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A Mood Picture 
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Ruining the Mood… 
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Application Domains 

Sensor and 
communications networks Multi-agent robotics 

Coordinated control Biological networks 
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The Mandatory Bio-Slide 

•  As sensor webs, large-scale robot teams, and networked embedded 
devices emerge, algorithms are needed for inter-connected systems 
with limited communication, computation, and sensing capabilities 

•  How to effectively control such systems? 
–  What is the correct model? 
–  What is the correct mode of interaction? 
–  Does every individual matter? 



The Starting Point 
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SESSION 1  
GRAPH-BASED CONTROL 
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Why I Started Caring About Multi-Agent Systems 

? 
“They look like ants.”  
– Stephen Pratt, Arizona State University  
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Graphs as Network Abstractions 
•  A networked sensing and actuation system consists of  

–  NODES - physical entities with limited resources (computation, 
communication, perception, control) 

–  EDGES - virtual entities that encode the flow of information between 
the nodes 

•  The “right” mathematical object for characterizing such systems at the 
network-level is a GRAPH 
–  Purely combinatorial object (no geometry or dynamics) 
–  The characteristics of the information flow is abstracted away through 

the (possibly weighted and directed) edges 
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Graphs as Network Abstractions 

•  The connection between the combinatorial graphs and the geometry 
of the system can for instance be made through geometrically defined 
edges. 

•  Examples of such proximity graphs include disk-graphs, Delaunay 
graphs, visibility graphs, and Gabriel graphs [1].  
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The Basic Setup 

•        =  “state” at node i at time k 
•          = “neighbors” to agent i 

•  Information “available to agent i 

•  Update rule: 

•  How pick the update rule? 

common ref. frame (comms.) 

relative info.  (sensing) 

discrete time 

continuous time 
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Rendezvous – A Canonical Problem 

•  Given a collection of mobile agents who can only measure the relative 
displacement of their neighbors (no global coordinates) 

•  Problem: Have all the agents meet at the same (unspecified) position 

•  If there are only two agents, it makes sense to have them drive 
towards each other, i.e. 

•  If                 they should meet halfway 

This is what agent i can measure 
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Rendezvous – A Canonical Problem 

•  If there are more than two agents, they should probably aim towards 
the centroid of their neighbors (or something similar) 

Fact [2-4]: As long as the graph is 
connected (iff), the consensus equation 
drives all agents to the same state value 
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Algebraic Graph Theory 
•  To show this, we need some tools… 
•  Algebraic graph theory provides a bridge between the combinatorial 

graph objects and their matrix representations 
–  Degree matrix: 

–  Adjacency matrix: 

–  Incidence matrix (directed graphs): 

–  Graph Laplacian: 
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Algebraic Graph Theory - Example 



Magnus Egerstedt - Aug. 2013 

Algebraic Graph Theory - Example 



Magnus Egerstedt - Aug. 2013 

The Consensus Equation 
•  The reason why the graph Laplacian is so important is through the 

already seen “consensus equation” 

 or equivalently (W.L.O.G. scalar agents) 

•  This is an autonomous LTI system whose convergence properties 
depend purely on the spectral properties of the Laplacian. 
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Graph Laplacians: Useful Properties 

–  It is orientation independent 
–  It is symmetric and positive semi-definite 
–  If the graph is connected then 
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Stability - Basics 

•  The stability properties (what happens as time goes to infinity?) of a 
linear, time-invariant system is completely determined by the 
eigenvalues of the system matrix 

•  Eigenvalues 

•  Asymptotic stability: 
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Stability - Basics 
•  Unstable: 

•  Critically stable: 

This is the case for the 
consensus equation 
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Static Consensus 

•  If the graph is static and connected, under the consensus equation, the 
states will reach null(L) 

•  Fact (again): 

•  So all the agents state values will end up at the same value, i.e. the 
consensus/rendezvous problem is solved! 
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Formation Control 
•  Being able to reach consensus goes beyond solving the rendezvous 

problem. 
•  Formation control: 

•  But, formation achieved if the agents are in any translated version of 
the targets, i.e., 

•  Enter the consensus equation [5]: 

agent positions target positions 
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Formation Control 
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Convergence Rates 
•  The second smallest eigenvalue of the graph Laplacian is really 

important! 
•  Algebraic Connectivity (= 0 if and only if graph is disconnected) 
•  Fiedler Value (robustness measure) 
•  Convergence Rate: 

•  Punch-line: The more connected the network is, the faster it 
converges (and the more information needs to be shuffled through the 
network) 

•  Complete graph: 
•  Star graph: 
•  Path graph: 
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Cheeger’s Inequality 

(measures how many edges need to be 
cut to make the two subsets disconnected 
as compared to the number of nodes that 
are lost) 

isoperimetric number: 

(measures the robustness of the graph) 
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Beyond Static Consensus 

•  So far, the consensus equation will drive the node states to the same 
value if the graph is static and connected. 

•  But, this is clearly not the case in a number of situations: 
–  Edges = communication links  

•  Random failures 
•  Dependence on the position (shadowing,…) 
•  Interference 
•  Bandwidth issues 

–  Edges = sensing  
•  Range-limited sensors 
•  Occlusions 
•  Weirdly shaped sensing regions 



Summary I 

•  Graphs are natural abstractions (combinatorics instead of geometry) 
•  Consensus problem (and equation) 
•  Static Graphs: 

•  Undirected: Average consensus iff G is connected 
•  Need richer network models! 
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SESSION 2  
MULTI-AGENT NETWORKS 



Variations on the Theme: Directed Graphs 

•  Instead of connectivity, we need directed notions: 
–  Strong connectivity = there exists a directed path between any two 

nodes 
–  Weak connectivity = the disoriented graph is connected 

•  Directed consensus: 
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Strongly connected Weakly connected 



Directed Consensus 

•  Undirected case: Graph is connected = sufficient information is 
flowing through the network 

•  Clearly, in the directed case, if the graph is strongly connected, we 
have the same result 

•  Theorem: If G is strongly connected, the consensus equation achieves 

•  This is an unnecessarily strong condition! Unfortunately, weak 
connectivity is too weak. 
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Rooted Outbranching Trees 

•  Consider the following structure 

•  Seems like all agents should end up at the root node 

•  Theorem [2]: Consensus in a directed network is achieved if and only 
if G contains a spanning rooted outbranching tree (ROT). 
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Where Do the Agents End Up? 

•  Recall: Undirected case 

•  How show that? 
•  The centroid is invariant under the consensus equation 

•  And since the agents end up at the same location, they must end up at 
the static centroid (average consensus). 
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Where Do the Agents End Up? 
•  When is the centroid invariant in the directed case? 

•  w is invariant under the consensus equation 
•  The centroid is given by 

 which thus is invariant if 

•  Def: G is balanced if  

•  Theorem [2]: If G is balanced and consensus is achieved then average 
consensus is achieved!  
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Example 
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No ROT – Consensus is not achieved  

ROT but not balanced – Consensus but 
not average consensus is achieved  

ROT and balanced – Average consensus 
is achieved  
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Beyond Static Consensus 

•  So far, the consensus equation will drive the node states to the same 
value if the graph is static and connected. 

•  But, this is clearly not the case in a number of situations: 
–  Edges = communication links  

•  Random failures 
•  Dependence on the position (shadowing,…) 
•  Interference 
•  Bandwidth issues 

–  Edges = sensing  
•  Range-limited sensors 
•  Occlusions 
•  Weirdly shaped sensing regions 



Dynamic Graphs 

•  In most cases, edges correspond to available sensor or communication 
data, i.e., the edge set is time varying 

•  We now have a switched system and spectral properties do not help 
for establishing stability 

•  Need to use Lyapunov functions 
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Lyapunov Functions 

•  Given a nonlinear system 

•  V is a (weak) Lyapunov function if 

•  The system is asymptotically stable if and only if there exists a 
Lyapunov function 

•  [LaSalle’s Invariance Principle] If it has a weak Lyapunov function 
the system converges asymptotically to the largest invariant set (f=0) 
s.t. the derivative is 0 
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Switched Systems 

•  Similarly, consider a switched system 

•  The system is universally asymptotically stable if it is asymptotically 
stable for all switch sequences 

•  A function V is a common Lyapunov function if it is a Lyapunov 
function to all subsystems 

•  Theorem [9]: Universal stability if and only if there exists a common 
Lyapunov function. (Similar for LaSalle.) 
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Switched Networked Systems 

•  Switched consensus equation 

•  Consider the following candidate Lyapunov function 

•  This is a common (weak) Lyapunov function as long as G is 
connected for all times 

•  Using LaSalle’s theorem, we know that in this case, it ends up in the 
null-space of the Laplacians 
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Switched Consensus 

Theorem [2-4]: As long as the graph 
stays connected, the consensus equation 
drives all agents to the same state value 



Adding Weights 

•  Sometimes it makes sense to add weights 

•  Collision avoidance 
•  Coverage 
•  Connectivity maintenance 
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Cortes, Martinez, Bullo 



Weights Through Edge Tensions 

•  How select appropriate weights? 
•  Let an edge tension be given by 
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Connectivity Maintenance Formation Control 



Weights Through Edge Tensions 

•  How select appropriate weights? 
•  Let an edge tension be given by 

•  We get 

•  Gradient descent 
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Energy is non-increasing!  
(weak Lyapunov function) 



Examples 
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Standard, linear consensus! 

Unit vector (biology) 



Examples 
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Formation control 

Connectivity maintenance 



Coverage Control 

•  Objective: Deploy sensor nodes in a distributed manner such that an 
area of interest is covered  

•  Idea: Divide the responsibility between nodes into regions 
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Coverage Control 

•  The coverage cost: 

•  Simplify (not optimal): 

 where the Voronoi regions are given by 
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Deployment 

•  Using a gradient descent (cost = weak Lyapunov function) 

•  We only care about directions so this can be re-written as Lloyd’s 
Algorithm [1] 
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Deployment 

•  Lloyd’s Algorithm: 
–  Converges to a local minimum to the simplified cost 
–  Converges to a Central Voronoi Tessellation  
–  It is decentralized 
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Graph-Based Control 

•  In fact, based on variations of the consensus equation, a number of 
different multi-agent problems have been “solved”, e.g. 
–  Formation control (How drive                                                                 

the collection to a predetermined                                                 
configuration? [2,5]) 

–  Coverage control (How produce                                                 
triangulations or other regular                                                          
structures? [1,6]) 

–    
•  OK – fine. Now what? 
•  Need to be able to reprogram and redeploy                                           

multi-agent systems (HSI = Human-Swarm                                         
Interactions) 

•  This can be achieved through active control                                         
of so-called leader-nodes 



Summary II 

•  Static Graphs: 
•  Undirected: Average consensus iff G is connected 
•  Directed: Consensus iff G contains a spanning, outbranching 

tree 
•  Directed: Average consensus if consensus and G is balanced 

•  Switching Graphs: 
•  Undirected: Average consensus if G is connected for all times 
•  Directed: Consensus if G contains a spanning, outbranching 

tree for all times 
•  Directed: Average consensus if consensus and G is balanced 

for all times 
•  Additional objectives is achieved by adding weights (edge-tension 

energies as weak Lyapunov functions) 
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SESSION 3  
CONTROL OF ROBOT TEAMS 
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Leader (Anchor) Nodes 

•  Key idea: Let some subset of the agents act as control inputs and let 
the rest run some cohesion ensuring control protocol  
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A Mood-Picture 
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Graph-Based Controllability? 

•  We would like to be able to determine controllability properties of 
these systems directly from the graph topology 

•  For this we need to tap into the world of algebraic graph-theory. 
•  But first, some illustrative examples 
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Some Examples 

Not controllable!  

Why? 

Not controllable!  

 - Same reason! 

Controllable!  
          - Somehow it seems like 
some kind of  “symmetry” has 
been broken.  

Why? 

Why? 
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Symmetry? - External Equitable Partitions 

•  Given a graph 

•  Define a partition of the node set into cells 

•  Let the node-to-cell degree be given by 

•  The partition is an equitable partition if 

•  The partition is an external equitable partition if 

 (it does not matter what edges are inside a cell) 
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External Equitable Partitions 

•  An EEP is leader-invariant (LEP) if each leader belongs to its own cell 

•  A LEP is maximal if no other LEP with fewer cells exists 

trivial EEPs 
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Controllability? 
•  From the leaders’ vantage-point, nodes in the same cell “look” the 

same 
•  Let 

•  Theorem [7,8]: The uncontrollable part is asymptotically stable (if the 
graph is connected). It is moreover given (in part) by the difference 
between agents inside the same cell in the maximal LEP. 

•  Corollary: The system is completely controllable only if the only 
LEP is the trivial EEP 
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Uncontrollable Part 
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Quotient Graphs 

•  To understand the controllable subspace, we need the notion of a 
quotient graph: 
–  Identify the vertices with the cells in the partition (maximal LEP) 
–  Let the edges be weighted and directed in-between cells 

•  What is the dynamics over the quotient graph? 
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Quotient Graphs = Controllable Subspace 
•  Original system: 

•  Quotient graph dynamics: 

•  Theorem [8]:  
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Graph-Based Controllability 
•  So what have we found? 

1.  The system is completely controllable only if the only LEP is 
the trivial LEP 

2.  The controllable subspace has a graph-theoretic interpretation in 
terms of the quotient graph of the maximal LEP 

3.  The uncontrollable part decays asymptotically (all states 
become the same inside cells) 

4.  Why bother with the full graph when all we have control over is 
the quotient graph? (= smaller system!) 

•  Now, let’s put it to use! 
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General Control Problems 

•  Controllability = We can solve general control problems for leader-
based robot networks and hope that solutions exist 

•  Sometimes they will and sometimes they wont 
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Stationary Leaders as Anchors 
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Containment Control 
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Epidemic Programming 
•  Given a scalar state of each agent whose value determines what 

“program” the node should be running 

•  By controlling this state, new tasks can be spread through the network 
•  But, we do not want to control individual nodes – rather we want to 

specify what each node “type” should be doing 
•  Idea: Produce sub-networks that give the desired LEPs and then 

control the system that way 

Program 1 

Program 2 

Program 3 

Program 4 
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Epidemic Programming 
original network “blue” subnetwork “green” subnetwork 

Quotient graph dynamics 

Execute program 
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Epidemic Programming 
original network “blue” subnetwork “green” subnetwork 

•  Given a complete graph and a desired grouping of nodes into cells, 
produce a maximal LEP for exactly those cells using the fewest 
possible edges. (Answer is surprisingly enough not a combinatorial 
explosion…)  
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Epidemic Programming 
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Heterogeneous Networks 



Summary III 
•  By introducing leader-nodes, the network can be “reprogrammed” to 

perform multiple tasks such as move between different spatial 
domains 

•  Controllability based on graph-theoretic properties was introduced 
through external equitable partitions 
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SESSION 4  
SENSOR NETWORKS 



Introduction 

•  Sensor networks are becoming an important component in 
cyber-physical systems: 
–  smart buildings 
–  unmanned reconnaissance 

•  Limited power capacity requires algorithms that can 
maintain area coverage and limit power consumption. 
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Node Models 

•  Consider a network of N sensors, with the following characteristics: 

•  For example – standard disk model 

•  Question: What is the connection between                                         
power level and performance? 
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position 

power level 

sensor footprint 



•  A sensor can either be awake or asleep 

•  Power usage 

•  Sensor footprint 

•  Mobility 
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Node Models 

sensor on 
sensor off 

Node-level control variables 



•  The available power levels affect the performance of the sensor 
nodes 

•  Sensor footprint – RF or radar-based sensors 
–  Decreasing power levels leads to shrinking footprints 

•  Frame rates – vision based sensors 
•  Latency issues across the communications network 
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Node Models 
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Coverage Problems 



•  Given a domain M. Complete coverage is achieved if 

•  Areas are easier to manipulate than sets, and effective area coverage 
is achieved if 

•  Instead one can see whether or not events are detected with sufficient 
even detection probability 
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Coverage Problems 



•  Now we can formulate the general life-time problem as 

•  We will address this for some versions of the problem 
–  Node-based, deterministic 
–  Ensemble-based, stochastic 
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Coverage/Life-Time Problems 



•  Assume an isotropic RF transmission model for each sensor: 
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Radial Sensor Model 



•  Area covered by sensor is given by: 

•  But, sensor-i’s transmitted power depends on its current power level: 

•  Footprint: 
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Radial Sensor Model 



Problem Formulation 

•  Our goal is effective area coverage, i.e., 

•  Assume sensor footprints do not intersect, then: 

•  Coverage constraint: 
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(almost) 



Optimal Control 

•  Let  

•  Aggregate dynamics 

•  Problem: Find gain signals that solve 
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Optimal Control 
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Issues 

•  Maybe not the right problem: 
–  No on/off (relaxation) 
–  No life-time maximization 

•  What we do know about the “right” problem 
–  Only switch exactly when the minimum level is reached 
–  Knapsack++ 

•  Maybe we can do better if we allow for randomness in the model? 
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The Setup 

•  Given a decaying sensor network we want to find a 
scheduling scheme that maintains a desired network 
performance throughout the lifetime of the network.  

•  The desired network performance is the minimum 
satisfactory probability of an event being detected.  

•  Lifetime of the sensor network is the maximal time 
beyond which the desired network performance cannot be 
achieved. 

•  We assume that the sensor nodes are “dropped” over an 
area. 
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•  We assume that the sensor nodes are dropped according to a spatial 
Poisson point process:  

Spatial Poisson Processes 
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i. The number of points in any 
subset  X of  D , n(X),  are 
Poisson distributed with 
intensity λ||X||, where λ is the 
intensity per unit area.  

ii. The number of points in any 
finite number of disjoint subsets 
of D are independent random 
variables.  



System Model 
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Prob that sensor is on at time t 

•  All sensors are identical i.e., they have same 
–  Initial power and power decay rate 
–  Sensing capabilities 

•  All sensors have circular footprint 

–  An event at location xe is detected if 
   

•  To conserve power, sensors are switched between on state and off 
state  
–  Power is consumed only when a sensor is on: 



Event Detection Probability 
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Controlling Duty Cycles 

•  We need a controller of the form 

 to maintain a constant Pd (as long as possible)  
•  Controller: 

•  Life time: 
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Simulation Results 

•  A Monte – Carlo simulation of the network is performed 
•  In a (10 x 10) unit rectangular region sensors are deployed according 

to a spatial stationary Poisson point process with intensity λ = 10.  
•  Different scenarios (non – decaying network, decaying network, 

decaying network with scheduling scheme) are simulated with the 
following parameters 
–  λ (intensity per unit area) = 10 
–  γ (power decay rate) = 1 
–  Pd (desired probability of event detection) = 0.63 
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Non-Decaying Footprints 

Event detection probability Pd vs time t for non-decaying networks 
with q = 0.1. 
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Decaying Footprints Without Feedback 

Event detection probability Pd vs time t for decaying networks with 
q = 0.1 and decay rate γ = 1 
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Probability of sensor being on q vs time t 
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Decaying Footprints With Feedback 
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Decaying Footprints With Feedback 

Event detection probability Pd vs time t for decaying networks with 
given Pd = 0.63; with scheduling scheme (solid line) and without 
scheduling scheme (dashed line) 
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Issues 

•  We may still not have the right problem: 
–  No on/off cost 
–  No consideration of the decreasing communications capabilities  

•  What we do know about the hard problem 
–  Rendezvous with shrinking footprints while maintaining 

connectivity? 
•  Big question: Mobility vs. Sensing vs. Communications vs. 

Computation??? 
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Summary IV 
•  By introducing power considerations into the formulation of the 

coverage problem, a new set of issues arise 
•  Life-time problems 
•  Shrinking footprints 
•  Ensemble vs. node-level design 
•  Big question: Mobility vs. Sensing vs. Communications vs. 

Computation??? 
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Conclusions 

•  The graph is a useful and natural abstraction of the interactions 
in networked control systems 

•  By introducing leader-nodes, the network can be 
“reprogrammed” to perform multiple tasks such as move 
between different spatial domains 

•  Controllability based on graph-theoretic properties was 
introduced through external equitable partitions 

•  Life-time problems in sensor networks 
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THANK YOU!  


