Towards improved performance for industrial robots

Mikael Norrlöf
ISIS/Division of Automatic Control, Linköping University
mino@isy.liu.se

Special thanks to: Mattias Björkman, Torgny Brogårdh, Svante Gunnarsson, Rickard Karlsson, Stig Moberg and Erik Wernholt

The robotics activities within ISIS

- Iterative Learning Control
- Robot trajectory generation and optimization
- Robot modeling and identification
- Robot control
 - Joint level control
 - Multivariable control
 - Sensor fusion
- Robot diagnosis

Common factor for all the activities:

Increased robot performance!
The robot system and its components

- Links
- Joints
- Motors
- Gears
- Bearings

Main problems:
- Flexibilities
- Friction
- Sensor and actuator uncertainties

ISIS activities

- Control design
- Modeling
- Identification
- Trajectory generation and optimization
- Sensor fusion
Robot modeling

- Kinematics
- Elastostatic
- Rigid body dynamics
- Elastodynamic

Joint level modeling

Linear system approximation.
Robot modeling

Non-linear joint model

Non-linear mechanical system (manipulator)

Linear spring and damper (gear-box)
Non-linear joint model

ISIS activities

- Control design
- Modeling
- Identification
- Trajectory generation and optimization
- Sensor fusion
Identification

- Choice of excitation signal
- Measurements
- Stochastic disturbances
- Deterministic disturbances
- Transient and stationary behavior
- Non-linear system

ISIS activities

- Control design
- Modeling
- Identification
- Trajectory generation and optimization
- Sensor fusion

Mikael Norrlöf
2004 ISIS Workshop
Non-linear joint model

\[
\begin{align*}
&u \\
&J_m \\
&d_1 \\
&k_f \\
&J_{a1} \\
&k \\
&J_{a2} \\
&J_{a3} \\
&\theta_{\text{measured}} \\
&v
\end{align*}
\]

Measured output

SWEDISH OPEN CHAMPIONSHIP IN ROBOT CONTROL

The iterative learning control technique

\[
p_{k+1}(t) = p_k(t) + L e_k(t+1)
\]
The iterative learning control technique

$$p_{k+1}(t) = p_k(t) + L_e(t+1)$$

Iterative Learning Control
Iterative Learning Control

ISIS

DCT

Tower Automotive

80 ABB robots

650 ABB robots

ISIS activities

Control design

Modeling

Identification

Sensor fusion

Trajectory generation and optimization

Mikael Norrlöf
2004 ISIS Workshop
The basic idea:

"Use measurements from a sensor mounted at the tool to get better estimates of the position, velocity, and acceleration."

Using additional sensors

What can be achieved?
- Increased robustness
- Higher accuracy
- Increased stiffness
The “true” system

Non-linear mechanical system (manipulator)

Linear spring and damper (gear-box)

Evaluation of arm position estimation

EKF RMSE with/without accelerometer and CRBS
Other possible sensors

ISIS activities

Trajectory generation and optimization

Modeling

Identification

Control design

Sensor fusion

Mikael Norrlöf
2004 ISIS Workshop
The trajectory generation problem

Path generation Toolbox in Matlab

\[
p1 = [0.4,0.3,0.9]; \quad p2 = [0.1,0.45,1.1]; \\
p3 = [0.3,0.60,1.1]; \quad p4 = [0.2,0.8,1.1]; \\
zonel = 0.1; \quad zonemethod = 1; \quad v1 = 0.25; \quad v2 = 0.25; \\
esec = emptysec(p1); \\
lsec = moveline(esec,p2,zonel,[],v1); \\
csec = movecirc(lsec,p3,p4,0,1,v2); \\
rpath = makepath(lsec,csec)
\]
Path generation Toolbox in Matlab

Orientation information will be added in PGT v0.3

Dynamic optimization

- Path: \(P(l_c), \phi(l_c) \)
- Path speed and acceleration:

\[
\begin{align*}
\mathbf{v} &= \frac{dP}{dl_c} \frac{dl_c}{dt}, \\
\mathbf{a}_{\text{path}} &= \frac{d^2l_c}{dt^2} \\
\dot{\phi} &= \frac{d\phi}{dl_c} \frac{dl_c}{dt}, \\
\ddot{\phi} &= \frac{d^2\phi}{dl_c^2} \left(\frac{dl_c}{dt} \right)^2 + \frac{d\phi}{dl_c} \frac{d^2l_c}{dt^2}
\end{align*}
\]
Dynamic optimization

Let

\[l(t) = \frac{a(t-t_p)^2}{2} + v(t-t_p) + l_p, \quad t \in [t_p, t_n] \]

A (sub) optimal minimum time trajectory is found by solving the following LP problem:

\[
\begin{align*}
\max_{\alpha} & \quad \alpha_1 \\
\text{s.t.} & \quad a_{\min} \leq a \leq a_{\max} \\
& \quad 0 \leq v(a) \leq v_d \\
& \quad \dot{\phi}_{\min} \leq \dot{\phi}(a) \leq \dot{\phi}_{\max} \\
& \quad \ddot{\phi}_{\min} \leq \ddot{\phi}(a) \leq \ddot{\phi}_{\max}
\end{align*}
\]
Conclusions

Impact on current and future products

- Auto tune
- Control design

Conclusions

Impact on current and future products

- Iterative Learning Control
- More flexible mechanical design

Mikael Norrlöf
2004 ISIS Workshop
Conclusions

Impact on current and future products

- Make better use of the robot performance
- Reduced price

Trajectory generation and optimization

"ISIS has activities in areas central for the future developments in industrial robotics"