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Content

* Rigid body transformation

« Rotation
— Rotation matrices
— Euler's theorem
— Parameterization of SO(3)

« Homogeneous representation
— Matrix representation
— Chasles’ theorem



Background to modeling

Kinematics

 studies the motion of objects without consideration of the
circumstances leading to the motion

Dynamics
 studies the relationship between the motion of objects
and its causes



Rigid body motion



Rigid body motion




Content

* Rigid body transformation

« Rotation
— Rotation matrices
— Euler's theorem
— Parameterization of SO(3)
« Homogeneous representation
— Matrix representation



Representation of orientation

* Rotation matrices

« Angle — axis representation
« Euler angles

* Quaternion

« Exponential coordinates



Composition of rotation

® The order of rotation axes is important
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Example

Example 2.8

Suppose R is defined by the following sequence of basic rotations in the order
specified:

1. A rotation of 0 about the current r-aris

t\:;;

. A rotation of ¢ about the current z-axis

A rotation of « about the fized z-awxis

=~

. A rotation of 3 about the current y-axis

. A rotation of & about the fixred x-axis

R |

In order to determine the cumulative effect of these rotations we simply begin
with the first rotation R, g and pre- or post-multiply as the case may be to obtain

R = RmﬁRz,uRm,ERzaﬁ%‘ﬁ (224)



Euler angles




Euler angles

@ Gimbal lock (Apollo IMU Gimbal lock 1, 2)
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Euler angles

® Implementing interpolation is difficult

® Ambiguous correspondence to rotations
® The result of composition is not apparent
® Non-linear dynamics

© Mathematics is well known
© Can be visualized “in the mind”



Quaternions

Sir William Rowan Hamilton (1809-1865)
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LECTURES ON QUATERNIO.\TS: CONTAINING A SYSTEMATIC STATEMENT OF
A Nerw NMathematical Nethod

OF WHICH THE PRINCIPLES WERE COMMUNICATED IN 1843 TO THE ROYAL IRISH
ACADEMY:; AND WHICH HAS SINCE FORMED THE SUBJECT OF SUCCESSIVE COURSES
OF LECTURES, DELIVERED IN 1848 AND SUBSEQUENT YEARS IN THE HALLS OF
TRINITY COLLEGE, DUBLIN: WITH NUMEROUS ILLUSTRATIVE DIAGRAMS., AND WITH
SOME GEOMETRICAL AND PHYSICAL APPLICATIONS.
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Quaternions

Generalization of complex numbers to 3D.
S+ 1 X+ y+k z
withic=je=k?=ijk=-1,ij=-ji=k, jk =-kj =i, ki = -ik =j.

A quaternion is usually represented as q = <s,v> with
« sscalar (real part)

« vvector in R3(complex part)

Unit quaternion ||g|| = 1.



Rotation with quaternions

Angle axis to quaternion

< 0 . 6’>
Ov= (=(cos—,sin—v
2 2

Composition of rotations, g, then g,

0=0,0;



Rotation with quaternions

Rotation of a vector, u = Rv

Vq = <0, v>, g Is quaternion representation of R

= Qv =<0, u>

Rq(q) =

9% +49i— G — 43 9*}1*’12 + Qfﬂl*’h 2q193 — 2qoq2
2q1q2 — 2q0qs g5 — *’h + '“1‘?' — *’13 2‘1’2'&’3 + 2*’1{}6’1
2‘?1@3 + 2'&’“@'2 9{1'2{1‘3 — 9‘1“'{1'1 ‘TH — -12 ‘T?' + ‘Yi



Some remarks

* ( and —q represent the same rotation

q q

f'/ T | / ™
\_/1 I\ A
e q=<s,v>andql=<s,-v>
q g
Y ‘i




Quaternions

@ Can only represent orientation
® Quaternion math is not so well known

© Compact representation, based upor
© Simple interpolation methods
© No gimbal lock

© Simple composition

© Linear (bi-linear) dynamics,
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Homogeneous transformations
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Homogeneous transformations

Composition Rule for Homogeneous Transformations

The same interpretation regarding composition and ordering of transformations
holds for 4 x 4 homogeneous transformations as for 3 x 3 rotations. Given a
homogeneous transformation HY relating two frames, if a second rigid motion,
represented by H € SE(3) is performed relative to the current frame, then

HY = HYH
whereas if the second rigid motion is performed relative to the fixed frame, then

HY = HHY



Comparison for different operations

Performance comparison of rotation chaining operations

Method  Storage |7 multiplies # add/subtracts total operations
Ratation matrix |5 2 15 45
Cluaternions |4 15 12 28

Performance comparison of various rotation operations

Method  Storage |7 multiplies # add/subtracts # sin/cos total operations
Rotation matrix |9 4 b 0 15
Cluaternions |4 21 18 0 39
Anglefaxis 4 23 b 2 11



Further studies

 R.M. Murray, Z. Li, and S.S. Sastry: A mathematical
Introduction to Robotic Manipulation (Chapter 2)

« James Diebel: Representing Attitude: Euler Angles,
Unit Quaternions, and Rotation Vectors

 Erik B. Dam, Martin Koch, and Martin Lillholm:
Quaternions, Interpolation and Animation



