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Previous lecture ...

m p° = coordinates for point p relative to coordinate frame 0
] R(l) = rotation matrix giving the orientation of frame 1

w.r.t. frame O
0 X1-X0 Yi1-Xo Z1-Xo
Ri=|x1-Yo Y1-Yo 21 Yo
X1-Z0 Y1-Z20 Z21-°Z20
1 _ 0N—1 __ 0\T
Ry = (Ry)™" = (Ry)
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Previous lecture ...

m Composition of rotations, R:

RY = RIR = RIR}, performed rotation relative to the current
frame, postmultiply by R

RY = RRY, performed rotation relative to the fixed (original)
frame, premultiply by R
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m Composition of rotations, R:

RY = RIR = RIR}, performed rotation relative to the current
frame, postmultiply by R

RY = RRY, performed rotation relative to the fixed (original)
frame, premultiply by R

m Express a rotation in one frame in another frame, similarity
transformation. A the rotation in frame 0, B the corresponding
rotation expressed in frame 1:

B = (R})TAR}
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Short summary of previous lecture Short summary of previous lecture

m A rigid motion is described by m A rigid motion is described by
po _ Rgpl + 0 po _ Rgpl + 0
Using the homogeneous transformation
RY d°
=0 %)
and the homogeneous representations of p?, p!
0 1
P\ _ po P _p1
()= (3)=r
it gives the homogeneous matrix equation
P° = H{P'
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Introduction to robotics

Todays agenda

An manipulator has

m /inks

m joints. Two “basic” types with one
single degree of freedom:

e revolute
e prismatic

Cj;ﬁ e :|'|—:%ﬂ1~%s
/T T

REVOLUTE JOINTS PRISMATIC JOINTS

. Forward kinematics
(Denavit-Hartenberg convention)
2. Inverse kinematics
3. Velocity kinematics
e Linear velocity
e Angular velocity
4. What does a Jacobian tell us?
e Singularities
e Redundancy

Figure 2.12 in Sciavicco et al.

AUTOMATIC CONTROL : AUTOMATIC CONTROL
Mikael Norrlof REGLERTEKNIK Mikael Norrlof REGLERTEKNIK
LINKOPINGS UNIVERSITET Lecture 2: Inverse kinematics, velocity kinematics and the manipulator Jacobian LINKOPINGS UNIVERSITET

Lecture 2: Inverse kinematics, velocity kinematics and the manipulator Jacobian



Introduction to robotics Introduction to robotics

An manipulator has

3
! m /inks
; m joints. Two “basic” types with one . -
ks O de single degree of freedom: m A robot V\{Ith 1,...,mnjoints has
e revolute 0,...,nlinks
e prismatic (n + 1 number of links).

N m ... and joint variables q m The link 0 is fixed to the ground.
,@\) (here: g; = joint angles 6;, m Coordinate frame 1 (xi,yi,zi}) is
SIS i=1,...,6). associated to link i.
= (n + 1 frames)

W Figure 3.1 in Spong et al.

Pose = position and orientation of the end effector (tool)
Configuration = joint variables g in a specified pose
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Introduction to robotics Kinematics and dynamics

Typically only the joint angles are mea-
sured in standard commercial indus-
trial robots.

m Kinematics:
position, velocity, acceleration.
Main focus of this lecture.

0025 05 075 -05 -
y [m)
x[m]

Actual end effector (or tool) position
and orientation are calculated from
models of the kinematics.

m Dynamics:
forces and torques.
Covered in lecture 3!
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Forward and inverse kinematics Position kinematics

Denavit-Hartenberg (D-H) convention — established standard to
derive the general kinematics relations. Uses open kinematic chains.

Kinematics

Inverse kinematics Forward kinematics
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Position kinematics Denavit-Hartenberg convention

Denavit-Hartenberg (D-H) convention — established standard to A systematic way to determine the homogeneous transformations A;.
derive the general kinematics relations. Uses open kinematic chains.
m Homogeneous transformation from frame i to frame i — 1

i—1 i—1
Ri di

Open kinematic chain
pen kinematic chal )= (50 0), B=ai)- A

(serial robot):

Closed kinematic chain
(parallel robot):

a sequence of links forms a
loop
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Denavit-Hartenberg convention Denavit-Hartenberg convention

A systematic way to determine the homogeneous transformations A;.
m Homogeneous transformation from frame i to frame i — 1
R gt
a) = (50 0), B=ai)- A

m Every transformation A; is characterised by

A; = Rot,,_, g Trans, , s Transy, ; Roty, 4,

cosf; —sinf;cosw; sinf;sinw; a;cosb;

| sinf; cosO;cosa; —cosO;sina; a;sino;
0 sin a; COS &; d;
0 0 0 1
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Denavit-Hartenberg convention Denavit-Hartenberg parameters

The procedure derives the coordinate frames for a rigid body.
Choose: z; = axis of actuation of joint i + 1.

The coordinate frames are characterized by:
(D-H1) the axis x; is perpendicular to the axis z; 1
(D-H2) the axis x; intersects the axis z;_q

Under these conditions, there exist unique numbers a,d, 8, a (within a
multiple 277) such that

A; = Rot,,_, g Trans, , ;s Transy, 5, Roty, 4,
4 parameters are sufficient to specify an arbitrary homogeneous

transformation satisfying (D-H1) and (D-H2).
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The procedure derives the coordinate frames for a rigid body.
Choose: z; = axis of actuation of joint i + 1.

The coordinate frames are characterized by:
(D-H1) the axis x; is perpendicular to the axis z; 1
(D-H2) the axis x; intersects the axis z;_q
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0;,d;,a;, «; are four characteristic D-H parameters, associated with
link 7 and joint i.

a1
Z1 "
061/
For the two cases of [ x1
joints: .
0;, revolute
%’ - . . dl Z0
d;, prismatic
Yo
0o 91
X0

AUTOMATIC CONTROL
Mikael Norrl6f REGLERTEKNIK
Lecture 2: Inverse kinematics, velocity kinematics and the manipulator Jacobian LINKOPINGS UNIVERSITET



Denavit-Hartenberg parameters Example: IRB1400

“ m Angle 0;: angle between the x;_; . - m Only revolute joints.
E n and x;-axis measured in the plane | (t))bﬁ:t{é:l4éoe- research Joint 2 and 3 mechanically coupled.
perpendicular to the z;_q-axis. ab, '

X1

01 m Offset d;: distance between origin
0;_1 and the intersection of the
x;-axis with z;_;-axis measured
along the z;_;-axis.

d -
Yo m Length a;: distance from origin o; to
0026, the intersection between the x; and
Xo z;_1-axis measured along the
X;-axis.

A; =Rot,. g Trans, g4 )
! Ei-1t Zi-1A m Twist ;: angle between the z;_;

and z;-axis measured in the plane
perpendicular to the x;-axis.
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Transy, 4, Roty, 4,

Example: IRB1400 Example: IRB1400

m Only revolute joints.

R in th . .
obot in the  research m Joint 2 and 3 mechanically coupled.

lab, IRB1400: . . .
m Possible to rewrite to a serial structure.
~1100 ‘ D-H joint variables 6 given by x 2w}%{’]‘fRobotics Toolbox (Matlab):
72, 720 [ lass 5] yajgzawwm ey ©
1 0 00 0 0 0 " R, WL W L(1) = Link([theta(1), d(1), a(1),
- 0 1 0 0 0 O —pi/2 1 ° alpha(1)1);
g0 -1 1.0 00 ot 0 ors]
balancing 0 0 0 1 0 0 0 N 1; L(6) = Link([theta(6), d(6), a(6),
springs 0 0 0 0 1 O 0 %] i alpha(6)1);
1310 00 0001 & 025 Ly s m robot6 = SeriallLink (L);
ol— 0o g= 1[0 -pi/2 0 0 0 pil;
m D-H parameters P08 e s plot (robot6, q)
x [m]
\ % d=(0475 0 0 072 0 0.085)

a=(015 06 012 0 0 0)
667 = (-mn/2 0 —-m/2 w/2 —m/2 0)
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Inverse kinematics

Derive the joint variables g1, . . ., 44, when the end effector position
and orientation are known. Generally a harder problem than the
forward kinematics.

Kinematics

Inverse kinematics
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Inverse kinematics — solutions?

Forward kinematics

Inverse kinematics

. R
Given the homogeneous transformation H = < 0

0 1) € SE(3), find

a solution (possibly several solutions) to
Tg(ql,...,qn) = H, where Tg(ql,...,qn) =A1(q1) .. -Au(qn)
This gives the equations
Ti(q1, -, qn) = hyj, i=1,2,3, j=1,2,34

Hard to solve in closed form. Must use the actual kinematic structure
to simplify the problem.
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Inverse kinematics — kinematic decoupling

The existence of solutions to the inverse kinematics problem
depends on engineering as well as mathematical considerations.

Example:

The motion of a joint can be restricted
to less than 360°.

Not all mathematical solutions to the
kinematic equations correspond to
robot configurations that are physically
realisable.

-~y

Figure 1.7 in Sciavicco et al.

AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

Mikael Norrlof
Lecture 2: Inverse kinematics, velocity kinematics and the manipulator Jacobian

Assume that we have a 6 DOF robot with a spherical wrist. It means
that the robot has 6 joints, where the 3 joint axes of the wrist intersect
at a point (called wrist center o).

= possible to decouple into
two simpler problems:

m Inverse position
kinematics

m Inverse orientation
kinematics

Figure 3.12 in Spong et al.
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Inverse position — geometric approach Inverse position — multiple solutions

Multiple solutions can be found.

Inverse position: find the joint variables g1, g2, g3 corresponding to a
given position of the wrist center o,. Left and right arm configuration PUMA manipulator

General idea:

Solve for joint variable g; by
projecting onto the x;_1,y;_1-
plane.

Results in a simple trigono-
metric problem.

Y%

To

Figure 3.13 in Spong et al. :c } Left Arm Elbow Down

Figure 3.17 in Spong et al. Figure 3.18 in Spong et al.
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Inverse orientation — geometric approach

Summary — position kinematics

A good summary of the forward kinematics prob-
lem using the Denavit-Hartenberg convention

Example: and the inverse kinematics problem.
For a spherical wrist it means to find the set of Euler angles ¢, 6, \ Spong et al., pages 110-111.

corresponding to a given rotation matrix R. Then use the mapping

Inverse orientation: find the joint variables g4, g5, g¢ corresponding to
a given orientation with respect to the frame {x3y3z3}.

Osr=¢, 05=0, 0s=1

The Denavit-Hartenberg convention for a closed
kinematic chain is described.

No general approach when solving the inverse kinematics problem is Sciavicco & Siciliano, pages 46-49.

given. Special treatment of every single type of kinematic structure of

the robot.
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Velocity kinematics — the Jacobian Velocity kinematics — the Jacobian

The (manipulator) Jacoblan | relates the linear velocity v and
angular velocity wn of the end effector to the derivative of the joint

variables g
A\ .
(wg) =J(9)g.

The Jacobian is one of the most important quantities in robot
analysis and control!
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The (manipulator) Jacoblan | relates the linear velocity v and
angular velocity wn of the end effector to the derivative of the joint

variables g
A\ .
(wg) =J(9)g.

The Jacobian is one of the most important quantities in robot
analysis and control!

m Planning of trajectories

m Determination of singular configurations

m Analysis of redundancy

m Derivation of dynamic equations of motion

m Transformation of forces and torques from the end effector to
the robot joints

"
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Repition: Angular velocity Repition: Angular velocity

m Rotation of an angle 6 about a fix axis k.
Angular velocity
w = 0k

m Linear velocity of any point on the body.

v=w Xr, r= the vector from the origin to the point
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m Rotation of an angle 6 about a fix axis k.
Angular velocity
w = 0k

m Linear velocity of any point on the body.

v=w Xr, r= the vector from the origin to the point

m Resulting angular velocity due to relative rotation of several
coordinate frames. Angular velocities added as free vectors if
they are expressed relative to the same frame.

_ =

0 _ 0 0,1 (R
Won = wWo1 + Rjwyp + ... + Ry qw

—1n

S 3

_ 0 0 0
=wWo T Wipt . T W g,

Mikael Norrlof
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Repition: Skew symmetric matrix

Derivation of the Jacobian

m S is skew symmetric if ST + S = 0. Withs = (s1 s, 53)T we

define
0 —S53 52

Ss)=1{s3 0 —s
—S2 S1 0
m Derivative of rotation matrix

BR(E) = S(@(t)R(E),  solution R(t) = e5<"R(0)

w(t) = angular velocity of the rotating frame w.r.t. the fixed
frame at time ¢

Expressions for relative velocity transformations between
coordinate frames involve derivatives of rotation matrices.
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Derivation of the Jacobian — linear velocity

The linear velocity of the end effector is 0 = ¢0. The chain rule gives
n aOO .
0n = 3 3,1
i—1 9

0
The ith column of [, is J,, = %. The linear velocity of the end

effectorif g; =1and q; =0, j#1i.

20— {wg xr =gz | x (03 —0% ), revolute joint (g; = 6;)

" i]iR?_lzfj =gz} ,, prismatic joint (g; = d;)

This results in

0 0 0
z: 1 %X (0;, —o0: 1), revolute
Jo = (]711 ---]vn) ’ Where]vi = { 6—1 ( n 1—1)

Zi 1 prismatic
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We have an n-link robot with joint variables g1, ..., g,. The
transformation from end effector frame 7 to base frame 0

o = (“57 )

0% = end effector position expressed in frame 0

RY(gq) = end effector orientation

The angular velocity of the end effector: S(w?) = RO(R9)T.

The linear velocity of the end effector: v = ¢V.

The Jacobian is given by
0
v, Jo\ . .
= , alsodenoted ¢ =
(e) = ()2 =

Mikael Norrlof
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Derivation of the Jacobian — angular velocity

The angular velocity of link i resulting from rotation of joint i,
expressed in frame i — 1

Wil {q,i‘l% = gik, reT/qute.

w; =0, prismatic
The overall angular velocity of the end effector in the base frame 0 by
adding the results from each single link expressed in frame 0

wy = P11k + p22Rk + ...+ puduR; 1k
{1, revolute

n
- 0
= (:Z: , =
Zplql i1 P 0, prismatic

i—1

This gives Jo = (012 onzo_1)

Mikael Norrlof
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i*;%%? Robotics Toolbox:

B robot6 = SeriallLink(L);
mgz = [0 -pi/2 0 0 0 pil;
B J := robot6.jacobl(gz);
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The analytical Jacobian Inverse velocity and acceleration

Geometric Jacobian ¢ = (Z((Z))) = (j)%%) =J(9)q

Analytical Jacobian X = (ZEZ;) = Ja(9)q

Assume that the system is transformed by the Euler angle
transformation, where & = Euler angles. It gives w = B(a)a.

The relation between the geometric and analytical Jacobian is then
. (ol@\ _(dg\ _ (I 0 .
@i = (20) = (500) = (o siny ) @

(See Sciavicco et al., Chapter 3.6 and Spong et al., Chapter 4.8.)
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The analytical Jacobian is based on the minimal representation for
the orientation of the end effector frame.

d(q)>

X =

(w(q)

d(gq) = usual vector from the origin of the base frame 0 to the origin

of the end effector frame n.
«(q) = minimal representation for the orientation of the end effector

The end effector pose

frame n relative to the base frame 0. For example x = (¢ 6 1/;)T.

The analytical Jacobian is defined by

x= (50) = o
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The inverse velocity/acceleration: find the joint velocities g that
produce the desired end effector velocity X or acceleration X.

Differentiating X = J,(q)4 gives an expression for the acceleration

(%Ia(‘ﬂ)q

For a 6 DOF-robot the inverse velocity and acceleration are

q= ]a(Q)ilx
i =Jag)™ (x - (%w))q)

provided det],(q) # 0.

X = Ja(q)G +

Mikael Norrlof
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Singularities

The 6 x n Jacobian J(g) defines a (time-varying) mapping
¢ =J(g)g- All possible end effector velocities are linear combinations

of the columns of J

C :]1‘71 +]2é]2+...+]n‘7n

When rank | = 6, the end effector can execute an arbitrary velocity
& € R®. For | € IR®*®, the Jacobian looses rank when det ] = 0.

The rank is configuration dependent. Configurations for which the
rank is less than the maximal value are called (kinematic)
singularities or singular configurations.

Mikael Norrlof
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Singularities
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Singularities

Example: Two-link planar arm.

The Jacobian is given by

—aysinf; —ap sin(01 + 92)
a1 cos 01 + ap cos(6y + 6)
0

0
0
1

Mikael Norrlof
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Singularities

y2 *2
Yo
Vooa s
/ / 92 X1
—ap sin(91 + 92) . /
ay cos(6y + 67) Lo
8 =l %o
0
1 /

Figure 3.6 in Spong et al.
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Singularities can be classified into:

m Boundary singularities. When the robot is completely

outstretched or retracted. Can be avoided by the condition that

the robot is not driven to the boundaries of its workspace.

m Internal singularities. Occur inside the reachable workspace.
Generally caused by the alignment of two or more axes of
motion. A serious problem, since they can be encountered
anywhere in the reachable workspace for a planned path.

Mikael Norrlof
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Examples of internal singularities, where two or more axes are

aligned.

Elbow singularity

A\

Figure 4.6 in Spong et al.

Elbow fully extended or retracted.

Mikael Norrlof
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03 = 180°

Spherical wrist singularity

2,
A 4

C y6=0

23 25
04 bs

Figure 4.4 in Spong et al.
Axes z3 and z5 collinear.
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Assume that we have the Jacobian | € R®*®. Singular configurations

Identifying the singularities are very important in robotic applications!
ying g yimp PP q are given by det] = 0. Generally a hard problem to solve.

m Singularities represent configurations from which certain

directions of motion may be unattainable. . . o
For robots with a spherical wrist it is

m Bounded end effector velocities may correspond to unbounded possible to decouple the singularities

joint velocities at singularities. into ds
[ Bf?untde? joint torgutes may Cf[)rr.espclmi lto unbounded end m Arm singularities. Resulting from
effector forces and torques at singularities. )
9 9 the motion of the arm.
m Singularities correspond to points in the ropot workspape that m Wrist singularities. Resulting
may be unreachable under small perturbations of the link from motion of the spherical
parameters. wrist
Figure 3.12 in Spong et al.
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Example: Singularities — decoupling Example: Singularities — decoupling

Example: 6 DOF robot, with 3 DOF-arm and 3 DOF-spherical wrist. Example: 6 DOF robot, with 3 DOF-arm and 3 DOF-spherical wrist.

J € IR®*®, Partition the Jacobian into

ds
1= 0p Jo) = (12 12)

Since the final three joints are revolute

J € IR®*®, Partition the Jacobian into

1= 0p Jo) = (12 12)

Z3 24 25

Jo = (23 X (06 —03) z4 X (05 —04) 25 % (06 —05))

Figure 3.12 in Spong et al. Figure 3.12 in Spong et al.
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Singularities — decoupling Singularities — decoupling

Arm singularities (det J1; = 0) when 63 = 0, 7t. A2
The wrist axes intersect at a common point o.. Choosing coordinate Also when a; cos 0, + a3 cos(6; + 63) = 0, the o
frames so that 03 = 04 = 05 = 0 = 0. gives wrist center o, intersects the axis zo. | :

05 = 180°

o= (0 00
O_Z3Z4Z5

The Jacobian

N AN
Figure 4.6 in Spong et al. Figure 4.7 in Spong et al.

J= (]11 0 ) , det] = det]i1det]n

21 J»

Singular configurations:

union of arm configurations satisfying
det J11 = 0 and wrist configurations satis-
fying det ], = 0.
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Singularities — decoupling

Figure 3.12 in Spong et al.

Redundancy

Arm singularities (det J1; = 0) when 63 = 0, 7. 50 The human arm has 7 degrees of mobility:

Also when a; cos 0, + a3 cos(6, + 03) = 0, the . Three in the shoulder, one in the elbow and three in the wrist. (Not
wrist center o, intersects the axis zp. considered the degrees of mobility in the fingers...)

The arm is redundant, since we only can perform motions with

05 = 180° 6 degrees of mobility.

N N

Redundancy is an important concept

Figure 4.6 in Spong et al. Figure 4.7 in Spong et al. in robotic applications.
2 Using a redundant robot increases
L Y65=0 . -
Wrist singularities when z3 and z5 are % the dexterity and mobility.
collinear, from det (z3 z4 2z5) = 0. % %
04 06 Figure 4.3 in Craig
(Example 4.9 in Spong et al.) Figure 4.4 in Spong et al. (See Sciavicco et al., Chapters 2.10.2 and 3.4 for redundancy.)
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Redundancy — categorisation Kinematically redundant

Redundancy of a robot is categorised into:
m Kinematically redundant. The degree of mobility of the robot is
larger than the number of variables needed to describe the task.

m Intrinsically redundant. The dimension of the operational space
is smaller than the dimension of the joint space, m < n.

m Functionally redundant. As an example, when m = n, the robot
is functionally redundant when only r < m number of
components of operational space are of concern for the task.

(Operational space = minimal vector to describe end effector pose,
defined in the space in which the robot task is specified.)

Redundancy is thereby a concept relative to the actual robot task.

AUTOMATIC CONTROL
Mikael Norrlof REGLERTEKNIK

Lecture 2: Inverse kinematics, velocity kinematics and the manipulator Jacobian LINKOPINGS UNIVERSITET

Redundancy Redundancy - reconfiguration

The Jacobian defines a linear mapping from the joint velocity space g
to the end effector velocity space (called v in the figure), for a given

pose.
jerr g m The range of J: subspace R(J) € R’
of end effector velocities that can be
@, generated by the joint velocities.
"‘ m The null of J: subspace N (]) € R"

of joint velocities that do not produce

Figure 3.7 in Sciavicco et al. any end effector velocity.
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Some notation:

m = number of operational space variables

n = number of degrees of mobility of the kinematic structure

r = number of operational space variables needed to describe the
specific task

Study the velocity kinematics

e=(2) =i

¢ = r x 1-vector of end effector velocity of concern for the task
J = r X n Jacobian
g = n x 1-vector of joint velocities

If r < n, the robot is kinematically redundant. We have n — r
redundant degrees of mobility.
AUTOMATIC CONTROL
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Denote §* a solution to § = J(g)§ and P a n x n-matrix such that
R(P) = N(J). Then also the joint velocity vector

g =4*+ Pgo, arbitrary 4o
is a solution to & = J(g)g. Multiplying by | gives
Ja=Jq" +]Pqo=]4" =¢

Fundamental importance!

Possible to choose g to make use of the redundant degrees of
mobility. It generates internal motions that do not change the end
effector pose. Can reconfigure the robot into a more dexterous pose
for the specific task.
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Example: Redundancy Summary ...

‘@ﬁ Robotics Toolbox:

<

m Create the robot m The structure of a robot (links, joints, chains)
clear L . . _ . . o
L(1) = Link([ 0 0 0.8 0 1) | Klnemat.lcs geometric description and Denavit-Hartenberg
L(2) = Link([ 0 0 1.2 0 1); convention
L(3) = Link([ 0 0 1 0 1); . . . .
r3 = Seriallink (L); m Forward position and velocity kinematics
L(4) = Link([ 0 0 0.5 0 ]); m Inverse kinematics — decoupling
r4 T Serfallink(L); m The geometric and analytical Jacobian
m End effector position and Jacobian for a specified pose m Analysis of robot motion — singularities and redundancy.

g=101.210.31;

p = transl (fkine(r4, qg));
Jq jacob0(r4,q);

ns null (Jq)
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