

T. Schön

LINKÖPINGS LINIVERSITET

Time for projects!

5(19)

The AdaBoost algorithm

LINKÖPINGS UNIVERSITET

AdaBoost example 1 – face detection (II/III)

AdaBoost example 1 – face detection (III/III) 13(19)

16(19)

Probabilistic graphical models – basic facts (I/II) 17(1

A graph $\mathcal{G} = (\mathcal{V}, \mathcal{L})$ consists of

- 1. a set of **nodes** \mathcal{V} (a.k.a. vertices) representing the random variables and
- 2. a set of links \mathcal{L} (a.k.a. edges or arcs) containing elements $(i, j) \in \mathcal{L}$ connecting a pair of nodes $(i, j) \in \mathcal{V}$.

The links describes the probabilistic relations between the random variables (nodes).

Probabilistic graphical model representations,

- 1. **Bayesian networks** represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG).
- 2. Markov random fields represents a set of random variables having a Markov property by an undirected graph.

Machine Learning	
T. Schön	

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

AUTOMATIC CONTROL

REGLERTEKNIK

A few concepts to summarize lecture 8

19(19)

Weak classifier: (a.k.a. base classifier) A classifier that is just slightly better than random guessing.

Boosting: Trains a sequence of M weak classifiers (models), where the error function used to train a certain model depends on the performance of the previous weak classifiers. All weak learners are then combined to a final strong classifier.

Probabilistic graphical model: Offers a compact way of encoding the conditional dependency structure of a set of random variables.

Bayesian network: A probabilistic graphical model that represents a set of random variables and their conditional dependencies via a directed acyclic graph (DAG).

Markov random field: A probabilistic graphical model that represents a set of random variables having a Markov property by an undirected graph.

Define

$$\mathcal{P}(j) \triangleq \{i \in \mathcal{V} \mid (i,j) \in \mathcal{E}\}$$

denoting the set of parents to node *j*.

The directed graph describes how the joint distribution p(x) factors into a product of factors $p(x_i | x_{\mathcal{P}(i)})$ only depending on a subset of the variables,

$$p(x_{\mathcal{V}}) = \prod_{i \in \mathcal{V}} p(x_i \mid x_{\mathcal{P}(i)}),$$

where x_A denotes the set $\{x_i \mid i \in A\}$.

Hence, node's value conditioned on its parents is independent of all other ancestors.

Machine Learning T. Schön AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET