From Volterra series through block-oriented approach to Volterra series

Pawel Wachel and Przemyslaw Sliwinski

Department of Control Systems and Mechatronics Wroclaw University of Technology

European Research Network on System Identification (ERNSI) Varberg 2015

P. Wachel, P. Sliwinski

Outline

- Introduction Volterra series and block oriented models
- Nonparametric kernel methods basic concepts
- Nonparametric kernel regression in application to system identification
- Mixed (parametric–nonparametric) system identification
- Aggregative modeling dictionary approach
- Application of aggregative approach to Volterra series modeling of LNL system

Volterra vs. block-oriented approach

Classic Volterra approach

Block-oriented "alternatives"

General block-oriented identification setup

Input signal

i.i.d. random sequence

Nonlinearity

Nonparametric prior knowledge

Dynamic subsystem(s)

Asymptotic stability assumed

Nonparametric kernel density estimation

• Let us consider the following estimation problem: Given the set of *i.i.d.* measurements

 U_1, U_2, \ldots, U_N

with the **unknown** probability density function $f_U(\cdot)$

find (estimate) $f_U(\cdot)$ in some point u from the set $U_1, U_2, ..., U_N$

Nonparametric kernel density estimation

• The main idea behind the considered estimate is based on the observation that for any *u* and relatively small constant *h*:

Nonparametric kernel density estimation

• Let now $K(\cdot)$ be a box kernel function of the form

$$K(v) = \begin{cases} 1 & \text{for} & v \in \left\langle -\frac{1}{2}; \frac{1}{2} \right\rangle \\ 0 & \text{for} & v \notin \left\langle -\frac{1}{2}; \frac{1}{2} \right\rangle \end{cases}$$

How the kernel works?

Nonparametric density estimation

• Using the kernel function we obtain further

Nonparametric density estimation

• Finally, on the basis of

$$f_U(u) \approx \frac{1}{h} E\left\{K\left(\frac{U_1-u}{h}\right)\right\}$$

we obtain the following Kernel Density Estimate (Rosenblatt, Parzen)

$$\hat{f}_U(u) = \frac{1}{Nh} \sum_{i=1}^N K\left(\frac{U_i - u}{h}\right)$$

(which is a sum of scaled and translated kernel functions)

Nonparametric kernel identification

• Consider a static nonlinear system described by the formula

Nonparametric kernel identification

Consider the following local least squares quality function

$$ilde{Q}(c;u) = \sum_{i=1}^{N} [Y_i - c]^2 K \Big(rac{U_i - u}{h} \Big)$$

• Goal: find c_0 such that $c_0 = \operatorname{argmin}_{c \in \mathbb{R}} \widetilde{Q}(c; u)$

Nonparametric kernel identification

$$ilde{Q}(c;u) = \sum_{i=1}^{N} [Y_i - c]^2 K\Big(rac{U_i - u}{h}\Big)$$

 $\tilde{Q}(c; u)$ is a (non-negative) **quadratic** function of variable *c*.

Solution: Nadaraya–Watson kernel estimate

$$\frac{\displaystyle\sum_{i=1}^{N} Y_{i} K\left(\frac{U_{i}-u}{h}\right)}{\displaystyle\sum_{i=1}^{N} K\left(\frac{U_{i}-u}{h}\right)}$$

Hammerstein system – nonlinearity estimation

$$\underbrace{U_n}_{M(\bullet)} \qquad \underbrace{W_n}_{i=0} \qquad \underbrace{\{\lambda_i\}_{i=0}^{\infty}} \qquad \underbrace{Y_n}_{i=0} \qquad \underbrace{\{\lambda_i\}_{i=0}^{\infty}} \qquad \underbrace{\{$$

$$W_n = m(U_n), \qquad \qquad \hat{\mu}(u) = rac{\displaystyle\sum_{i=1}^{N} Y_i K\left(rac{\displaystyle U_i - u}{\displaystyle h}
ight)}{\displaystyle\sum_{i=1}^{\infty} \lambda_i W_{n-i} + Z_n} \qquad \qquad \hat{\mu}(u) = rac{\displaystyle\sum_{i=1}^{N} Y_i K\left(rac{\displaystyle U_i - u}{\displaystyle h}
ight)}{\displaystyle\sum_{i=1}^{N} K\left(rac{\displaystyle U_i - u}{\displaystyle h}
ight)}$$

 $\hat{\mu}(u) \rightarrow \alpha \cdot m(u) + \beta$, as $N \rightarrow \infty$ in probability

Wiener system

Orthogonal algorithms and wavelets

3rd order Daubechies

Orthogonal wavelet regression estimate

$$\vartheta_{K}(u,v) = \sum_{n=n_{1}}^{n_{2}} \varphi_{Kn}(u) \varphi_{Kn}(v)$$

and $\{\varphi_{Kn}(\cdot)\}$ is a family of orthogonal functions.

Application to predistortion – Doherty amplifier

Predistortion problem: Estimate **an inverse** of the system's nonlinearity $m^{-1}(\cdot)$ and linearize system by replacing input U_n with $m^{-1}(U_n)$.

Doherty amplifier

Predistortion – practical example

Average Derivative Estimation – Wiener system

Fact (*chain rule*): Let $m(\cdot)$ be a differentiable function, then

$$\frac{d}{dx}m(\alpha x) = \alpha \left[\frac{d}{dx}m(\alpha x)\right]$$

Conclusion: Derivative can **extract** factor α embedded in the argument of $m(\cdot)$.

Identification from structured input data

• Consider the following MISO Hammerstein system:

Fact: Convergence rate of the nonparametric estimators strongly depends on the number of system inputs.

Assumption: Input data are structured *i.e.* grouped on unknown d-dimensional manifold (d < D).

Identification from structured input data

AGGREGATIVE MODELING

Dictionary modeling

The *a priori* knowledge about the system is **collected in a dictionary** in a form of the system components, models, preestimates etc.

Aggregative modeling

• The class of considered SISO systems can be described by the general discrete-time input-output equation

$$Y_n = m(X_n, X_{n-1}, X_{n-2}, ..., X_{n-p}) + Z_n,$$

Assumptions:

- $\{X_n\}$ is a stationary sequence of inpendent random variables.
- $m(\mathbf{x})$ is any bounded function, such that $|m(\mathbf{x})| \leq L < \infty$
- $\{Z_n\}$ is a zero-mean i.i.d. random sequence with finite variance.
- There is a dictionary of maps,

$$S = \{\bar{m}_i : \mathbb{R}^{p+1} \rightarrow [-L, L], i = 1, ..., D\}, D > 2$$

collected by a user to model the system.

Aggregative modeling

The algorithm combines all the dictionary entries into a single one, referred to as the aggregated empirical model.

$$m(\mathbf{x}; \hat{\mathbf{\alpha}}) = \sum_{i=1}^{D} \hat{\alpha}_i \bar{m}_i(\mathbf{x})$$

where

$$\widehat{\boldsymbol{\alpha}} = \operatorname{argmin}_{\boldsymbol{\alpha}} \widehat{Q}(\boldsymbol{\alpha}), \text{ subject to } \|\boldsymbol{\alpha}\|_{1} \leq 1,$$

and where

$$\hat{Q}(\boldsymbol{\alpha}) = \frac{1}{N-p} \sum_{i=p+1}^{N} [m(\mathbf{X}_i; \boldsymbol{\alpha}) - Y_i]^2.$$

Convergence

For a wide class of nonlinear systems and aggregative (dictionary) model, it holds that

$$E\{Q(\widehat{\boldsymbol{\alpha}})\} - Q(\boldsymbol{\alpha}^*) \leq C \frac{\sqrt{N \ln D}}{N-p}$$

where

$$Q(\mathbf{\alpha}) = E\{m(\mathbf{X}_n; \mathbf{\alpha}) - Y_n\}^2$$

and where

$$\boldsymbol{\alpha}^* = \operatorname{argmin}_{\boldsymbol{\alpha} \in A} Q(\boldsymbol{\alpha})$$

l_1 -constrained vs. standard LS modeling...

Why it works?

Why it works?

P. Wachel, P. Sliwinski

Experiment settings

Wiener-Hammerstein system:

• Nonlinearity: $m(w) = w^2$.

Impulse responses:

- Input signal: Uniform $(-\sqrt{3}, \sqrt{3})$
- Noise signal: SNR=10
- Dictionary: Unique Volterra series components (L =40, P=2)

Experiments results

LS Method vs Aggregative modeling

Dictionary weights evaluated by the LS method and aggregative approach.

LS METHOD

Bibliography

- Greblicki W. and Pawlak M. *Nonparametric system identification*. Cambridge: Cambridge University Press, 2008.
- Greblicki W. and Pawlak M. "Identification of discrete Hammerstein systems using kernel regression estimates." *Automatic Control, IEEE Transactions on* 31.1 (1986): 74-77.
- Greblicki W. "Nonparametric identification of Wiener systems."*Information Theory, IEEE Transactions on* 38.5 (1992): 1487-1493.
- Wachel P. Sliwinski P. and Hasiewicz Z. "Nonparametric identification of MISO Hammerstein system from structured data." *Journal of Systems Science and Systems Engineering* 24.1 (2015): 68-80.
- Hasiewicz Z. and Sliwinski P. "Identification of non-linear characteristics of a class of blockoriented non-linear systems via Daubechies wavelet-based models." *International Journal of Systems Science* 33.14 (2002): 1121-1144.
- Hasiewicz Z. and Mzyk G. "Combined parametric-nonparametric identification of Hammerstein systems." *Automatic Control, IEEE Transactions on* 49.8 (2004): 1370-1375.
- Sliwinski P. *Nonlinear system identification by Haar wavelets*. Vol. 210. Springer Science & Business Media, 2012.
- Mzyk, G. Combined Parametric-Nonparametric Identification of Block-Oriented Systems. Berlin: Springer, 2014.
- Wachel P. and Mzyk G. "Direct identification of the linear block in Wiener system." *International Journal of Adaptive Control and Signal Processing* (2015).

Thank you