Combining kernel-based methods and the EM method for structured system identification

Giulio Bottegal

KTH - Royal Institute of Technology (Sweden)

September 21, 2015

Outline

- Kernel-based linear system identification
- Handling input uncertainties
- Handling outliers

Outline

- Kernel-based linear system identification
- Handling input uncertainties
- Handling outliers

A standard system identification problem

Model in time domain: $y_t = (g * u)_t + v_t$

A standard system identification problem

Model in time domain: $y_t = (g * u)_t + v_t$

Assumptions

- g BIBO stable, unknown order
- v_t white Gaussian (unknown variance σ^2)

Goal: Estimate g_1, \ldots, g_n (*n* large enough) from $\{u_t, y_t\}_{t=1}^N$

A standard system identification problem

Model in time domain: $y_t = (g * u)_t + v_t$

Assumptions

- g BIBO stable, unknown order
- v_t white Gaussian (unknown variance σ^2)

Goal: Estimate g_1, \ldots, g_n (*n* large enough) from $\{u_t, y_t\}_{t=1}^N$

Linear regression problem: y = Ug + v

g is a Gaussian vector: $g \sim \mathcal{N}(0, \lambda K_{\beta})$

g is a Gaussian vector:
$$g \sim \mathcal{N}(0, \lambda K_{\beta})$$

Stable spline kernel[Pillonetto & De Nicolao, '10], [Chen, Ohlsson, Ljung, '12]

$$\mathcal{K}_{eta}(i,j) := eta^{\max(i,j)}$$
 $0 < eta < 1$

$$\mathsf{K}_eta(i,j) := eta^{\mathsf{max}(i,j)}$$

 $0 < \beta < 1$

Two hyperparameters to be chosen

1 λ : amplitude of the impulse response (> 0)

2
$$\beta$$
: related to the decay rate of g
G. Bottegal - KTH

Estimation of the impulse response

Exploiting joint Gaussianity between g and y...

$$p(g|y) = \mathcal{N}(Cy, P)$$
$$P = \left(\frac{U^{T}U}{\sigma^{2}} + (\lambda K_{\beta})^{-1}\right)^{-1} \qquad C = P\frac{U^{T}}{\sigma^{2}}$$

Estimation of the impulse response

Exploiting joint Gaussianity between g and y...

$$p(g|y) = \mathcal{N}(Cy, P)$$
$$P = \left(\frac{U^{T}U}{\sigma^{2}} + (\lambda K_{\beta})^{-1}\right)^{-1} \qquad C = P \frac{U^{T}}{\sigma^{2}}$$

MMSE estimator of g:

$$\hat{g} = \mathbb{E}[g|y] = C(\theta)y$$

Estimation of the impulse response

Exploiting joint Gaussianity between g and y...

$$p(g|y) = \mathcal{N}(Cy, P)$$
$$P = \left(\frac{U^{T}U}{\sigma^{2}} + (\lambda K_{\beta})^{-1}\right)^{-1} \qquad C = P \frac{U^{T}}{\sigma^{2}}$$

MMSE estimator of *g*:

$$\hat{g} = \mathbb{E}[g|y] = C(\theta)y$$

... but it depends on the parameter vector $\theta = [\lambda, \beta, \sigma^2]$

Empirical Bayes approach

• Marginal distribution of y:

(Pillonetto, Chiuso, De Nicolao, '11)

$$p(y) = \int p(y, g) dg$$

Empirical Bayes approach

• Marginal distribution of y:

(Pillonetto, Chiuso, De Nicolao, '11)

$$p(y) = \int p(y, g) dg$$

• Perform marginal likelihood optimization

$$\hat{\theta} = \arg \max \log p(y; \theta)$$

Empirical Bayes approach

• Marginal distribution of y:

(Pillonetto, Chiuso, De Nicolao, '11)

$$p(y) = \int p(y, g) dg$$

• Perform marginal likelihood optimization

$$\hat{\theta} = \arg \max \log p(y; \theta)$$

• Simple optimization problem \longrightarrow Matlab's fminsearch

Empirical Bayes approach

• Marginal distribution of y:

(Pillonetto, Chiuso, De Nicolao, '11)

$$p(y) = \int p(y, g) dg$$

• Perform marginal likelihood optimization

$$\hat{\theta} = \arg \max \log p(y; \theta)$$

• Simple optimization problem \longrightarrow Matlab's fminsearch

Can we come up with other optimization strategies?

The EM method

- Define "missing data": our unknown system g
- **2** Introduce the complete likelihood: $L(y, g; \theta) := \log p(y, g; \theta)$

The EM method

- Define "missing data": our unknown system g
- **2** Introduce the complete likelihood: $L(y, g; \theta) := \log p(y, g; \theta)$

Iterations

- $\hat{\theta}^{(k)} :=$ estimate of θ at k-th iteration
- for every k, until convergence, do:

The EM method

- Define "missing data": our unknown system g
- **2** Introduce the complete likelihood: $L(y, g; \theta) := \log p(y, g; \theta)$

Iterations

- $\hat{\theta}^{(k)} :=$ estimate of θ at k-th iteration
- for every k, until convergence, do:
 - **4** E-step: Compute $Q(\theta, \hat{\theta}^{(k)}) := \mathbb{E}_{p(g|y, \hat{\theta}^{(k)})} [L(y, g|\theta)]$

The EM method

- Define "missing data": our unknown system g
- **2** Introduce the complete likelihood: $L(y, g; \theta) := \log p(y, g; \theta)$

Iterations

- $\hat{\theta}^{(k)} :=$ estimate of θ at k-th iteration
- for every k, until convergence, do:
 - E-step: Compute $Q(\theta, \hat{\theta}^{(k)}) := \mathbb{E}_{p(g|y, \hat{\theta}^{(k)})}[L(y, g|\theta)]$ • M-step: Solve $\hat{\theta}^{(k+1)} := \arg \max Q(\theta, \hat{\theta}^{(k)})$

The EM method

- Define "missing data": our unknown system g
- **2** Introduce the complete likelihood: $L(y, g; \theta) := \log p(y, g; \theta)$

Iterations

• $\hat{\theta}^{(k)} :=$ estimate of θ at k-th iteration

• for every k, until convergence, do:

E-step: Compute Q(θ, θ̂^(k)) := E_{p(g|y, θ̂^(k))} [L(y, g|θ)]
 M-step: Solve θ̂^(k+1) := arg max Q(θ, θ̂^(k))

Convergence properties

[Dempster et al., 1977]: $\hat{\theta}^{(k)} \longrightarrow$ local solution of arg max log $p(y; \theta)$

At each iteration, compute

$$\hat{g}^{(k)} = C(\theta^{(k)})y \qquad P^{(k)} = Cov[g^{(k)}]$$

Recall: $\theta = [\lambda, \beta, \sigma^2]$

At each iteration, compute

è

$$\hat{g}^{(k)} = C(\theta^{(k)})y \qquad P^{(k)} = Cov[g^{(k)}]$$

Recall: $\theta = [\lambda, \beta, \sigma^2]$

Parameter update

•
$$\hat{\lambda}^{(k+1)} = \frac{1}{n} \operatorname{tr} \left[K_{\hat{\beta}^{(k)}}^{-1} (P^{(k)} + \hat{g}^{(k)} \hat{g}^{(k)T}) \right]$$

 \leftrightarrow closed-form

At each iteration, compute

$$\hat{g}^{(k)} = C(\theta^{(k)})y \qquad P^{(k)} = Cov[g^{(k)}]$$

Recall: $\theta = [\lambda, \beta, \sigma^2]$

Parameter update

•
$$\hat{\lambda}^{(k+1)} = \frac{1}{n} \operatorname{tr} \left[\mathcal{K}_{\hat{\beta}^{(k)}}^{-1}(\mathcal{P}^{(k)} + \hat{g}^{(k)}\hat{g}^{(k)}^{T}) \right] \qquad \longleftrightarrow \text{ closed-form}$$

• $\hat{\beta}^{(k+1)} = \arg \max Q(\beta, \hat{\theta}^{(k)}) \qquad \longleftrightarrow \text{ scalar problem}$

At each iteration, compute

$$\hat{g}^{(k)} = C(\theta^{(k)})y \qquad P^{(k)} = Cov[g^{(k)}]$$

Recall: $\theta = [\lambda, \beta, \sigma^2]$

Parameter update

•
$$\hat{\lambda}^{(k+1)} = \frac{1}{n} \operatorname{tr} \left[K_{\hat{\beta}^{(k)}}^{-1} (P^{(k)} + \hat{g}^{(k)} \hat{g}^{(k)}^{T}) \right] \qquad \longleftrightarrow \text{ closed-form}$$

• $\hat{\beta}^{(k+1)} = \arg \max Q(\beta, \hat{\theta}^{(k)}) \qquad \longleftrightarrow \text{ scalar problem}$
• $\hat{\sigma}^{2,(k+1)} = \frac{1}{N} \left(\|y - U\hat{g}^{(k)}\|^{2} + \operatorname{tr} \left\{ UP^{(k)}U^{T} \right\} \right) \qquad \longleftrightarrow \text{ closed-form}$

At each iteration, compute

$$\hat{g}^{(k)} = C(\theta^{(k)})y \qquad P^{(k)} = Cov[g^{(k)}]$$

Recall: $\theta = [\lambda, \beta, \sigma^2]$

Parameter update

•
$$\hat{\lambda}^{(k+1)} = \frac{1}{n} \operatorname{tr} \left[K_{\hat{\beta}^{(k)}}^{-1} (P^{(k)} + \hat{g}^{(k)} \hat{g}^{(k)T}) \right] \qquad \longleftrightarrow \text{ closed-form}$$

• $\hat{\beta}^{(k+1)} = \arg \max Q(\beta, \hat{\theta}^{(k)}) \qquad \longleftrightarrow \text{ scalar problem}$
• $\hat{\sigma}^{2,(k+1)} = \frac{1}{N} \left(\|y - U\hat{g}^{(k)}\|^2 + \operatorname{tr} \left\{ UP^{(k)}U^T \right\} \right) \qquad \longleftrightarrow \text{ closed-form}$

Simple updates... but is it really worth it?

Outline

- Kernel-based linear system identification
- Handling input uncertainties
- Handling outliers

Input uncertainties

Assumption

$$u = \begin{bmatrix} u_1 & \dots & u_N \end{bmatrix}^T \longrightarrow u = Hx$$
, $x \in \mathbb{R}^p$

H known matrix, x unknown vector

 \hookleftarrow needs to be estimated

Input uncertainties

Assumption

$$u = \begin{bmatrix} u_1 & \dots & u_N \end{bmatrix}^T \longrightarrow u = Hx \quad , \quad x \in \mathbb{R}^p$$

H known matrix, x unknown vector

 \hookleftarrow needs to be estimated

How to estimate *x*?

Include x in the ML optimization: $\theta := [x^T \ \lambda \ \beta \ \sigma^2]$

 $\hat{\theta} = \arg \max \log p(y; \theta)$

Input uncertainties

Assumption

$$u = \begin{bmatrix} u_1 & \dots & u_N \end{bmatrix}^T \longrightarrow u = Hx \quad , \quad x \in \mathbb{R}^p$$

H known matrix, x unknown vector

How to estimate x?

Include x in the ML optimization: $\theta := [x^T \ \lambda \ \beta \ \sigma^2]$

$$\hat{\theta} = \arg \max \log p(y; \theta)$$

EM estimation

Given the k-th iteration parameter guess $\hat{\theta}^{(k)}$, compute

• $\hat{x}^{(k+1)} = (A^{(k)})^{-1}b^{(k)} \qquad \leftrightarrow A^{(k)} \text{ and } b^{(k)} \text{ easily computed}$ • $\hat{\lambda}^{(k+1)}, \hat{\beta}^{(k+1)}, \hat{\sigma}^{2,(k+1)} \text{ as before} \qquad \leftrightarrow \text{ use } \hat{u}^{(k)} = H\hat{x}^{(k)}$

 \leftrightarrow needs to be estimated

Input uncertainties (2)

• Input parameters enter EM iterations smoothly

Input uncertainties (2)

- Input parameters enter EM iterations smoothly
- ... but in which scenarios does this problem pop up?

Input uncertainties (2)

- Input parameters enter EM iterations smoothly
- ... but in which scenarios does this problem pop up?

Examples

- Semi-blind system identification
- Hammerstein system identification
- Estimation of initial conditions

Semi-blind system identification

- Same setup as before...
- but no measurements of ut

G. Bottegal, R.S. Risuleo, H. Hjalmarsson.

Blind system identification using kernel-based methods. IFAC Sysld 2015

G. Bottegal - KTH

Semi-blind system identification

- Same setup as before...
- but no measurements of u_t

Assumption

u belongs to a p dimensional subspace (semi-blind)

 \hookrightarrow We know *H* such that u = Hx

G. Bottegal, R.S. Risuleo, H. Hjalmarsson.

Blind system identification using kernel-based methods. IFAC Sysld 2015
Input models

Example: *u* piecewise constant with known switching instants

Input models

Example: u piecewise constant with known switching instants

Applications:

• Occupancy estimation from CO₂ measurements

(A. Ebadat et al. Blind identification strategies for room occupancy estimation. ECC '15)

Non-intrusive load monitoring

Identification procedure

Identifiability

Any pair $\left(g, \frac{1}{\alpha}u\right)$ explains the data equally well! \hookrightarrow Assume $\|g\|_2 = 1$ and $g_1 > 0$

Identification procedure

Identifiability

Any pair
$$\left(g, \frac{1}{\alpha}u\right)$$
 explains the data equally well!
 \hookrightarrow Assume $\|g\|_2 = 1$ and $g_1 > 0$

Identification

- Fix $\lambda = 1$ and repeat EM steps until convergence:
 - update x̂
 update ô²
 update β̂
- Compute $\hat{u} = H\hat{x}$

• Compute
$$\hat{g} = C(\hat{\theta})y$$
 and normalize

Full blind system identification

SIMO system

• Enough subsystems?

 \hookrightarrow Full blind system identification (H = I)

• Noise spatial correlation can be included

Hammerstein system identification

$$w_t = f(u_t)$$
$$y_t = \sum_{k=1}^{\infty} g_k w_{t-k} + e_t$$

R.S. Risuleo, G. Bottegal, H. Hjalmarsson.

A kernel-based approach to Hammerstein system identification. IFAC Sysld 2015

G. Bottegal - KTH

Hammerstein system identification

$$w_t = f(u_t)$$
$$y_t = \sum_{k=1}^{\infty} g_k w_{t-k} + e_t$$

Modeling approach

- *p* basis functions for *f*: $f(u_t) = \sum_{i=1}^p x_i h_i(u_t) \quad \Leftrightarrow \text{ only } h_i$'s known
- kernel-based model of g, with $\|g\|_2 = 1, g_1 > 0 \quad \hookleftarrow$ for identifiability

R.S. Risuleo, G. Bottegal, H. Hjalmarsson.

A kernel-based approach to Hammerstein system identification. IFAC Sysld 2015

G. Bottegal - KTH

Identification with EM

How to cast Hammerstein system identification into our framework?

	$\int \sum x_i h_i(u_1)$]
w =	1	= Hx
	$\sum x_i h_i(u_N)$	

Identification with EM

How to cast Hammerstein system identification into our framework?

	$\left[\sum x_i h_i(u_1)\right]$		
<i>w</i> =	:	= Hx	
	$\sum x_i h_i(u_N)$		

• Identification: same algorithm as semi-blind system identification

Identification with EM

How to cast Hammerstein system identification into our framework?

$$w = \begin{bmatrix} \sum x_i h_i(u_1) \\ \vdots \\ \sum x_i h_i(u_N) \end{bmatrix} = Hx$$

- Identification: same algorithm as semi-blind system identification
- Extension: nonparametric models of f (see next poster session)

Simulations

Features

- *N* = 500
- *n* = 100

• LTI orders = [4,8,10,20]

• 7th order polynomial

Estimating the initial conditions

Goal: Estimate g_1, \ldots, g_n from $\{u_t, y_t\}_{t=0}^N$

R.S. Risuleo, G. Bottegal, H. Hjalmarsson.

On the estimation of initial conditions in kernel-based system identification.

IEEE CDC 2015

Estimating the initial conditions

Goal: Estimate g_1, \ldots, g_n from $\{u_t, y_t\}_{t=0}^N$

Recall: y = Ug + v

R.S. Risuleo, G. Bottegal, H. Hjalmarsson.

On the estimation of initial conditions in kernel-based system identification.

IEEE CDC 2015

The matrix U depends on unavailable input samples!

$$U := \begin{bmatrix} u_0 & u_{-1} & u_{-2} & u_{-n+1} \\ u_1 & u_0 & u_{-1} & u_{-n+2} \\ u_2 & u_1 & u_0 & \dots & u_{-n+3} \\ \vdots & \vdots & \vdots & \vdots \\ u_{N-1} & u_{N-2} & u_{N-3} & u_{N-n} \end{bmatrix}$$

Solutions?

How do we cope with initial conditions?

The matrix U depends on unavailable input samples!

$$U := \begin{bmatrix} u_{n-1} & u_{n-2} & u_{n-3} & \dots & u_0 \\ \vdots & \vdots & \vdots & \vdots \\ u_{N-1} & u_{N-2} & u_{N-3} & \dots & u_{N-n} \end{bmatrix}$$

Solutions? Truncation

 \leftrightarrow throw away *n* measurements!

The matrix U depends on unavailable input samples!

$$U := \begin{bmatrix} u_0 & 0 & 0 & 0 \\ u_1 & u_0 & 0 & 0 \\ u_2 & u_1 & u_0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u_{N-1} & u_{N-2} & u_{N-3} & u_{N-n} \end{bmatrix}$$

Solutions?

Set to 0

 \leftrightarrow may be very inaccurate...

The matrix U depends on unavailable input samples!

$$U := \begin{bmatrix} u_0 & \hat{u}_{-1} & \hat{u}_{-2} & \hat{u}_{-n+1} \\ u_1 & u_0 & \hat{u}_{-1} & \hat{u}_{-n+2} \\ u_2 & u_1 & u_0 & \dots & \hat{u}_{-n+3} \\ \vdots & \vdots & \vdots & \vdots \\ u_{N-1} & u_{N-2} & u_{N-3} & u_{N-n} \end{bmatrix}$$

Solutions?

Estimate them from data!

EM estimation

C.I. estimation + system identification

- Just set $x = [u_{-1} \dots u_{-n+1}]$ (H = I)
- Apply EM-based identification procedure!

EM estimation

C.I. estimation + system identification

- Just set $x = [u_{-1} \dots u_{-n+1}]$ (H = I)
- Apply EM-based identification procedure!

N	150	250	400
Truncation	42.01	59.40	62.96
Zeros	51.69	61.15	63.18
EM-based	55.69	62.77	64.45
Oracle	57.31	63.78	64.95

Features

n = 100, SNR = 20, u = ARMA process, system order = 40

G. Bottegal - KTH

Outline

- Kernel-based linear system identification
- Handling input uncertainties
- Handling outliers

Why should we contrast outliers?

G. Bottegal, A.Y Aravkin, H. Hjalmarsson, G. Pillonetto.

Robust EM kernel-based methods for linear system identification.

```
G. Bottegal - KTH
```


G. Bottegal, A.Y Aravkin, H. Hjalmarsson, G. Pillonetto.

Robust EM kernel-based methods for linear system identification.

```
G. Bottegal - KTH
```


G. Bottegal, A.Y Aravkin, H. Hjalmarsson, G. Pillonetto.

Robust EM kernel-based methods for linear system identification.

```
G. Bottegal - KTH
```


G. Bottegal, A.Y Aravkin, H. Hjalmarsson, G. Pillonetto.

Robust EM kernel-based methods for linear system identification.

```
G. Bottegal - KTH
```

How to model outliers?

Long tailed random variables

• Laplacian density:
$$p(v_t) = \frac{1}{\sqrt{2}\sigma} e^{-\frac{\sqrt{2}|v_t|}{\sigma}}$$

How to model outliers?

Long tailed random variables

• Laplacian density:
$$p(v_t) = \frac{1}{\sqrt{2\sigma}} e^{-\frac{\sqrt{2}|v_t|}{\sigma}}$$

• Student's t density: $p(v_t) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi(\nu-2)\sigma^2}} \left(1 + \frac{v_t^2}{(\nu-2)\sigma^2}\right)$

 $(\nu := degrees of freedom)$

 $\frac{\nu+1}{2}$

How to model outliers?

Long tailed random variables

• Laplacian density:
$$p(v_t) = \frac{1}{\sqrt{2}\sigma} e^{-\frac{\sqrt{2}|v_t|}{\sigma}}$$

• Student's t density:
$$p(v_t) = \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})\sqrt{\pi(\nu-2)\sigma^2}} \left(1 + \frac{v_t^2}{(\nu-2)\sigma^2}\right)^{-\frac{\nu+1}{2}}$$

 $(\nu := degrees of freedom)$

Long tails \longrightarrow Outliers are expected in this model

 v_t non-Gaussian in our model \longrightarrow No closed-form of ML and \hat{g}

 v_t non-Gaussian in our model \longrightarrow No closed-form of ML and \hat{g}

Scale mixture of Gaussians

$$p(v_t) = \int_0^{+\infty} \frac{1}{\sqrt{2\pi\tau_t}} e^{-\frac{v_t^2}{2\tau_t}} \quad \pi(\tau_t) \quad d\tau_t$$

 v_t non-Gaussian in our model \longrightarrow No closed-form of ML and \hat{g}

Scale mixture of Gaussians

$$p(v_t) = \int_0^{+\infty} \underbrace{\frac{1}{\sqrt{2\pi\tau_t}} e^{-\frac{v_t^2}{2\tau_t}}}_{Gaussian} \underbrace{\pi(\tau_t)}_{Prior of \tau_t} d\tau_t$$

Interpretation: v_t is Gaussian r.v. whose variance τ_t is r.v. with pdf $\pi(\tau_t)$

 v_t non-Gaussian in our model \longrightarrow No closed-form of ML and \hat{g}

Scale mixture of Gaussians

$$p(v_t) = \int_0^{+\infty} \underbrace{\frac{1}{\sqrt{2\pi\tau_t}} e^{-\frac{v_t^2}{2\tau_t}}}_{Gaussian} \underbrace{\pi(\tau_t)}_{Prior of \tau_t} d\tau_t$$

Interpretation: v_t is Gaussian r.v. whose variance τ_t is r.v. with pdf $\pi(\tau_t)$

What is $\pi(\tau_t)$?

- Laplacian noise $\implies \tau_t$ Exponential of parameter σ^2
- Student's t noise $\implies \tau_t$ Inverse Gamma of parameters

$$\left(\frac{\nu}{2}, \frac{(\nu-2)\sigma^2}{2}\right)$$

 v_t non-Gaussian in our model \longrightarrow No closed-form of ML and \hat{g}

Scale mixture of Gaussians

$$p(v_t) = \int_0^{+\infty} \underbrace{\frac{1}{\sqrt{2\pi\tau_t}}}_{Gaussian} e^{-\frac{v_t^2}{2\tau_t}} \underbrace{\pi(\tau_t)}_{Prior of \tau_t} d\tau_t$$

Interpretation: v_t is Gaussian r.v. whose variance τ_t is r.v. with pdf $\pi(\tau_t)$

What is $\pi(\tau_t)$?

- Laplacian noise $\implies \tau_t$ Exponential of parameter σ^2
- Student's t noise $\implies \tau_t$ Inverse Gamma of parameters $\left(\frac{\nu}{2}, \frac{(\nu-2)\sigma^2}{2}\right)$

Need to estimate the new parameters τ_t

G. Bottegal - KTH

- $\theta := [\lambda \ \beta \ \tau_1 \ \dots \ \tau_N]$
- Define $p(\theta)$ prior for θ (given by prior on τ_t)

- $\theta := [\lambda \ \beta \ \tau_1 \ \dots \ \tau_N]$
- Define $p(\theta)$ prior for θ (given by prior on τ_t)

MAP: $\hat{\theta} = \arg \max \log \left[p(y|\theta) p(\theta) \right]$

•
$$\theta := [\lambda \ \beta \ \tau_1 \ \dots \ \tau_N]$$

• Define $p(\theta)$ prior for θ (given by prior on τ_t)

MAP: $\hat{\theta} = \arg \max \log \left[p(y|\theta) p(\theta) \right]$

EM solution of MAP problem

$$\bullet~$$
 Update $\hat{\lambda}^{(k+1)}$ and $\hat{\beta}^{(k+1)}$ as usual

•
$$\theta := [\lambda \ \beta \ \tau_1 \ \dots \ \tau_N]$$

• Define $p(\theta)$ prior for θ (given by prior on τ_t)

MAP: $\hat{\theta} = \arg \max \log [p(y|\theta)p(\theta)]$

EM solution of MAP problem

• Update
$$\hat{\lambda}^{(k+1)}$$
 and $\hat{eta}^{(k+1)}$ as usual

• Update rule for each τ_t is

Laplacian case:
$$\hat{ au}_t^{(k+1)} = rac{\sigma^2}{4} \left(\sqrt{1 + rac{8\hat{lpha}_t^{(k)}}{\sigma^2}} - 1
ight)$$

2 Student's t case:
$$\hat{\tau}_t^{(k+1)} = \frac{\hat{\alpha}_t^{(k)} + (\nu-2)\sigma^2}{\nu+3}$$
 $(\hat{\alpha}_t^{(k)} \text{ known})$
A real experiment

Features

- Input: Voltage to pump
- Output: Water tank level
- Outliers due to pressure perturbation
- Identification using second part of data

A real experiment

Features

- Input: Voltage to pump
- Output: Water tank level
- Outliers due to pressure perturbation
- Identification using second part of data

Method	Fit % on first part of data
Student	67.40
Laplace	51.81
Gaussian	41.49
Gauss. (estimated using test set)	70.06

Starting point: kernel-based linear system identification \hookrightarrow requires tuning of some (hyper-)parameters

Starting point: kernel-based linear system identification \hookrightarrow requires tuning of some (hyper-)parameters

Our contribution

• We can select parameters via ML+EM

Starting point: kernel-based linear system identification

 \hookrightarrow requires tuning of some (hyper-)parameters

Our contribution

- We can select parameters via ML+EM
- Nice iterative method in case of input uncertainties:
 - Blind system identification
 - Hammerstein systems
 - Estimation of initial conditions

Starting point: kernel-based linear system identification

 \hookrightarrow requires tuning of some (hyper-)parameters

Our contribution

- We can select parameters via ML+EM
- Nice iterative method in case of input uncertainties:
 - Blind system identification
 - Hammerstein systems
 - Estimation of initial conditions
- Nice iterative method for outlier robust system identification

Lots of questions!

Open questions

- Combine input uncertainties with robust technique?
- Compare with other iterative gradient-based methods?
- Other challenging problems (Wiener, networks, EIV,...)?
- Convergence rate?

• ...

Lots of questions!

Open questions

- Combine input uncertainties with robust technique?
- Compare with other iterative gradient-based methods?
- Other challenging problems (Wiener, networks, EIV,...)?
- Convergence rate?
- ...

A special thank goes to...

- Riccardo S. Risuleo
- Håkan Hjalmarsson
- Gianluigi Pillonetto

Combining kernel-based methods and the EM method for structured system identification

Giulio Bottegal

KTH - Royal Institute of Technology (Sweden)

September 21, 2015

e-mail: bottegal@kth.se

G. Bottegal - KTH