, for large
values of n, have a slope of approximatly 3 in all figures
but the level of the curve for ACCPM increases when the
number of x-variables increases. For all curves there is a
point where ACCPM outperforms SDPT3 if the value of
n is large enough. Also, ACCPM can handle larger prob-
lems than KYPD whithout swapping memory. KYPD
performs at its best when the number of columns in B is
much smaller than the number of columns in A, which
is the case in the generated problems. If we had the
same number of columns in A and B the performance
of KYPD would be closer to the performance of SDPT3
and it would be preferrable to use ACCPM.

The number of iterations it took to solve the optimiza-
tion problems using ACCPM where approximately 40

10

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

n

t

p=15

ACCPM
SDPT3
KYPD

Fig. 3. Computational times when the number of x-variables
is fifteen

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

10
4

n

t

p=25

ACCPM
SDPT3
KYPD

Fig. 4. Computational times when the number of x-variables
is twentyfive

times the number of x-variables. About 23 % of the
added cuts where value cuts and on average 0.7 cuts
where dropped in each iteration. The above numbers are
valid for all problems solved.

9 Conclusions

In this paper an analytic center cutting plane method for
KYP-SDPs has been presented. It outperforms general
purpose SDP solvers for large values of n and can handle
larger problems than the structure exploiting algorithm
KYPD. Problems up to the size of n = 500 has been
solved. Even larger problems may be possible to solve if
time permits. For larger values of p and moderate values
of n stucture exploiting algorithms are to be preferred.

Acknowledgements

The authors gratefully acknowledge financial support
from The Swedish Research Council under contract No.
40469101.

References

[1] B. Alkire and L. Vandenberghe. Convex optimization
problems involving finite autocorrelation sequences.
Mathematical Programming Series A, 93:331–359, 2002.

[2] V. Balakrishnan and L. Vandenberghe. Semidefinite
programming duality and linear time-invariant systems.
Technical Report TR-ECE 02-02, School of Electrical and
Computer Engineering, Purdue University, West Lafayette,
Indiana, July 2002.

[3] V. Balakrishnan and F. Wang. Efficient computation of a
guaranteed lower bound on the robust stability margin for a
class of uncertain systems. IEEE Transactions on Automatic

Control, 44(11):2185–2190, November 1999.

[4] A. Ben-Tal and A. Nemirovski. Lectures on modern

convex optimization : analysis, algorithms, and engineering

applications. Society for Industrial and Applied Mathematics,
Philadelphia, Pennsylvania, USA, 2001.

[5] S. Boyd and C. Barratt. Linear controller design: Limits of

performance. Prentice Hall, 1991.

[6] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear

matrix inequalities in system and control theory. SIAM,
Philadelphia, Pennsylvania, USA, 1994.

[7] S. Boyd and L. Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[8] E. W. Cheney and A. A. Goldstein. Newtons method
for convex programming and Tchebycheff approximation.
Numerische Mathematik, I:253–268, 1959.

[9] V. Demyanov and L. Vasilev. Nondifferentiable Optimization.
Optimization Software. Springer Verlag, 1985.

[10] J. Elzinga and T. G. Moore. A central cutting plane
method for the convex programming problem. Mathematical

Programming, 8:134–145, 1975.

[11] Y. Genin, Y. Hachez, Yu. Nesterov, and P. Van Dooren.
Optimization problems over positive pseudo-polynomial
matrices. SIAM Journal on Matrix Analysis and

Applications, 25(3):57–79, 2003.

[12] J. Gillberg and A. Hansson. Polynomial complexity for
a Nesterov-Todd potential-reduction method with inexact
search directions. In Proceedings of the 42nd IEEE

Conference on Decision and Control, Maui, Hawaii, USA,
2003.

[13] J.-L. Goffin, A. Haurie, and J.-P. Vial. Decomposition and
nondifferential optimization with the projective algorithm.
Management Science, 38(2):284–302, 1992.

[14] J.-L. Goffin, A. Haurie, J.-P. Vial, and D. L. Zhu. Using
central prices in the decomposition of linear programs.
European Journal of Operational Research, 64:393–409, 1993.

[15] J.-L. Goffin, Z.-Q. Luo, and Y. Ye. Complexity analysis of an
interior cutting plane method for convex feasibility problems.
SIAM J. of Optimization, 6(3):638–652, August 1996.

[16] J.-L. Goffin and F. Sharifi Mokhtarian. Using the primal
dual infeasible Newton method in the analytical method
for problems defined by deep cutting planes. Journal of

Optimization Theory and Applications, 101:35–58, 1999.

[17] J.-L. Goffin and J.-P. Vial. Cutting planes and column
generation techniques with the projective algorithm. Journal

of Optimization Theory and Applications, 65:409–429, 1990.

[18] J.-L. Goffin and J.-P. Vial. Shallow, deep and very deep cuts
in the analytical center cutting plane method. Mathematical

Programming, 84:89–103, 1999.

11

[19] J.-L. Goffin and J.-P. Vial. A two-cuts approach in
the analytical center cutting plane method. Mathematical

Methods of Operations Research, 49(1):149–169, 1999.

[20] J.-L. Goffin and J.-P. Vial. Multiple cuts in the analytical
center cutting plane method. SIAM Journal of Optimization,
11(1):266–288, 2000.

[21] Y. Hachez. Convex optimization over nonnegative

polynomials: structured algorithms and applications. PhD
thesis, Universtité catholique de Lovain, Louvain, Belgium,
2003.

[22] A. Hansson and L. Vandenberghe. Efficient solution of linear
matrix inequalities for integral quadratic constraints. In
Proceedings of the 39th IEEE Conference on Decision and

Control, Sydney, Australia, 2000.

[23] A. Hansson and L. Vandenberghe. A primal-dual potential
reduction method for integral quadratic constraints. In
Proceedings of the American Control Conference, pages 3013–
3017, Arlington, Virginia, USA, 2001.

[24] J. Harju, R. Wallin, and A. Hansson. Utilizing low rank
properties when solving KYP-SDPs. In Proceedings of the

45th IEEE Conference on Decision and Control, San Diego,
California, USA, 2006. To be presented.

[25] H. Hindi, B. Hassibi, and S. Boyd. Multiobjective H2/H∞-
optimal control via finite-dimensional Q-parabeterization
and linear matrix inequalities. In Proceedings of the

American Control Conference, volume 5, pages 3244–3249,
Philadelphia, Pennsylvania, USA, 1998.

[26] U. Jönsson. Robustness analysis of uncertain and nonlinear

systems. PhD thesis, Lund Institute of Technology, Lund,
Sweden, 1996.

[27] C.-Y. Kao and A. Megretski. A new barrier function for
IQC optimization problems. In Proceedings of the American

Control Conference, volume 5, pages 4281–4286, Denver, Co,
USA, June 2003.

[28] C.-Y. Kao, A. Megretski, and U. T. Jönsson. Specialized fast
algorithms for IQC feasibility and optimization problems.
Automatica, 40(2):239–252, 2004.

[29] J. E. Kelley. The cutting plane method for solving convex
programs. Journal of the Society for Industrial and Applied

Mathematics, 8:703–712, 1960.

[30] A. J. Laub. A Schur method for solving algebraic Riccati
equations. IEEE Transactions on Automatic Control,
24(6):913–921, 1979.

[31] A. Y. Levin. On an algorithm for the minimization of convex
functions over convex sets. Soviet Mathematical Doklady,
6:286–290, 1965.

[32] A. Megretski and A. Rantzer. System analysis via integral
quadratic constraints. IEEE Transactions on Automatic

Control, 42(6):819–830, 1997.

[33] Y. Nesterov and A. Nemirovski. Interior Point Polynomial

Methods in Convex Programming, volume 13 of Studies in

Applied Mathematics. SIAM, 1994.

[34] P. Parrilo. Outer approximation algorithms for KYP-based
LMIs. In Proceedings of the American Control Conference,
volume 4, pages 3025–3028, Arlington, Virginia, USA, June
2001.

[35] G. Sonnevand. New algorithms in convex programming
based on a notion of ’centre’ (for systems of analytical
inequalities) and on rational extrapolation. In Trends in

Mathematical Optimization: Proceedings of the 4th French-

German Conference on Optimization, pages 311–327, Irsee
West-Germany, 1986. K. H. Hoffmann, J. B. Hiriart-Urruty,
C. Lemaréchal, and J. Zowe, eds.

[36] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for
optimization over symmetric cones. Optimization Methods

and Software, 11-12:625–653, 1999.

[37] K. C. Toh, M. J. Todd, and R. H. Tütüncü. SDPT3– a Matlab
software package for semidefinite programming. Optimization

Methods and Software, 11:545–581, 1999.

[38] P. Vaidya. A new algorithm for minimizing convex functions
over convex sets. Mathematical programming, 73:291–341,
1996.

[39] P. Van Dooren. A generalized eigenvalue approach for solving
Riccati equations. SIAM Journal on Scientific and Statistical

Computing, 2(2):121–135, 1981.

[40] L. Vandenberghe, V. R. Balakrishnan, R. Wallin, A. Hansson,
and T. Roh. Positive Polynomials in Control, chapter
Interior-point algorithms for semidefinite programming
problems derived from the KYP lemma. Lecture Notes on
Control and Information Sciences. Springer Verlag, 2005.

[41] A. Varga and P. Parrilo. Fast algorithms for solving H∞-
norm minimization problem. In Proceedings of the 40th IEEE

Conference on Decision and Control, Orlando, Florida, USA,
2003.

[42] R. Wallin and A. Hansson. KYPD: A solver for
semidefinite programs derived from the Kalman-Yakubovich-
Popov lemma. In IEEE Conference on Computer Aided

Control Systems Design, Taipei, Taiwan, 2004.

[43] R. Wallin, H. Hansson, and L. Vandenberghe. Efficient
implementations of interior-point methods for integral
quadratic constraints. In Fourth SIAM conference on

linear algebra in signals, systems and control, Boston,
Massachusetts, USA, 2001. Abstract only.

[44] R. Wallin, H. Hansson, and L. Vandenberghe. Comparison
of two structure exploiting algorithms for integral quadratic
constraints. In 4th IFAC Symposium on Robust Control

Design, Milan, Italy, 2003.

[45] J. C. Willems. Least squares stationary optimal control
and the algebraic Riccati equation. IEEE Transactions on

Automatic Control, AC-16(6):621–634, 1971.

[46] Y. Ye. A potential reduction algorithm allowing column
generation. SIAM Journal of Optimization, 2:7–20, 1992.

[47] Y. Ye. Complexity analysis of the analytical center cutting
plane method that uses multiple cuts. Mathematical

Programming, 78:85–104, 1997.

[48] Y. Ye. Interior point algorithms: Theory and analysis. John
Wiley & Sons, New York, New York, USA, 1997.

[49] K. Zhou, J. Doyle, and K. Glover. Robust and Optimal

Control. Prentice Hall, Upper Saddle River, New Jersey,
USA, 1996.

A Proof of the existence of a unique maximal
solution to the algebraic Riccati equation

The proof follows a similar proof in [49]. Let P ∈ Sn

be such that Q(P) > 0. As (A, B) is stabilizable there
exists an F0 such that

A0 = A + BF0

is Hurwitz. Now let P0 be the unique solution to the
Lyapunov equation

AT
0 P0 + P0A0 + FT

0 RF0 + FT
0 ST + SF0 + Q = 0

12

Then P0 is symmetric. Define

F̂0 = F0 + R−1(PB + S)T

and we get

AT
0 (P0 − P) + (P0 − P)A0 = −F̂T

0 RF̂0 −Q(P) < 0

The stability of A0 implies that

P0 > P

Starting with P0, we shall define a decreasing sequence of
symmetric matrices {Pi}. Associated with {Pi}, we shall
also define a sequence of Hurwitz matrices {Ai} and a
sequence of matrices {Fi}. Assume inductively that we
have already defined matrices {Pi}, {Ai} and {Fi} for i
up to n − 1 such that {Pi} is symmetric and

P0 > P1 > . . . > Pn−1 > P

Ai = A + BFi is Hurwitz, (A.1)

i = 1, 2, . . . , n − 1

Fi = −R−1(Pi−1B + S)T , (A.2)

i = 1, 2, . . . , n − 1

AT
i Pi + PiAi = −FT

i RFi − FT
i ST − SFi − Q, (A.3)

i = 1, 2, . . . , n − 1 (A.4)

Next, introduce

Fn = −R−1(Pn−1B + S)T

An = A + BFn

We shall first show that An is Hurwitz. Then, using (A.4)
we define a symmetric matrix Pn with Pn−1 > Pn > 0.
Now, using (A.4), with i = n − 1, we get

AT
n−1Pn−1 + Pn−1An−1 + FT

n−1RFn−1

+ FT
n−1S

T + SFn−1 + Q =

AT
nPn−1 + Pn−1An + Q + FT

n RFn + FT
n ST + SFn

+ (Fn − Fn−1)
T R(Fn − Fn−1) = 0

Let
F̂n = Fn + R−1(PB + S)T

then

AT
n (Pn−1 − P) + (Pn−1 − P)An = −F̂T

n RF̂n

−Q(P) − (Fn − Fn−1)
T R(Fn − Fn−1) (A.5)

Now assume that An is not Hurwitz, i.e. there exists a
λ with Reλ ≥ 0 and x 6= 0 such that Anx = λx. Pre-
multiply (A.5) with xT and post-multiply by x

2ReλxT (Pn−1 − P)x =

− xT (F̂T
n RF̂n + Q(P) + (Fn − Fn−1)

T R(Fn − Fn−1))x

Since it is assumed that Pn−1 > P each term on the
right-hand side of the above equation has to be zero.
Thus, we have

xT (Fn − Fn−1)
T R(Fn − Fn−1)x = 0

This implies
(Fn − Fn−1)x = 0

But now

An−1x = (A + BFn−1)x = (A + BFn)x = Anx = λx

which is a contradiction with An−1 being Hurwitz. Hence
An is Hurwitz. Introduce Pn as the unique solution to
the Lyapunov equation

AT
n Pn + PnAn = −FT

n RFn − FT
n ST − SFn − Q (A.6)

Then Pn is symmetric. Next, we have

AT
n (Pn − P) + (Pn − P)An = −F̂T

n RF̂n −Q(P) < 0

and by using (A.5)

AT
n (Pn−1 − Pn) + (Pn−1 − Pn)An =

− (Fn − Fn−1)
T R(Fn − Fn−1) < 0

Since An is Hurwitz we have

Pn−1 > Pn > P

We have a decreasing sequence {Pi} and the sequence is
bounded below by Pi > P . Hence the limit

Pf = lim
n→∞

Pn

exists and is symmetric and we have Pf > P . Passing the
limit in (A.6) we get Q(Pf) = 0. Hence, Pf is a solution
to the algebraic Riccati equation. Since P is an arbitrary
element satisfying Q(P) > 0 and Pf is independent of
the choice P , we have

Pf > P, ∀ P such that Q(P) > 0

In particular, Pf is the maximal solution of the algebraic
Riccati equation. To establish the Hurwitz property of
the maximal solution, note that An is Hurwitz for any
n. Hence, in the limit, the eigenvalues of

A − BR−1(PfB + S)T

will have nonpositive real parts. We also have that

AT
r (Pr − P) + (Pr − P)Ar =

−Q(P) − (Pr − P)BR−1BT (Pr − P) < 0 (A.7)

13

Now suppose (Pr − P) is singular and there is an x 6= 0
such that (Pr − P)x = 0. By premultiplying (A.7) with
xH and postmultiplying (A.7) by x we get xHQ(P)x =
0, a contradiction. That Ar = A − BR−1(PrB + S)T is
Hurwitz then follows from the Lyapunov theorem.

B Relaxing Assumptions

The assumption that A is Hurwitz is only used to assure
that A has no eigenvalues on the imaginary axis. Suppose
A is not Hurwitz. As the pair (A, B) is stabilizable we
know that there exists an F such that Ā = A + BF is
Hurwitz. Define the full rank matrix

T =

[

I 0

F I

]

Premultiplying the constraint (1) with T T and postmul-
tiply with T yields

inf
x,P

cT x + Tr(CP)

s.t.

[

ĀT P + PĀ PB

BT P 0

]

+ M̄0 +

p
∑

i=1

xiM̄i > 0

where Ā = A + BF is Hurwitz and

M̄i = T T MiT, k = 0, 1, . . . , p

The solution (xopt, Popt) is the same as for the origi-
nal problem, because semidefiniteness is invariant under
congruence.

14

	template.pdf
	temp.pdf

