Target Tracking Le 1: Introduction

Gustaf Hendeby and Rickard Karlsson

Div. Automatic Control Dept. Electrical Engineering gustaf.hendeby@liu.se, rickard.g.karlsson@liu.se

1 Course Information

- 2 Multi-Target Tracking Overview
- 3 Examples
- 4 Preliminaries
- 5 Summary

Course Information

Target Tracking Le 1: Introduction

G. Hendeby, R. Karlsson

January 15, 2019 3 / 44

Multi-Target Tracking Course, Spring 2019

Aim

The aim of the course is to provide an introduction to *multi-target tracking* (MTT); both theoretical and practical aspects. After the course a student should be able to explain the basic ideas underlying MTT and feel confident to implement the fundamental methods.

Course activities:

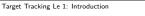
- 8 lectures where the theoretical aspects of MTT are explained
- 1 guest lecture; Veoneer, where we hear from their tracking specialists
- Practical coding exercises, performed on your own
- Project work

Responsible:

- Gustaf Hendeby (gustaf.hendeby@liu.se)
- Rickard Karlsson (rickard.g.karlsson@liu.se)

Course homepage:

• http://www.control.isy.liu.se/student/graduate/targettracking

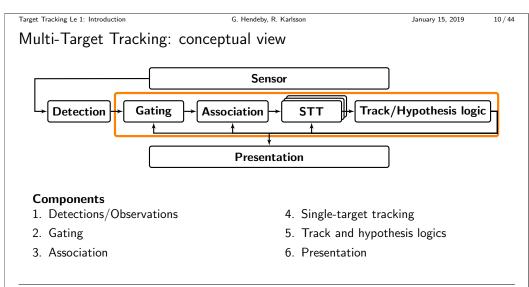

Course Content Single-target tracking (STT) Motion and sensor models: Common tracking models Maneuvering targets (IMM) Clutter 	Course Examination Three independent parts with different focuses: 1. Basic theory and understanding: exam (2 hp)
 Motion and sensor models: Common tracking models Maneuvering targets (IMM) 	· · ·
 Common tracking models Maneuvering targets (IMM) 	1. Basic theory and understanding: exam (2 hp)
Clutter	Theory is examined in a brief written exam.
 Multi-target tracking (MTT): Association Track logic Global Nearest Neighbor (GNN) Tracker Multi-Hypotheses Tracker (MHT) Outlook, modern methods: Track before detect (TrBD) RFS/FISST: Probability hypothesis density (PHD), Multi-Bernoulli Track-to-track fusion (T2TF) 	 Implementation and practice: exercises (4 hp) Implementation skill and practical knowhow are examined using assignments during the course. Research related work: project (3 hp) Use course skills extensions on the topic for a larger tracking project, preferably related to your research. Individually or in group of two.

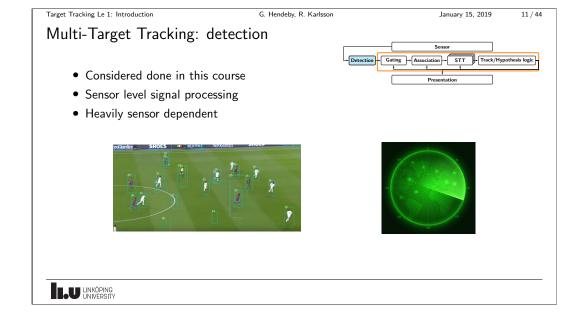
Target Tracking Le 1: Introduction	G. Hendeby, R. Karlsson	January 15, 2019	6 / 44	Tar
Course Prerequisites				Le
 Familiarity with: Basic knowledge of probability theory State-space models Bayesian estimation methods Kalman filter (KF) Extended Kalman filter (EKF) Unscented Kalman filter (UKF) Particle filter (PF) Coding in MATLAB or similar (for the exercises) 	 Suitable background mate Sensor Fusion course (TSRT14 http://www.control.isy.liu F. Gustafsson, L. Ljung, and N processing. Studentlitteratur, 1. edition, 20 F. Gustafsson. Statistical Sense Studentlitteratur, 3. edition, 20 T. Kailath, A. H. Sayed, and B Estimation. Prentice-Hall, Inc, 2000. ISBN 0-13-022464-2. S. M. Kay. Fundamentals of St Processing: Estimation Theory, Prentice-Hall, Inc, 1993. ISBN 0-13-042268-1.): 1. se/student/tsrt 1. Millnert. <i>Signal</i>)10. orfusion.)18. 3. Hassibi. <i>Linear</i> tatistical Signal	:14	

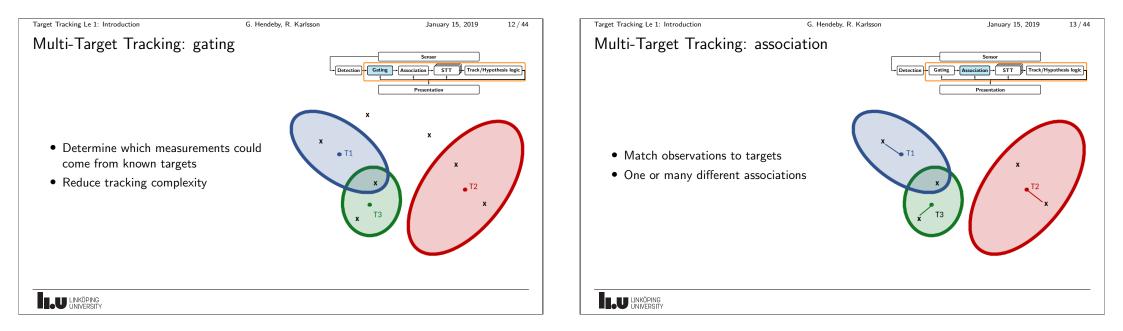
Tracking Le 1: I	ntroduction G. Hendeby, R. Karlsson		Janu	ıary 15, 2019
ture Sc	hedule (preliminary)			
Le	Торіс	Da	ite	Ex
1	Introduction	Jan 15	10-12	
2	Models for Target tracking	Jan 25	13–15	
3	Single target tracking	Feb 1	13–15	Ex 1
4	Multi-target tracking (1/2): GNN, JPDA	Feb 27		Ex 2
5	Multi-target tracking (2/2): MHT	Apr 3		Ex 3
6	Random Finite Sets: PHD, etc	Apr 17		
7	Guest lecture: Veoneer	May		(Ex 4)
8	Various topics (TrBD, T2T, ETT)	May		. ,
9	Project Presentations	Aug		

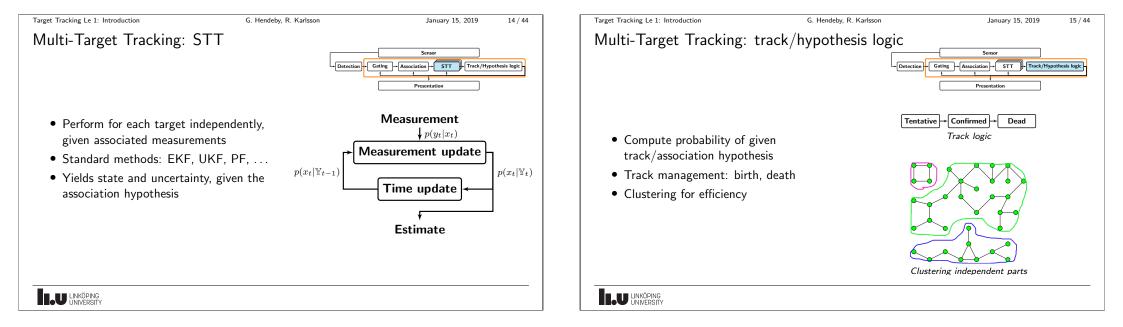
5/44

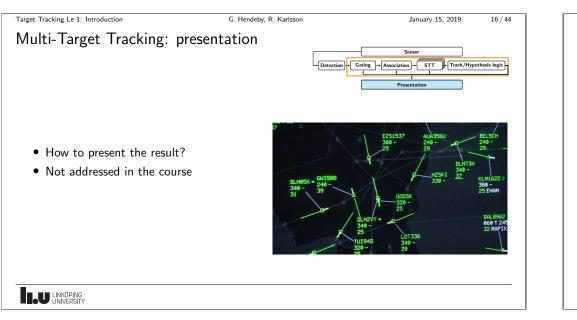
- Lectures are in Algortimen unless otherwise stated.
- Exercises are due the Sunday before the next lecture.
- Dates are preliminary, check homepage and mails for updates.

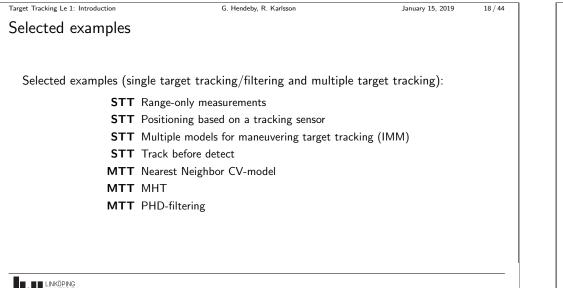

Course Literature

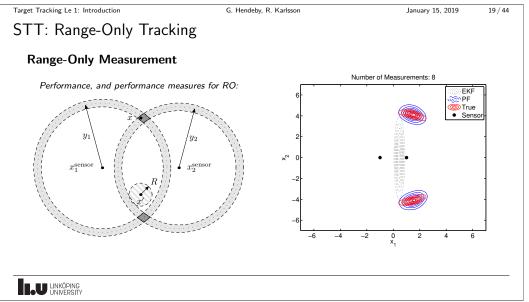

- Selected papers handed out during the course will be enough to follow the course.
- For a farily complete overview of the target tracking problem, methods, and algorithm collected in one place, the following books are good entry points.
 - S. S. Blackman and R. Popoli. *Design and analysis of modern tracking systems*. Artech House radar library. Artech House, Inc, 1999.
 ISBN 1-5853-006-0.
 - Y. Bar-Shalom, P. Willett, and T. Xin. *Tracking and Data Fusion: A Handbook of Algorithms*. Yaakov Bar-Shalom Publishing, 2011.

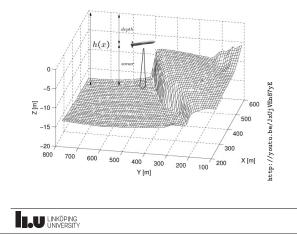

ISBN 0-9648-3-127-9.




Multi-Target Tracking Overview





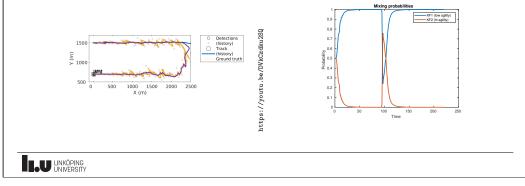

Target Tracking Le 1: Introduction

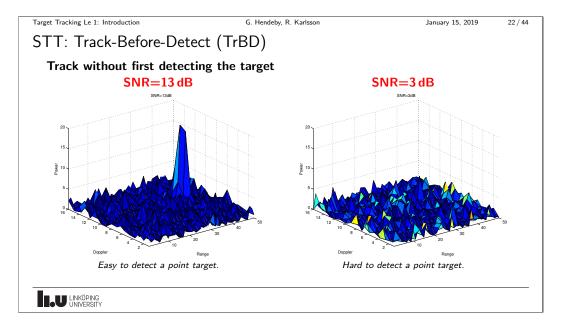
G. Hendeby, R. Karlsson

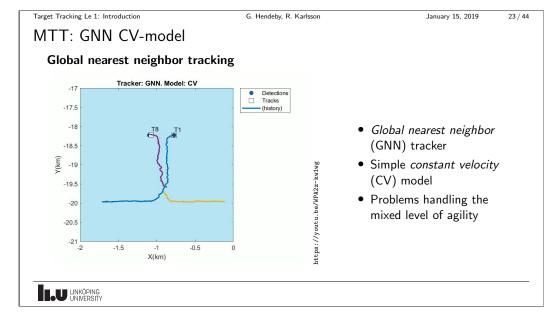
January 15, 2019 20 / 44

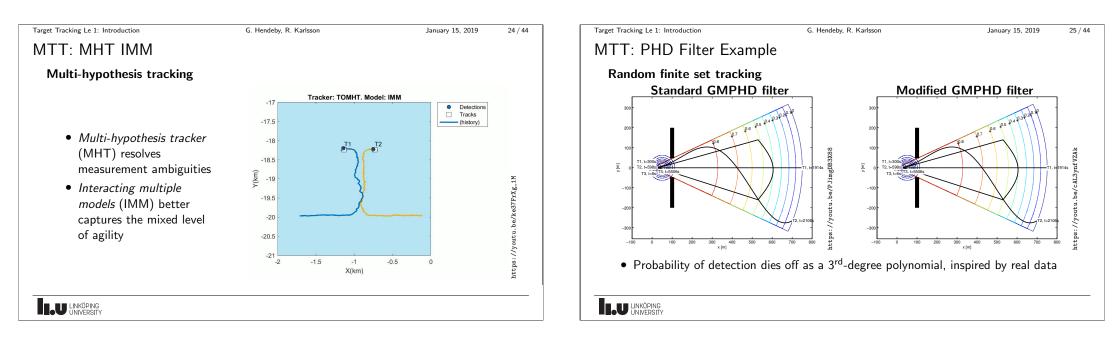
STT: UW map-aided navigation

UW navigation

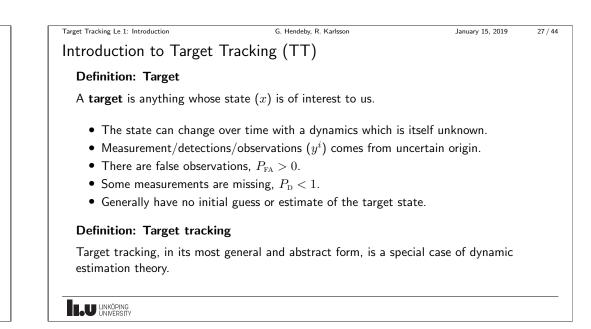



- Underwater vessel measures its own depth and distance to bottom, and sea chart provides depth h(xt).
- Video shows how a uniform prior quickly converges to a unimodal particle cloud. Note how the cloud changes form when passing the ridge.


STT: Maneuvering Target


The IMM method for two models

A radar tracking application is presented using the IMM method with two filters. One filter is used to handle a straight flying path accurately, whereas the other is used to manage maneuvers. Due to the non-linearities in the measurement equation an EKF is used for the estimation.



Tracking Preliminaries

G. Hendeby, R. Karlsson

January 15, 2019 28 / 44

Targets and Tracks

Definition: Track

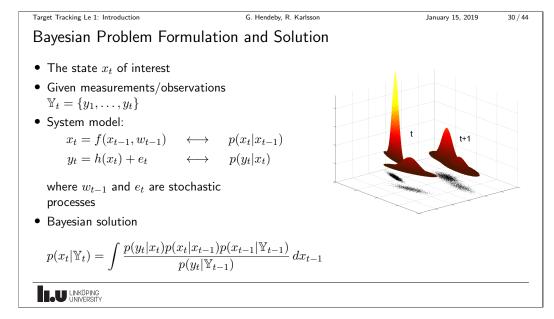
A **track** is a sequence of measurements that has been decided or hypothesized by the tracker to come from a single source.

- Usually, instead of the list of actual measurements, sufficient statistics is held *e.g.*, mean and covariance in the case of a KF, particles in the case of a PF.
- Generally each arriving measurement must start a track. Hence tracks must be classified, but must not be treated equally.

Target Tracking Le 1: Introduction

January 15, 2019 29 / 44

Target Types


Point target A target that can result in at most a single measurement.

- This means its magnitude is comparable to sensor resolution.
- However, an extended target can also be treated as a point target by tracking its centroid or corners.

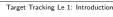
Extended target A target that can result in multiple measurements in a single scan.

Unresolved targets This denotes a group of close targets that can collectively result in a single measurement in the sensor.

Dim target This is a target whose magnitude is below sensor resolution. These can be tracked much better with *track before detect* (TrBD) type approaches.

Target Tracking Le 1: Introduction	G. Hendeby, R. Karlsson	January 15, 2019	31 /
Bayesian Frameworl	k for Estimation		
• Bayesian solution	$p(x_t \mathbb{Y}_{t-1}) = \int p(x_t x_{t-1})p(x_{t-1} \mathbb{Y}_{t-1}) dx_{t-1}$		(TU)
	$p(x_t \mathbb{Y}_t) = \frac{p(y_t x_t)p(x_t \mathbb{Y}_{t-1})}{p(y_t \mathbb{Y}_{t-1})}$		(MU)
 Two stage proced 	lure:		
	(TU): Predict the future update (MU): Correct prediction based on observation	ons	
 Only a few analyt 	ic solutions:		
	an model \Rightarrow Kalman filter (KF) v model (HMM)		
 In most cases app 	proximations are needed:		
 Analytic 			
 Stochastic 			

G. Hendeby, R. Karlsson

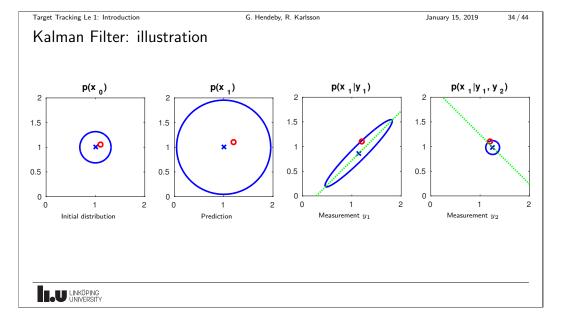

January 15, 2019 32 / 44

Filtering

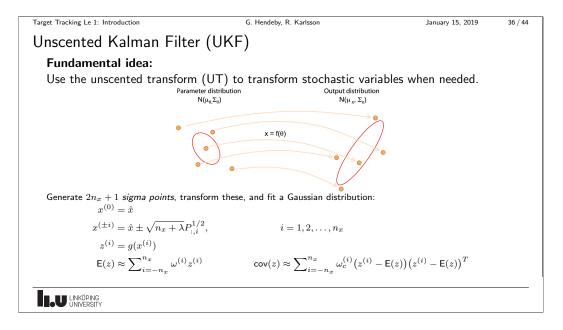
Common filters used for tracking:

- Kalman filter (KF)
- Extended Kalman filter (EKF)
- Unscented Kalman filter (UKF)
- Particle filter (PF)
- Filter banks, e.g., interacting multiple models (IMM)

We will assume basic knowledge of first and only give a brief introduction here. Next lecture will deal with models used in tracking, and filter banks.


January 15, 2019 33 / 44

Kalman Filter (KF)


- Probably the most used filter in practice.
- Applies to linear state-space models:

$$\begin{aligned} x_{t+1} &= F_t x_t + G_t w_t, \qquad & \mathsf{cov}(w_t) = Q_t \\ y_t &= H_t x_t + e_t, \qquad & \mathsf{cov}(e_t) = R_t \end{aligned}$$

- Shown to be optimal if the noise is Gaussian, otherwise the best linear unbiased estimator (BLUE).
- Can be implemented efficiently.

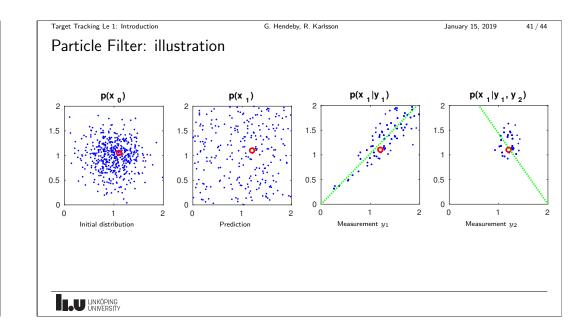
Target Tracking Le 1: Introduction	G. Hendeby, R. Karlsson	January 15, 2019	35 / 44
Extended Kalma	n Filter (EKF)		
Standard Algorit	hm		
InitializationTime update	: $\hat{x}_{0 0} = x_0$ and $P_{0 0} = \Pi_0$. :: $\hat{x}_{t t-1} = f(\hat{x}_{t-1 t-1})$ $P_{t t-1} = F_{t-1}P_{t-1 t-1}F_{t-1}^T + G_{t-1}Q_{t-1}G_t^T$	7	
Measurement		-1	
	$\hat{x}_{t t} = \hat{x}_{t t-1} + K_t \big(y_t - h(\hat{x}_{t t-1}) \big)$		
where	$P_{t t} = P_{t t-1} - K_t H_t P_{t t-1},$		
where	$K_{t} = P_{t t-1}H_{t}^{T} (H_{t}P_{t t-1}H_{t}^{T} + R_{t})^{-1}$		
	$f_t^T = \nabla_x f^T(x) \big _{x = \hat{x}_{t t}}, \qquad H_t^T = \nabla_x h^T(x) \big _{x = \hat{x}_{t t}},$	$=\hat{x}_{t t-1}$	

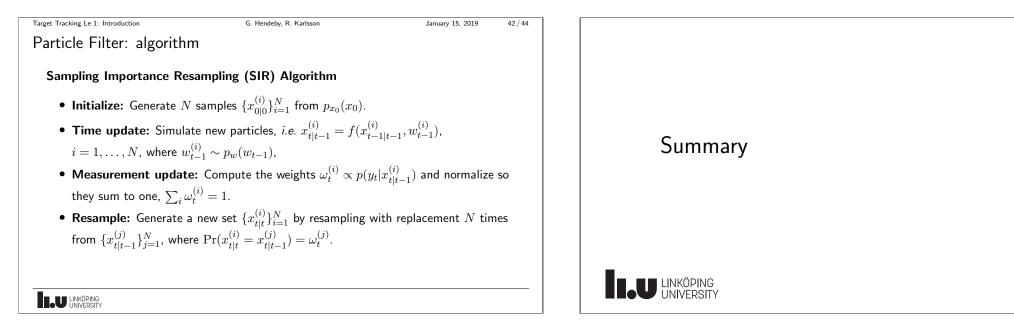
Target Tracking Le 1: IntroductionG. Hendeby, R. KarlssonJanuary 15, 201937/44Unscented Kalman Filter Algorithm (1/2)Algorithm: time update $\hat{x}_{t|t-1} = \sum_{i=0}^{N} \omega_{t}^{(i)} x_{t|t-1}^{(i)}$ $P_{t+1|t} = \sum_{i=0}^{N} \omega_{c,t}^{(i)} (x_{t|t-1}^{(i)} - \hat{x}_{t|t-1}) (x_{t|t-1}^{(i)} - \hat{x}_{t|t-1})^T$ $x_{t|t-1}^{(i)} = f(x_{t-1|t-1}^{(i)}, w_t^{(i)})$ $\omega^{(0)} = \frac{\lambda}{n_x + \lambda}$ $\omega_c^{(\pm i)} = \omega^{(\pm i)}$

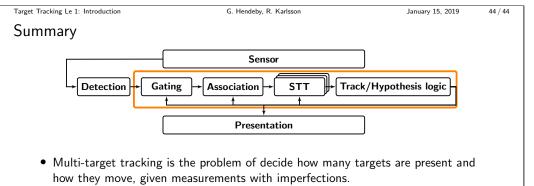
Target Tracking Le 1: Introduction	G. Hendeby, R. Karlsson	January 15, 2019	38 / 44
Unscented Kalman Filter	r Algorithm (2/2)		
Algorithm: measurement	update		
$\hat{x}_{t t} =$	$\hat{x}_{t t-1} + P_{t t-1}^{xy} P_{t t-1}^{-yy} (y_t - \hat{y}_t)$		
$P_{t t} =$	$P_{t t-1} - P_{t t-1}^{xy} P_{t t-1}^{-yy} P_{t t-1}^{xyT}$		
$y_t^{(i)} =$	$h(x_{t t-1}^{(i)}, e_t^{(i)})$		
$\hat{y}_t =$	$\sum\nolimits_{i=0}^{N} \omega_t^{(i)} y_t^{(i)}$		
$P^{yy}_{t\mid t-1} =$	$\sum_{i=0}^{N} \omega_{c,t}^{(i)} (y_t^{(i)} - \hat{y}_t) (y_t^{(i)} - \hat{y}_t)^T$		
$P_{t t-1}^{xy} =$	$\sum_{i=0}^{N} \omega_{c,t}^{(i)} \big(x_{t t-1}^{(i)} - \hat{x}_{t t-1} \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big(y_t^{(i)} - y_t^{(i)} \big) \big) \big($	$\hat{y}_t ig)^T.$	

Target Tracking Le 1: Introduction	G. Hendeby, R. Karlsson	January 15, 2019	39 / 4
Unscented Kalman F	ilter: design parameters		
• λ is defined by $\lambda =$	$\alpha^2(n_x+\kappa)-n_x.$		
• α controls the sprea 10^{-3} .	d of the sigma points and is suggeste	d to be chosen around	
 β compensates for t distributions. 	he distribution, and should be chosen	to $\beta=2$ for Gaussian	
• κ is usually chosen	to zero.		
Note			
• $n_x + \lambda = \alpha^2 n_x$ whe	$ en \ \kappa = 0. $		
0	one for the mean, but sum to $2-lpha^2$ so that the weights are not necessarily		
	ge negative weight!		

G. Hendeby, R. Karlsson


January 15, 2019 40 / 44


Particle Filter (PF)


Postulate a discrete approximation of the posterior. For the predictive density, we have

$$\hat{p}(x_t|\mathbb{Y}_t) = \sum_{i=1}^N w_{t|t-1}^{(i)} \delta(x_t - x_t^{(i)}).$$

Simulate each particle (sample) independently, and compare how well they match the obtained measurements. Use the law of large numbers.

- Classic MTT can be divided in several stages: gating, association, single target tracking, track/hypothesis logic, and presentation.
- Single target tracking: Kalman type filters, particle filters

Decide what your ambitions are for the course!

