Correction to the derivation of the LS classifier

Thomas Schön

January 30, 2013

Given $\left\{t_{n}, x_{n}\right\}_{n=1}^{N}$ as training data, the likelihood is

$$
\begin{equation*}
p\left(t_{1: N} ; \widetilde{w}, \widetilde{x}_{1: N}\right)=\prod_{n=1}^{N} \mathcal{N}\left(t_{n} ; \widetilde{w}^{T} \widetilde{x}_{n}, I\right) \tag{1}
\end{equation*}
$$

Rather than maximizing the likelihood we will consider the equivalent problem of minimizing the negative log-likelihood, where

$$
\begin{align*}
-\log p\left(t_{1: N} ; \widetilde{w}, \widetilde{x}_{1: N}\right) & \propto \frac{1}{2} \sum_{n=1}^{N}\left(t_{n}-\widetilde{w}_{n}^{T} \widetilde{x}_{n}\right)^{T}\left(t_{n}-\widetilde{w}_{n}^{T} \widetilde{x}_{n}\right) \\
& =\frac{1}{2} \sum_{n=1}^{N}\left(t_{n}^{T}-\widetilde{x}_{n}^{T} \widetilde{w}_{n}\right)\left(t_{n}^{T}-\widetilde{x}_{n}^{T} \widetilde{w}_{n}\right)^{T} \tag{2}
\end{align*}
$$

Introducing the matrices

$$
T=\left(\begin{array}{c}
t_{1}^{T} \tag{3}\\
t_{2}^{T} \\
\vdots \\
t_{N}^{T}
\end{array}\right) \in \mathbb{R}^{N \times K}, \quad \widetilde{X}=\left(\begin{array}{c}
\widetilde{x}_{1}^{T} \\
\widetilde{x}_{2}^{T} \\
\vdots \\
\widetilde{x}_{N}^{T}
\end{array}\right) \in \mathbb{R}^{N \times(D+1)}
$$

we can now write (2) according to

$$
\begin{align*}
-\log p\left(t_{1: N} ; \widetilde{w}, \widetilde{x}_{1: N}\right) & \propto \frac{1}{2} \operatorname{Tr}(T-\widetilde{X} \widetilde{W})(T-\widetilde{X} \widetilde{W})^{T} \\
& =\frac{1}{2} \operatorname{Tr}(T-\widetilde{X} \widetilde{W})^{T}(T-\widetilde{X} \widetilde{W}) \tag{4}
\end{align*}
$$

where we made use of the fact $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$ in order to establish the last equality.

