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2Outline: Two Themes

Abstract: Nonlinear System Identification is really curve fitting
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2Outline: Two Themes

Abstract: Nonlinear System Identification is really curve fitting

1. The basic questions and (statistical) tools illustrated for a simple curve
fitting problem.

2. Nonlinear dynamical models: Parameterizations, problems and
techniques.
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3Curve Fitting

Most basic ideas from system identification, choice of model structures and
model sizes are brought out by considering the basic curve fitting problem
from elementary statistics.
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Unknown function g0(x). For a sequence of x-values (regressors)
{x1, x2, . . . , xN} (that may or may not be chosen by the user) observe the
corresponding function values with some noise:

y(k) = g0(xk) + e(k)

Construct an estimate ĝN (x) from {y(1), x1, y(2), x2, . . . , y(N), xN}

.
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4The Curve-fitting problem

y(k) = g0(xk) + e(k)

Construct an estimate ĝN (x) from {y(1), x1, y(2), x2, . . . , y(N), xN}
The error ĝN (x) − g0(x) should be “as small as possible”
Approaches:

■ Parametric: Construct ĝN (x) by searching over a parameterized set of
candidate functions.

■ Non-parametric: Construct ĝN (x) by smoothing over (carefully chosen
subsets of) y(k)
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5Parametric Approach

Search for the function g0 in a parameterized family of functions:

g(x, θ) =

n∑

k=1

αkfk(x, θ̃k), θ = {αk, θ̃k, k = 1, . . . , n}
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5Parametric Approach

Search for the function g0 in a parameterized family of functions:

g(x, θ) =

n∑

k=1

αkfk(x, θ̃k), θ = {αk, θ̃k, k = 1, . . . , n}

Examples:

Polynomial: g(x, θ) = θ1 + θ2x + . . . + θnxn−1

Piecewise constant: g(x, θ) =

n∑

k=1

αkU(βk(x − γk)),

U(x) is the unit pulse.
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6Parametric NL Black Box: Choice of g

The basic form is

g(x, θ) =

N∑

k=1

αkκ(βk(x − γk))
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6Parametric NL Black Box: Choice of g

The basic form is

g(x, θ) =

N∑

k=1

αkκ(βk(x − γk))

■ Archetypical case:
κ(x) = U(x), (pulse or step) or κ(x) = e−x2/2, κ(x) = 1

1+e−x
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6Parametric NL Black Box: Choice of g

The basic form is

g(x, θ) =

N∑

k=1

αkκ(βk(x − γk))

■ Archetypical case:
κ(x) = U(x), (pulse or step) or κ(x) = e−x2/2, κ(x) = 1

1+e−x

■ α coordinates, β scale or dilation, γ location
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6Parametric NL Black Box: Choice of g

The basic form is

g(x, θ) =

N∑

k=1

αkκ(βk(x − γk))

■ Archetypical case:
κ(x) = U(x), (pulse or step) or κ(x) = e−x2/2, κ(x) = 1

1+e−x

■ α coordinates, β scale or dilation, γ location

■ ANN: Radial basis, sigmoidal, etc

■ LS Support Vector Machines

■ Wavenets
■ Neuro-Fuzzy
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7Parametric Curve Fitting: Choice of parameters

y(t) = g0(xt) + e(t)

Weighted Least Squares:

θ̂N = arg min
θ

VN (θ)+δ|θ|2

VN (θ) =
1

N

N∑

t=1

L(xt)|y(t) − g(xt, θ)|2/lambdat

λt Proportional to ’reliability’ of t:th measurement ∼ Ee2(t)

A extra weighting L(xt) could also reflect the ’relevance’ of the point xt.
(’Focus in fit’)

.
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10Parametric Curve Fitting: Choice of parameters

y(t) = g0(xt) + e(t)

(Regularized) Least squares:

θ̂N = arg min
θ

VN (θ) + δ|θ|2

VN (θ) =
1

N

N∑

t=1

|y(t) − g(xt, θ)|2

δ|θ|2 penalizes excessive model flexibility. Could come in various forms.
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11Other Criteria and Regularization Terms

θ̂N = arg min
θ

1

N

N∑

t=1

ℓ(y(t) − g(xt, θ), t)

■ Maximum likelihood ℓ(z) = − log p(z)

■ “unknown-but-bounded”: minθ maxt |y(t) − g(xt, θ)|
■ ‘Support vector machines”: min

∑
|y(t) − g(xt, θ)|ǫ (ǫ-insensitive L1

norm)

Regularization by

VN (θ) + δ|θ| or minVN (θ), |θ| < C

LARS, LASSO, nn-garotte ...
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12Choices in Parametric Methods

So, the choice of parameters within a parameterized model is not that
difficult: Fit to the observed data, by one criterion or another.
The choice of model size and model parameterization is a more interesting
issue.
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13Asymptotic Analysis: Basic Facts

Except for very simple parameterizations g(x, θ), the distribution of θ̂N cannot
be calculated (mainly due to “arg min”).
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13Asymptotic Analysis: Basic Facts

Except for very simple parameterizations g(x, θ), the distribution of θ̂N cannot
be calculated (mainly due to “arg min”). However its asymptotic distribution
as N → ∞ can be established: (Straightforwad applications of the law of
large numbers and the central limit theorem)
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13Asymptotic Analysis: Basic Facts

Except for very simple parameterizations g(x, θ), the distribution of θ̂N cannot
be calculated (mainly due to “arg min”). However its asymptotic distribution
as N → ∞ can be established: (Straightforwad applications of the law of
large numbers and the central limit theorem)

■ H(θ) = limN→∞ HN (θ) = EL(xt)|g0(xt) − g(xt, θ)|2/λt

■ Main Result: limN→∞ θ̂N = θ∗ = arg minH(θ)
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13Asymptotic Analysis: Basic Facts

Except for very simple parameterizations g(x, θ), the distribution of θ̂N cannot
be calculated (mainly due to “arg min”). However its asymptotic distribution
as N → ∞ can be established: (Straightforwad applications of the law of
large numbers and the central limit theorem)

■ H(θ) = limN→∞ HN (θ) = EL(xt)|g0(xt) − g(xt, θ)|2/λt

■ Main Result: limN→∞ θ̂N = θ∗ = arg minH(θ)

■ The asymptotic distribution of
√

N(θ̂N − θ∗) is normal with zero mean
and covariance matrix P = λ[Eψ(t)ψT (t)]−1, ψ(t) = d

dθg(xt, θ
∗)

■ “Cov θ̂N ∼ λ
N [Eψ(t)ψT (t)]−1” (Decreases with more regularization)
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14Consequences for Model Size and Parameterization

■ Effective number of parameters (depending on parameter dimension
and regularization) is a trade-off between bias and variance

■ This trade-off is favored by grey-box models and by adaptive choices of
basis functions for the parameterization
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15Non-Parametric Methods

A simple idea is to locally smooth the noisy observations of the function
values:

ĝN (x) =

N∑

k=1

C(x, xk)y(k)

N∑

k=1

C(x, xk) = 1 ∀x
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15Non-Parametric Methods

A simple idea is to locally smooth the noisy observations of the function
values:

ĝN (x) =

N∑

k=1

C(x, xk)y(k)

N∑

k=1

C(x, xk) = 1 ∀x

Often C(x, xk) = c̃(x − xk)/λk and c̃(r) = 0 for |r| > β, β = the “bandwidth”
These are known as “kernel methods” in statistics.
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15Non-Parametric Methods

A simple idea is to locally smooth the noisy observations of the function
values:

ĝN (x) =

N∑

k=1

C(x, xk)y(k)

N∑

k=1

C(x, xk) = 1 ∀x

Often C(x, xk) = c̃(x − xk)/λk and c̃(r) = 0 for |r| > β, β = the “bandwidth”
These are known as “kernel methods” in statistics.

If C(x, xt) is chosen so that it is non-zero (= 1/k) only for k observed values
xt around x, this is the k-nearest neighbor method.

.
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16Example
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C(x, xk) = U((x − xk)/β); U(·) the unit pulse. β = 0.25.
Cyan dots: Computed for x = −1.75 : 0.5 : 1.75

Bias-Variance Trade-off: ...
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17Some Variants of Non-Parametric Methods

■ Local polynomial models
• Adjust polynomials in local neighborhoods around x, Evaluate them

in x.
■ Direct weight optimization

ĝN (x) =
∑

wk(x)y(k), Choose {wk} for each x

■ Typically “Model-on-Demand” rather than “Off-the-Shelf”
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18Nonlinear Dynamical models - Outline

Data: outputs and inputs

{y(1), u(1), . . . , y(N), u(N)} = ZN

■ General aspects

■ Black-box models
■ Light-Grey-box models

■ Dark-Grey-box models
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19General Aspects

A mathematical model for the system is a function from the past input-output
data to the space where the output at time t, y(t) lives, in general

ŷ(t|t − 1) = g(Zt−1, t)

The function can be thought of as a predictor of the next output.
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19General Aspects

A mathematical model for the system is a function from the past input-output
data to the space where the output at time t, y(t) lives, in general

ŷ(t|t − 1) = g(Zt−1, t)

The function can be thought of as a predictor of the next output.
Let us split it into one mapping from Zt−1 to a regression vector ϕ(t) of fixed
dimension d and a mapping g from Rd to R:

g(Zt−1, t) = g(ϕ(t))

ϕ(t) = ϕ(Zt−1, t) Finding ϕ(t) could itself be an estimation problem
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19General Aspects

A mathematical model for the system is a function from the past input-output
data to the space where the output at time t, y(t) lives, in general

ŷ(t|t − 1) = g(Zt−1, t)

The function can be thought of as a predictor of the next output.
Let us split it into one mapping from Zt−1 to a regression vector ϕ(t) of fixed
dimension d and a mapping g from Rd to R:

g(Zt−1, t) = g(ϕ(t))

ϕ(t) = ϕ(Zt−1, t) Finding ϕ(t) could itself be an estimation problem

Leaves two problems:

1. Choose the mapping g(ϕ) – Same as in curvefitting

2. Choose the regression vector ϕ(t) – “State”
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20Simulation and Prediction

Suppose ϕ(t) = [y(t − 1), u(t − 1)]T

The (one-step ahead) predicted output at time for a given model θ is then

ŷp(t|θ) = g([y(t − 1), u(t − 1)]T , θ)

It uses the previous measurement y(t − 1).
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20Simulation and Prediction

Suppose ϕ(t) = [y(t − 1), u(t − 1)]T

The (one-step ahead) predicted output at time for a given model θ is then

ŷp(t|θ) = g([y(t − 1), u(t − 1)]T , θ)

It uses the previous measurement y(t − 1).

A tougher test is to check how the model would behave in simulation, i.e.
when only the input sequence u is used. The simulated output is obtained as
above, by replacing the measured output by the simulated output from the
previous step:

ŷs(t, θ) = g([ŷs(t − 1, θ), u(t − 1)]T , θ)
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20Simulation and Prediction

Suppose ϕ(t) = [y(t − 1), u(t − 1)]T

The (one-step ahead) predicted output at time for a given model θ is then

ŷp(t|θ) = g([y(t − 1), u(t − 1)]T , θ)

It uses the previous measurement y(t − 1).

A tougher test is to check how the model would behave in simulation, i.e.
when only the input sequence u is used. The simulated output is obtained as
above, by replacing the measured output by the simulated output from the
previous step:

ŷs(t, θ) = g([ŷs(t − 1, θ), u(t − 1)]T , θ)

Notice a possible stability problem!
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21Color Coding: Shades of Grey

■ Black
• Parametric – Non-Parametric: see Curve Fitting

■ Light-Grey
• Physical modeling

■ Dark-Grey
• Semi-physical modeling
• Block-oriented models
• Local linear models and their cousins
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22Light Grey: Physical Modeling

Perform physical modeling (e.g. in MODELICA) and denote unknown physical
parameters by θ. Collect the model equations as

ẋ(t) = f(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ)
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22Light Grey: Physical Modeling

Perform physical modeling (e.g. in MODELICA) and denote unknown physical
parameters by θ. Collect the model equations as

ẋ(t) = f(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ)

(or in DAE, Differential Algebraic Equations, form.)
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22Light Grey: Physical Modeling

Perform physical modeling (e.g. in MODELICA) and denote unknown physical
parameters by θ. Collect the model equations as

ẋ(t) = f(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ)

(or in DAE, Differential Algebraic Equations, form.) For each parameter θ this
defines a simulated (predicted) output ŷ(t|θ) which is the parameterized
function

ŷ(t|θ) = g(Zt−1, θ)

in somewhat implicit form.
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22Light Grey: Physical Modeling

Perform physical modeling (e.g. in MODELICA) and denote unknown physical
parameters by θ. Collect the model equations as

ẋ(t) = f(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ)

(or in DAE, Differential Algebraic Equations, form.) For each parameter θ this
defines a simulated (predicted) output ŷ(t|θ) which is the parameterized
function

ŷ(t|θ) = g(Zt−1, θ)

in somewhat implicit form. To be a correct predictor this really assumes
white measurement noise. Some more sophistical noise modeling is
possible, usually involving ad hoc non-linear observers.
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22Light Grey: Physical Modeling

Perform physical modeling (e.g. in MODELICA) and denote unknown physical
parameters by θ. Collect the model equations as

ẋ(t) = f(x(t), u(t), θ)

y(t) = h(x(t), u(t), θ)

(or in DAE, Differential Algebraic Equations, form.) For each parameter θ this
defines a simulated (predicted) output ŷ(t|θ) which is the parameterized
function

ŷ(t|θ) = g(Zt−1, θ)

in somewhat implicit form. To be a correct predictor this really assumes
white measurement noise. Some more sophistical noise modeling is
possible, usually involving ad hoc non-linear observers.

The approach is conceptually simple, but could be very demanding in practice.

.
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23Dark-Grey: Semi-physical Models

Apply non-linear transformations to the measured data, so that the
transformed data stand a better chance to describe the system in a linear
relationship.
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23Dark-Grey: Semi-physical Models

Apply non-linear transformations to the measured data, so that the
transformed data stand a better chance to describe the system in a linear
relationship.
“Rules: Only high-school physics and max 10 minutes”
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23Dark-Grey: Semi-physical Models

Apply non-linear transformations to the measured data, so that the
transformed data stand a better chance to describe the system in a linear
relationship.
“Rules: Only high-school physics and max 10 minutes”
Simple examples: . . ..
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23Dark-Grey: Semi-physical Models

Apply non-linear transformations to the measured data, so that the
transformed data stand a better chance to describe the system in a linear
relationship.
“Rules: Only high-school physics and max 10 minutes”
Simple examples: . . ..
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24Dark-Grey: Block-oriented Models

Building Blocks:

Linear Dynamic System
G(s)

Nonlinear static function
f(u)
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25Common Models

Wiener

Hammerstein

Hammerstein-
Wiener
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26Other Combinations

With the linear blocks parameterized as a linear dynamic system and the
static blocks parameterized as a function (“curve”), this gives a
parameterization of the output as

ŷ(t|θ) = g(Zt−1, θ)

and the general approach of model fitting can be applied.

However, in this contexts many algorithmic variants have been suggested.
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27Dark Grey: Local Linear Models

Non-linear systems are often handled by linearization around a working point.
The idea behind Local Linear Models is to deal with the nonlinearities by
selecting or averaging over relevant linearized models.
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27Dark Grey: Local Linear Models

Non-linear systems are often handled by linearization around a working point.
The idea behind Local Linear Models is to deal with the nonlinearities by
selecting or averaging over relevant linearized models.
Let the measured working point variable be denoted by ρ(t) (sometimes
called regime variable). If the regime variable is partitioned into d values ρk,
the predicted output will be

ŷ(t) =
d∑

k=1

wk(ρ(t), ρk, η)ŷ(k)(t)

where η is a parameter that describes the partitioning



Non-Linear System Identification
Lennart Ljung

SYSID’06, Newcastle, March 30, 2006 AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET
COMMUNICATION SYSTEMS

27Dark Grey: Local Linear Models

Non-linear systems are often handled by linearization around a working point.
The idea behind Local Linear Models is to deal with the nonlinearities by
selecting or averaging over relevant linearized models.
Let the measured working point variable be denoted by ρ(t) (sometimes
called regime variable). If the regime variable is partitioned into d values ρk,
the predicted output will be

ŷ(t) =
d∑

k=1

wk(ρ(t), ρk, η)ŷ(k)(t)

where η is a parameter that describes the partitioning Choices of weights
wk : . . ..
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27Dark Grey: Local Linear Models

Non-linear systems are often handled by linearization around a working point.
The idea behind Local Linear Models is to deal with the nonlinearities by
selecting or averaging over relevant linearized models.
Let the measured working point variable be denoted by ρ(t) (sometimes
called regime variable). If the regime variable is partitioned into d values ρk,
the predicted output will be

ŷ(t) =
d∑

k=1

wk(ρ(t), ρk, η)ŷ(k)(t)

where η is a parameter that describes the partitioning Choices of weights
wk : . . ..
If the prediction ŷ(k)(t) corresponding to ρk is linear in the parameters,
ŷ(k)(t) = ϕT (t)θ(k) the whole model will be a linear regression for a fixed η.

.
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28Hybrid Models and LPV Models

The model structure

ŷ(t, θ, η) =
d∑

k=1

wk(ρ(t), η)ϕT (t)θ(k)

is also an example of a hybrid model (piecewise linear). If the partition is to
be estimated too, the problem is considerably more difficult.
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28Hybrid Models and LPV Models

The model structure

ŷ(t, θ, η) =
d∑

k=1

wk(ρ(t), η)ϕT (t)θ(k)

is also an example of a hybrid model (piecewise linear). If the partition is to
be estimated too, the problem is considerably more difficult.

Linear Parameter Varying (LPV) models are also closely related:

ẋ = A(ρ(t))x + B(ρ(t))u

y = C(ρ(t))x + D(ρ(t))u
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28Hybrid Models and LPV Models

The model structure

ŷ(t, θ, η) =
d∑

k=1

wk(ρ(t), η)ϕT (t)θ(k)

is also an example of a hybrid model (piecewise linear). If the partition is to
be estimated too, the problem is considerably more difficult.

Linear Parameter Varying (LPV) models are also closely related:

ẋ = A(ρ(t))x + B(ρ(t))u

y = C(ρ(t))x + D(ρ(t))u

Notice the link to non-parametric Local Polynomial Models in statistics!
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29Summary: Nonlinear Models

■ A nonlinear model can be seen as nonlinear mapping from past data to
the space where the output lives: ŷ(t|t − 1) = g(Zt−1, t). Observations
are then y(t) = ŷ(t|t − 1) + e(t).
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are then y(t) = ŷ(t|t − 1) + e(t).

■ Useful split of mapping: g(Zt−1) = g(ϕ(Zt−1, t))

■ Non-parametric and Parametric methods – Essentially Curve-fitting

■ Black-box and Grey-box parameterizations g(ϕ, θ)

■ Black-box parameterizations usually employ one basic basis-function,
that is scaled and located at different points



Non-Linear System Identification
Lennart Ljung

SYSID’06, Newcastle, March 30, 2006 AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET
COMMUNICATION SYSTEMS

29Summary: Nonlinear Models

■ A nonlinear model can be seen as nonlinear mapping from past data to
the space where the output lives: ŷ(t|t − 1) = g(Zt−1, t). Observations
are then y(t) = ŷ(t|t − 1) + e(t).

■ Useful split of mapping: g(Zt−1) = g(ϕ(Zt−1, t))

■ Non-parametric and Parametric methods – Essentially Curve-fitting

■ Black-box and Grey-box parameterizations g(ϕ, θ)

■ Black-box parameterizations usually employ one basic basis-function,
that is scaled and located at different points

■ Grey-boxes can be based on (serious) physical modeling and on more
leisurely semi-physical modeling.
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29Summary: Nonlinear Models

■ A nonlinear model can be seen as nonlinear mapping from past data to
the space where the output lives: ŷ(t|t − 1) = g(Zt−1, t). Observations
are then y(t) = ŷ(t|t − 1) + e(t).

■ Useful split of mapping: g(Zt−1) = g(ϕ(Zt−1, t))

■ Non-parametric and Parametric methods – Essentially Curve-fitting

■ Black-box and Grey-box parameterizations g(ϕ, θ)

■ Black-box parameterizations usually employ one basic basis-function,
that is scaled and located at different points

■ Grey-boxes can be based on (serious) physical modeling and on more
leisurely semi-physical modeling.

■ Non-convexity of the optimization remains one of the more serious
problems for most parametric methods.
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30Conclusions for the SYSID Community

■ For Tomorrow’s Panel Discussion ...
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