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Ruining the Mood...
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Application Domains

Sensor and
communications networks

Biological networks o dinated control

1430 Magnus Egerstedt - Aug. 2013 Inetitute
Roboties/ =T gnus Lg &



The Mandatory Bio-Slide

« As sensor webs, large-scale robot teams, and networked embedded
devices emerge, algorithms are needed for inter-connected systems
with limited communication, computation, and sensing capabilities

* How to effectively control such systems?

— What 1s the correct model?
— What is the correct mode of interaction?
— Does every individual matter?
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The Starting Point

Robotics 15T
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SESSION 1
GRAPH-BASED CONTROL
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“They look like ants.”
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Graphs as Network Abstractions

* A networked sensing and actuation system consists of

— NODES - physical entities with limited resources (computation,
communication, perception, control)

— EDGES - virtual entities that encode the flow of information between
the nodes

e The “right” mathematical object for characterizing such systems at the
network-level is a GRAPH

— Purely combinatorial object (no geometry or dynamics)

— The characteristics of the information flow is abstracted away through
the (possibly weighted and directed) edges
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Graphs as Network Abstractions

« The connection between the combinatorial graphs and the geometry
of the system can for instance be made through geometrically defined
edges.

« Examples of such proximity graphs include disk-graphs, Delaunay
graphs, visibility graphs, and Gabriel graphs [1].
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The Basic Setup

o z;(k)= “state” at node i at time k x; (k)
N, (k)= “neighbors” to agent i ./\
Information “available to agent 1

I¢(k) = {z; (k) | j € Ni(k)}

or
IT (k) ={xi(k) —x;(k) | j € Ni(k)} «— relative info. (sensing)

common ref. frame (comms.)

« Update rule:
vi(k+ 1) :@xi(k),li(k)) «—— discrete time
or
i () =(E)ei (1), 1i(1)) < continuous time

How pick the update rule?
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Rendezvous — A Canonical Problem

Given a collection of mobile agents who can only measure the relative
displacement of their neighbors (no global coordinates)

Lj
T

—_— a’: .
T J ¥ This is what agent i can measure
1

« Problem: Have all the agents meet at the same (unspecified) position

 If there are only two agents, it makes sense to have them drive
towards each other, 1.e.

T
1y,

—y1(z1 — 2)
—yo(z2 — 1)

o If 71 = 72 they should meet halfway
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Rendezvous — A Canonical Problem

e If there are more than two agents, they should probably aim towards
the centroid of their neighbors (or something similar)

@) ’CU]
e T; = —y (z; — x;)
® /v Ll 2 Jg:\/ 1 i
XLy 1
© 1,
Fact [2-4]: As long as the graph is
connected (iff), the consensus equation
drives all agents to the same state value
1 N
limz;(t) == — x;(0
Jim ;(t) 5 3 @50 |
1=1
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Algebraic Graph Theory

* To show this, we need some tools...

« Algebraic graph theory provides a bridge between the combinatorial
graph objects and their matrix representations

— Degree matrix:

D = dlag(deg(nl)a JRRR deg(nN))
— Adjacency matrix: " n,
1 if o—o0

— Incidence matrix (directed graphs): e; Mi

1 if ©6—0
T =[], vij=1{ -1 if o0
| O O.W.
— Graph Laplacian:
L=D-A=11"
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Algebraic Graph Theory - Example

1 0 0 0 0 0 0
-1 1 1 0 0 0 0
0 -1 0 1 0 0 0
0 0 -1 -1 1 1 0
0 0 0 0 -1 -1 0

0 0 0 0 0 -1 1

L =777 =
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The Consensus Equation

* The reason why the graph Laplacian is so important is through the
already seen “consensus equation”

Ci?i: — Z (xi—azj), 1= 1,...,N
JEN;
or equivalently (W.L.O.G. scalar agents)
z; = —deg(ny)z; + L5 ajz; ,
T = = —Lx
xr = [ml ro - :I;N}

e This is an autonomous LTI system whose convergence properties
depend purely on the spectral properties of the Laplacian.
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Graph Laplacians: Useful Properties

— It 1s orientation independent

— It is symmetric and positive semi-definite

— If the graph is connected then

eig(L) ={A,.. ., An}, with 0= X1 <X <--- < Ay

eigv(L) = {v1,...,vN}, with null(£) = span{v1} = span{1}
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Stability - Basics

« The stability properties (what happens as time goes to infinity?) of a
linear, time-invariant system is completely determined by the
eigenvalues of the system matrix

&t =Ax (&= —Lx)
» FEigenvalues A(A) = A1,..., Ay

« Asymptotic stability: Re(\;) <0, i =1,...,n = lim z(t) =0

t—o0
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Stability - Basics

« Unstable: 3¢ s.t. Re(A;) >0, = lim 2(t) = o0
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* Critically stable:

O=XAM1>X>...2 A\, = ol
lim; oo (t) € null(A) 2y
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Static Consensus

« If the graph i1s static and connected, under the consensus equation, the
states will reach null(L)

« Fact (again): Q
a
null(L) =span{l}, x €enull(LL) & z=| . |, aeR
- a -

* So all the agents state values will end up at the same value, i.e. the
consensus/rendezvous problem is solved!

b= — S (@) = Jim a(t) = %ij(()) - %1%(0)

' t—o0
JEN;
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Formation Control

« Being able to reach consensus goes beyond solving the rendezvous

problem.
e Formation control:
2131,...,”$N yla---?yN
agent positions target positions

* But, formation achieved if the agents are in any translated version of
the targets, i.¢e.,

x; =vy; + 7, Vi, for some 7
« Enter the consensus equation [5]:

€; = I T; — Z[(ﬂﬁi—xj)—(yi—yj)]
6, = — Z —63 JEN;

JEN, r;(00) =y; + 7, Vi
ei(00) = €5(00) = 7
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Formation Control

Multi-Robot Assignment
and Formation (()n ro!

l‘:(]" rd .\I,E_('thlf‘ | _\I,‘p"*"'

@m‘lﬁg

Roboties and Intel
Svsti : L.al
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Convergence Rates

« The second smallest eigenvalue of the graph Laplacian is really
important!

« Algebraic Connectivity (= 0 if and only if graph is disconnected)

» Fiedler Value (robustness measure)

« Convergence Rate:

1
() = ElTSU(O)H < Ce™ !

* Punch-line: The more connected the network is, the faster it
converges (and the more information needs to be shuffled through the
network)

« Complete graph: A2 = n

oo o o o
e Star graph: A2 =1
 Path graph: A2 < 1
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Cheeger’s Inequality

e(S)
min{|.S], [S¢[}

(measures how many edges need to be
cut to make the two subsets disconnected
as compared to the number of nodes that

are lost)

¢(S) =

isoperimetric number:

#(G) = min¢(5)

(measures the robustness of the graph)

$(G)?
G) > X >
e IN()
m QGGr Magnus Egerstedt - Aug. 2013



Beyond Static Consensus

« So far, the consensus equation will drive the node states to the same
value if the graph is static and connected.

« But, this is clearly not the case in a number of situations:
— Edges = communication links
* Random failures
* Dependence on the position (shadowing,...)
* Interference
* Bandwidth issues
— Edges = sensing
« Range-limited sensors
* Occlusions

« Weirdly shaped sensing regions
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Summary I

« QGraphs are natural abstractions (combinatorics instead of geometry)
« Consensus problem (and equation)
« Static Graphs:
» Undirected: Average consensus iff G is connected
e Need richer network models!
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SESSION 2
MULTI-AGENT NETWORKS
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Instead of connectivity, we need directed notions:

— Strong connectivity = there exists a directed path between any two
nodes

— Weak connectivity = the disoriented graph is connected

IV

Strongly connected Weakly connected

Directed consensus:

Bi=— Y (i)

jENIT
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Directed Consensus

e Undirected case: Graph 1s connected = sufficient information 1s
flowing through the network

* Clearly, in the directed case, if the graph is strongly connected, we
have the same result

* Theorem: If G is strongly connected, the consensus equation achieves

lim (sz — lej) — O, VZ,j

t— o0

« This is an unnecessarily strong condition! Unfortunately, weak
connectivity is too weak.
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Rooted Outbranching Trees

Consider the following structure

N

Seems like all agents should end up at the root node

Theorem [2]: Consensus in a directed network 1s achieved if and only
if G contains a spanning rooted outbranching tree (ROT).
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Where Do the Agents End Up?

 Recall: Undirected case

lim ;(t) = 2(0) = — » ;(0), Vi

t—00 N

e How show that?

e The centroid 1s invariant under the consensus equation

* And since the agents end up at the same location, they must end up at
the static centroid (average consensus).

Mm Magnus Egerstedt - Aug. 2013 Georgialnstiuie
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Where Do the Agents End Up?

*  When is the centroid invariant in the directed case?

¢'L=0 w=qlz = w=q¢'i=—¢"' Lz =0

* w s invariant under the consensus equation
e The centroid 1s given by 1

which thus 1s invariant if
1'L =0
 Def: G is balanced if

deg™ (i) = deg®*(i), Vi €V < 1'L =0

e Theorem [2]: If G 1s balanced and consensus is achieved then average

consensus 1s achieved!
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Example

Gy

Gs

Gy

No ROT — Consensus is not achieved

ROT but not balanced — Consensus but
not average consensus is achieved

ROT and balanced — Average consensus
is achieved
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Beyond Static Consensus

« So far, the consensus equation will drive the node states to the same
value if the graph is static and connected.

« But, this is clearly not the case in a number of situations:

— Edges = communication links
* Random failures
* Dependence on the position (shadowing,...)
* Interference
* Bandwidth issues °

— Edges = sensing @ \
« Range-limited sensors @
* Occlusions ./

« Weirdly shaped sensing regions
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Dynamic Graphs

* In most cases, edges correspond to available sensor or communication
data, 1.e., the edge set is time varying

n3

ni

n4 75

ne
ns

We now have a switched system and spectral properties do not help
for establishing stability

* Need to use Lyapunov functions
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Lyapunov Functions

* @Given a nonlinear system

&= f(x)

« Visa(weak) Lyapunov function 1f
(¢7) V(x) >0, Ve #0

(i5) V(z) = g—‘x/ (x) <0, Vz#0 (L0)

« The system is asymptotically stable if and only if there exists a
Lyapunov function

« [LaSalle’s Invariance Principle] If it has a weak Lyapunov function
the system converges asymptotically to the largest invariant set (/=0)
s.t. the derivative is 0

W Magnus Egerstedt - Aug. 2013



Switched Systems

« Similarly, consider a switched system
= f,(x), o(t)e{l,..., q}

» The system is universally asymptotically stable if it is asymptotically
stable for all switch sequences

« A function V' 1s a common Lyapunov function if it is a Lyapunov
function to all subsystems

oV
V>0 —fi<0, 1=1,...,q
ox

 Theorem [9]: Universal stability if and only if there exists a common
Lyapunov function. (Similar for LaSalle.)
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Switched Networked Systems

e Switched consensus equation

r=—L,x
* Consider the following candidate Lyapunov function

1 .
Viz) = §33Ta:‘, Viz)=a'd = -2’ Lyx

e This is a common (weak) Lyapunov function as long as G i1s
connected for all times

« Using LaSalle’s theorem, we know that in this case, it ends up in the
null-space of the Laplacians
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Switched Consensus

Theorem [2-4]: As long as the graph
stays connected, the consensus equation
drives all agents to the same state value

1 N
i i) = & = o Z z;(0)
1=1
MQQGI' Magnus Egerstedt - Aug. 2013
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Adding Weights

* Sometimes it makes sense to add weights

B =— Y w(llz — ;) (z; — z5)

JEN;

 (ollision avoidance
 Coverage

« Connectivity maintenance

Cortes, Martinez, Bullo
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Weights Through Edge Tensions

* How select appropriate weights? N N
« Let an edge tension be given by £ — Z Z a; jgz.,j(Hxi — )
1=1 7=1
Eiy g I

> ||z; — | i > ||l — x|

A dij
Connectivity Maintenance Formation Control
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Weights Through Edge Tensions

We get

How select appropriate weights? N N
Let an edge tension be given by £ — Z Z a; ;& ](ngz — )

i=1 j=1

6’8i,j

0. w; j(||zi — z5]) (2 — xj)

Gradient descent

o0&

By = = > wij(llwe — x5 ]) (2 — 25)
X, )
JEN;
2
% B 8_5 G 8_5 Energy is non-increasing!
dt  oxr Or (weak Lyapunov function)
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Examples

1
Eij = 5 llwi = zil® = wiy =1
Tj = — Z (xi — ;) Standard, linear consensus!
JEN;
1
Eij = llzi — x| = wy; = [z — ]|
i T
. Li — Ty
€Xr, — — Z ° °
i Z |z — ] Unit vector (biology)
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Examples

1 s — ;|| — dij
Ei= Z(a: — il = d::)? = w.: = J J
¥ 2(“"%7/ ZL‘]H Z]) Wi sz . ZL‘]H
i = — Z (llzi — 25l = dij)(2; — ;) Formation control
P s — ]
o Mm—al® 28w —al
1) T 1) T
A E ] T (A=l = a))?
, 20 — ||z; — z||)(xi —
Ti = — Z ( I ICE i) Connectivity maintenance

(A = [z —z])2
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Coverage Control

Objective: Deploy sensor nodes in a distributed manner such that an
area of interest is covered

bnso[\t. ork Co

OO0
@ OO ™
1OOOO =\
O @Q © " |

e Idea: Divide the resp0n51b11ity between nodes into regions

Georgialnstfiuuie
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Coverage Control

* The coverage cost:
| N
_ A2
TaW) =33 [ o= ald
1=1 g
« Simplify (not optimal):

N
i@ =53 [l al*dg
i=1 7 Vi(@)

where the Voronoi regions are given by

Vi) ={q €D | [l —q| < [lz; —ql[}
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Deployment

e Using a gradient descent (cost = weak Lyapunov function)

2

A

0J d -
— —J —
8267; = dt

@=—/‘(%—®@
Vi(x)

« We only care about directions so this can be re-written as Lloyd’s
Algorithm [1]

0]
ox

Ti =

z; = pi(z) — ;
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Deployment

* Lloyd’s Algorithm:
— Converges to a local minimum to the simplified cost
— Converges to a Central Voronoi Tessellation

— It 1s decentralized
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Graph-Based Control

« In fact, based on variations of the consensus equation, a number of

different multi-agent problems have been “solved”, e.g.

— Formation control (How drive
the collection to a predetermined
configuration? [2,5])

— Coverage control (How produce

triangulations or other regular
structures? [1,6])

* OK - fine. Now what?

* Need to be able to reprogram and redeploy
multi-agent systems (HSI = Human-Swarm

o et
Interactions) s
» This can be achieved through active control -

of so-called leader-nodes

m Magnus Egerstedt - Aug. 2013
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Summary II

« Static Graphs:
» Undirected: Average consensus iff G is connected

» Directed: Consensus iff G contains a spanning, outbranching
tree

» Directed: Average consensus if consensus and G is balanced
e Switching Graphs:
» Undirected: Average consensus if G is connected for all times

» Directed: Consensus if G contains a spanning, outbranching
tree for all times

» Directed: Average consensus if consensus and G is balanced
for all times

« Additional objectives is achieved by adding weights (edge-tension
energies as weak Lyapunov functions)
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SESSION 3
CONTROL OF ROBOT TEAMS
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Leader (Anchor) Nodes

« Key idea: Let some subset of the agents act as control inputs and let
the rest run some cohesion ensuring control protocol

1430 Magnus Egerstedt - Aug. 2013 Georgialnstitute
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A Mood-Picture
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Graph-Based Controllability?

We would like to be able to determine controllability properties of
these systems directly from the graph topology

>

» For this we need to tap into the world of algebraic graph-theory.

« But first, some illustrative examples

Mm Magnus Egerstedt - Aug. 2013 Georgialnstiuie
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Some Examples

Why?
r1 = —(21 —u), T2 = — (2 —u)
Not controllable! £1(0) = 22(0) = z1(t) = xo(t) Yu,t >0

Why? - Same reason!

1 = —(r1 —u) — (x1 — x2)

Ty = —(z2 —u) — (z2 — x1)

r1(0) =22(0) = z1(¥) = x2(t) Vu,t >0

Not controllable!

Why? - Somehow it seems like

Y .
Controllable! some kind of “symmetry” has
been broken.
Mm Magnus Egerstedt - Aug. 2013 Georgialnstitute

off Technelogy



Symmetry? - External Equitable Partitions

e Given a graph o R Cs
G = (V,E) °
| Yo Wo
* Define a partition of the node set into cells Cy
O
m:V —=A{l,...,K}, (Pve,C; & m(v)=75") C
* Let the node-to-cell degree be given by

deg, (v,C) = card({v' €, C | (v,v") € E})
deg (v, C)
e The partition is an equitable partition if fl@ =3
m(v) =7(v)) & deg,(v,0;) = deg, (v, C;), vC;  C
» The partition is an external equitable partition if

m(v) =7(v') & deg,.(v,C;) =deg, (v, C;), VC;, j # w(v)

(it does not matter what edges are inside a cell)

C

Mggsr Magnus Egerstedt - Aug. 2013 Georgialnstiuie
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External Equitable Partitions

: 2 (&

Gtgk-@ ® oo & _pe <N
\/’

trivial EEPs

 An EEP 15 leader-invariant (LEP) if each leader belongs to its own cell

A LEP is maximal if no other LEP with fewer cells exists

1930 Magnus Egerstedt - Aug. 2013 Inetitute
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Controllability?

* From the leaders’ vantage-point, nodes in the same cell “look’ the

same
e Let

T; = _ZjENi(xi — .SCj), v, € Vi
T; = U;, V; € Vi

* Theorem [7,8]: The uncontrollable part is asymptotically stable (if the
graph is connected). It 1s moreover given (in part) by the difference

between agents inside the same cell in the maximal LEP.

« Corollary: The system is completely controllable only if the only
LEP is the trivial EEP

Magnus Egerstedt - Aug. 2013
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Uncontrollable Part

i
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Quotient Graphs

 To understand the controllable subspace, we need the notion of a
quotient graph:
— Identify the vertices with the cells in the partition (maximal LEP)
— Let the edges be weighted and directed in-between cells

* What is the dynamics over the quotient graph?

Mgg'sr Magnus Egerstedt - Aug. 2013 Georgialnstiuie
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Quotient Graphs = Controllable Subspace

Original system:

IR jji:_ZjeNi(xi_xj)a vi € Vi
159 .
T, = u;, v; €V

Quotient graph dynamics:

3, - 5@ = = cheNi - degW(C’j,C@-)(& — fj)a m(v) =1, vE Vp
2 . . ’ .
& =uy, m(v) =1, ve Vg

Theorem [8]:

1930 Magnus Egerstedt - Aug. 2013 Inetitute
Robotics 5T gnus Eg :



Graph-Based Controllability

« So what have we found?

1. The system is completely controllable only if the only LEP is
the trivial LEP

2. The controllable subspace has a graph-theoretic interpretation in
terms of the quotient graph of the maximal LEP

3.  The uncontrollable part decays asymptotically (all states
become the same inside cells)

4. Why bother with the full graph when all we have control over is
the quotient graph? (= smaller system!)

« Now, let’s put it to use!

MQQGT Magnus Egerstedt - Aug. 2013 Georgialnstiuie
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General Control Problems

« Controllability = We can solve general control problems for leader-
based robot networks

i @Gr Magnus Egerstedt - Aug. 2013 Georgialnstituie
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Stationary Leaders as Anchors

eEH
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Containment Control

Mﬁg’sr Magnus Egerstedt - Aug. 2013

Georgialnstiiute
off Technelogy



Epidemic Programming

Given a scalar state of each agent whose value determines what
“program” the node should be running

A

Program 4

A

Program 3

A

Program 2

A

Program 1

By controlling this state, new tasks can be spread through the network

But, we do not want to control individual nodes — rather we want to
specify what each node “type” should be doing

Idea: Produce sub-networks that give the desired LEPs and then
control the system that way
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Epidemic Programming

original network  “blue” subnetwork “green” subnetwork

Execute program

Quotient graph dynamics g - g Reconfigure(gnew)
- Set task(7,T)
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Epidemic Programming

original network  “blue” subnetwork “green” subnetwork

> (> -

*  @Given a complete graph and a desired grouping of nodes into cells,
produce a maximal LEP for exactly those cells using the fewest
possible edges. (Answer is surprisingly enough not a combinatorial
explosion...)
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Epidemic Programming
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Summary 111

* By introducing leader-nodes, the network can be “reprogrammed” to
perform multiple tasks such as move between different spatial
domains

* Controllability based on graph-theoretic properties was introduced
through external equitable partitions
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SESSION 4
SENSOR NETWORKS

W Magnus Egerstedt - Aug. 2013




Introduction

* Sensor networks are becoming an important component in
cyber-physical systems:
— smart buildings
— unmanned reconnaissance

~
€
N

« Limited power capacity requires algorithms that can
maintain area coverage and limit power consumption.

Mm Magnus Egerstedt - Aug. 2013 Georgialnstiuie

off Technology



Node Models

Consider a network of N sensors, with the following characteristics:

p; € R2 < position

n; € N, < power level
S; C R2 < sensor footprint

For example — standard disk model S
S;={z € R* | [lx —psl| < A} P

Question: What is the connection between
power level and performance?

<O
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Node Models

A sensor can either be awake or asleep

0 = sensor off

1 = Sensor on
O‘ p—

Power usage

ﬁ:fpow(n,g), c=0 = n=0

Sensor footprint

S=Sp,n,o), o=0= 5S=0

Mobility Node-level control variables

p — f’mob(p7 1, U)
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Node Models

» The available power levels affect the performance of the sensor
nodes

» Sensor footprint — RF or radar-based sensors
— Decreasing power levels leads to shrinking footprints
* Frame rates — vision based sensors

« Latency issues across the communications network

No processor
time!

\
\
\}

. : Event!

\

)

Sleeping! @ Failure to deliver

information to users!
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Coverage Problems
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Coverage Problems

* (Given a domain M. Complete coverage is achieved 1f

N
McC| S+

1=1

« Areas are easier to manipulate than sets, and effective area coverage
is achieved if

N
m < USz' < Geou(S) >0 -
1=1

» Instead one can see whether or not events are detected with sufficient
even detection probability

N
p < prob | event € U Si | «
i=1
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Coverage/Life-Time Problems

 Now we can formulate the general life-time problem as

max T such that G.,,(S(T)) >0, Vit <T

«  We will address this for some versions of the problem
— Node-based, deterministic

— Ensemble-based, stochastic
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Radial Sensor Model

Assume an 1sotropic RF transmission model for each sensor:

P Transmission
trans €«———

Power Srecvy =
we 7 Arr2 power

density  _.---.. )

« Sensor-i g’

: @' ri . ..sets the maximum

' : sensing radius

. o5 \Desired receiving
S . L’ TECV

power density
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Radial Sensor Model

e Area covered by sensor is given by:

P
it = g
TEecCv

* But, sensor-1’s transmitted power depends on its current power level:

Ptra,ns — O0471);

* Footprint:

Ol
‘ (n“ Z)‘ Z( ) 4Srecv§
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Problem Formulation

Our goal 1s effective area coverage, 1.e.,
N
s

i=1

Assume sensor footprints do not intersect, then:
N N n
(almost)
U Si| = Z 15i| = Zami
=1 1=1 1=1

Coverage constraint:

Geon(S(1)) = Z%(t)m(t) —m

m <

>0
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Optimal Control

Let

t=[m,....,nn]", uw=diag(oi,...,on)

« Aggregate dynamics
B(t) = —yu(t)z(t)

Problem: Find gain signals that solve

s T N
1
min J (u, 7, ) = / > (@7 @a(t) ~ M) +u” () Rur)) dt
\. to y
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Optimal Control

Hamiltonian:

H(u,z,t) = —ul ()A(t)z(t) + % (u(®)" z(t) — M)2 + %u(t)TRu(t)

Where A(t) = diag(A;(t))represents the co-states
satisfying the backward differential equation:

At) = A@)u(t) — (u(@t)Tz(t) — M) u(t), \T) =0

Optimal gain signals:
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Conlrol Tnpul vs Time
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Radial coverage ol Lhe sensors
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Issues

Maybe not the right problem:
— No on/off (relaxation)
— No life-time maximization
What we do know about the “right” problem
— Only switch exactly when the minimum level is reached
— Knapsack++

Maybe we can do better if we allow for randomness in the model?
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The Setup

* Given a decaying sensor network we want to find a
scheduling scheme that maintains a desired network
performance throughout the lifetime of the network.

* The desired network performance 1s the minimum
satisfactory probability of an event being detected.

e Lifetime of the sensor network 1s the maximal time
beyond which the desired network performance cannot be
achieved.

* We assume that the sensor nodes are “dropped” over an
area.
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Spatial Poisson Processes

* We assume that the sensor nodes are dropped according to a spatial
Poisson point process:

. : : 0 T ee, T e T T Tele T e T j j Y
1.The number of points in any o e AL TR e
subset X of D, n(X), are O AL R
. . . . e ..’ .. "o 0...: u.: - *
Poisson distributed with T R
intensity A||X||, where A is the s e TR T iadn e
intensity per unit area. L o ' LA oy ::.:;,.- |
4t e . .:.. : . .::.':. .. ; .\ ¥
11.The number of points in any 3, . RS Lyt
finite number of disjoint subsets 2. . s BT T
of D are independent random RTINS EE DO I S
variables. O F 34 5 67 % 9.' 0

P(n sensors in area A) =
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System Model

» All sensors are identical i.e., they have same

— Initial power and power decay rate

10

. eqe, . 0' 'U('): ° . e, o .+ off Sensors
— Sensing capabilities O e o o e
. . 8la 2. . Br(xe)
» All sensors have circular footprint PR o e
> . 0’ o . ‘.'O
. — . | R Lt ot 6.30,:..',,.'?0_
S’L I Br (p’l/) 6 .. OO..OO..G"O. ..O . o:.. . Q ol
5 e® o ° . °

L8) O:
— An event at location x, 1s detected if %"
Te € BT(pZ) Z P oo W 9ne O‘O; % ’%

« To conserve power, sensors are switched between on state and off

state
— Power 1s consumed only when a sensor 1s on: 7); = —7YQq;1);
Prob that sensor is on at time t
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Event Detection Probability

« Consider a non-persistent event

— An event 1s non-persistent if it does not leave a mark in the
environment and can only be detected when it occurs.

e Theorems:

— Probability of an event going undetected by a non-decaying
sensor network 1s

B 2
Pu:e AT q

— Probability of an event going undetected by a decaying sensor

network 1s
2
“Aee—7 J§ a(s)ds r (t) o n(t
P, —e Ace q(t) A(t) :7T7“(t _ _7f q(s)ds
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Controlling Duty Cycles

*  We need a controller of the form

q(t) = u(?)

to maintain a constant P, (as long as possible)

()

AC

 Controller:

« Life time: . \
C
T=— ~1
vy 1
In (= 5
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Simulation Results

* A Monte — Carlo simulation of the network is performed

e Ina (10 x 10) unit rectangular region sensors are deployed according
to a spatial stationary Poisson point process with intensity A = 10,

 Different scenarios (non — decaying network, decaying network,
decaying network with scheduling scheme) are simulated with the
following parameters

— A (intensity per unit area) = 10
— v (power decay rate) = 1
— P, (desired probability of event detection) = 0.63
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Non-Decaying Footprints
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Decaying Footprints Without Feedback
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Event detection probability P, vs time ¢ for decaying networks with
q=0.1 and decay rate y = 1
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Decaying Footprints With Feedback
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Issues

* We may still not have the right problem:

— No on/off cost

— No consideration of the decreasing communications capabilities
*  What we do know about the hard problem

— Rendezvous with shrinking footprints while maintaining

connectivity?
* Big question: Mobility vs. Sensing vs. Communications vs.
Computation???
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Summary IV

* By introducing power considerations into the formulation of the
coverage problem, a new set of issues arise

« Life-time problems

« Shrinking footprints

* Ensemble vs. node-level design

* Big question: Mobility vs. Sensing vs. Communications vs.

Computation???
Mggsr Magnus Egerstedt - Aug. 2013 Georgialnstiuie

off Technelogy



Conclusions

» The graph is a useful and natural abstraction of the interactions
in networked control systems

* By introducing leader-nodes, the network can be
“reprogrammed” to perform multiple tasks such as move
between different spatial domains

« Controllability based on graph-theoretic properties was
introduced through external equitable partitions

» Life-time problems in sensor networks
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