

The Confusion

Support Vector Machines* Manifold learning *prediction error method * Partial Least Squares * Regularization * Local Linear Models * Neural Networks * Bayes method * Maximum Likelihood * Akaike's Criterion * The Frisch Scheme * MDL * Errors in Variables * MOESP * Realization Theory * Closed Loop Identification * Cram'er - Rao * Identification for Control * N4SID * Experiment Design * Fisher Information * Local Linear Models * Kullback-Liebler Distance * MaximumEntropy * Subspace Methods * Kriging * Gaussian Processes * Ho-Kalman * Self Organizing maps * Quinlan's algorithm * Local Polynomial Models * Direct WeighlOptimization * PCA * Canonical Correlations * RKHS * Cross * Validation * op-integration * GARCH * Box-Jenkins * Output Error * Total Least Squares * ARMAX * Time Series * ARX * Nearest neighbors * Vector Quantization * VC-dimension * Rademacher averages * Manifold Learning * Local Linear Embedding * Linear Parameter Varying Models * Kernel smoothing * Mercer * Conditions * The Kernel trick * ETFE * Blackman-Tukey * GMDH * Wavelet Transform * Regression Trees * Yuler - Walker equations * Inductive Logic Programming * Machine Learning * Perceptron * Backpropagation * Threshold Logic * LS* SVM Generalizion* CCA * Mestimator * Boosting * Additive Trees * MART * MARS * EM algorithm * MCMC * Particle Filters * PRIM * BIC * Innovations form * Adaboost * ICA * LDA * Boostrap * Sparrating * University * Shrinkage * Factor Analysis * ANOVA * * Multivariate Analysis

This Talk

Two objectives:

- Place System Identification on the global map. Who are our neighbours in this part of the universe?
- Discuss some open areas in System Identification.

The communities

- Constructing (mathematical) models from data is a prime problem in many scientific fields and many application areas.
- Many communities and cultures around the area have grown, with their own nomenclatures and their own ``social lives".
- This has created a very rich, and somewhat confusing, plethora of methods and approaches for the problem.

A picture: There is a core of central material, encircled by the different communities

The core Model \mathfrak{m} – Model Set \mathcal{M} – Complexity (Flexibility) \mathcal{C} Information \mathcal{I} – Data ZEstimation – Validation (Learning – Generalization) Model fit $\mathcal{F}(\mathfrak{m}, Z)$

ing/generalization result, Rademacher averages ...) So don't be impressed by a good fit to data in a flexible model set!

Information Contents in Data and the CR Inequality

The value of information in data depends on prior knowledge. Observe Y. Let its probability density function be $f_Y(x,\theta)$ The (Fisher) Information Matrix is

$$\mathcal{I} = E\ell_Y'(\ell_Y')^T, \qquad \ell_Y' = \frac{\partial}{\partial \theta} \log f_Y(x, \theta)$$

The Cramér-Rao inequality tells us that

$$\cos \hat{\theta} \ge \mathcal{I}^{-1}$$

for any (unbiased) estimator $\hat{\theta}$ of the parameter.

 \mathcal{I} is thus a prime quantity for Experiment Design.

The Communities Around the Core I

- Statistics : The the mother area
- ... EM algorithm for ML estimation
 - Resampling techniques (bootstrap...)
 - Regularization: LARS, Lasso ...
- Statistical learning theory
 - Convex formulations, SVM (support vector machines)
 - VC-dimensions
- Machine learning
 Grown out of artificial intelligence: Logical trees, Self-organizing maps.

 Applications influence from statistics:
 - More and more influence from statistics: Gaussian Proc., HMM, Baysian nets

The Communities Around the Core II

Manifold learning

- Observed data belongs to a high-dimensional space
- The action takes place on a lower dimensional manifold: Find that!

Chemometrics

- High-dimensional data spaces (Many process variables)
- Find linear low dimensional subspaces that capture the essential state: PCA, PLS (Partial Least Squares), ..

Econometrics

- Volatility Clustering
- Common roots for variations

The Communities Around the Core III

Data mining

- Sort through large data bases looking for information: ANN, NN, Trees, SVD...
 Google, Business, Finance...

Artificial neural networks

- Origin: Rosenblatt's perceptron
- Flexible parametrization of hypersurfaces

Fitting ODE coefficients to data
 No statistical framework: Just link ODE/DAE solvers to optimizers

System Identification

- Experiment design
- Dualities between time- and frequency domains

System Identification Past and Present

Two basic avenues, both laid out in the 1960's

- Statistical route: ML etc: Åström-Bohlin 1965
- Prediction error framework: postulate predictor and apply curve-fitting
- Realization based techniques: Ho-Kalman 1966
 - · Construct/estimate states from data and apply LS (Subspace methods).

Past and Present:

- Useful model structures
- Adapt and adopt core's fundamentals
- Experiment Design
 - ...with intended model use in mind ("identification for control")

System Identification - Future: Open Areas

- Spend more time with our neighbours!
 - Report from a visit later on
- Model reduction and system identification
- Issues in identification of nonlinear systems
- Meet demands from industry
- Convexification
 - Formulate the estimation task as a convex optimization problem

Model Reduction

System Identification is really "System Approximation" and therefore closely related to Model Reduction.

Model Reduction is a separate area with an extensive literature (``another satellite"), which can be more seriously linked to the system identification field.

- Linear systems linear models
 Divide, conquer and reunite (outputs)!
- Non-linear systems linear models

 Understand the linear approximation is it good for control?
- Nonlinear systems -- nonlinear reduced models

 Much work remains

Linear Systems - Linear Models Divide - Conquer - Reunite!

Next fit 8 SISO models of

order 12, one for each output:

Helicopter data: 1 pulse input; 8 outputs

(only 3 shown here).

zd; measured mm; fit: 99.28

- Spend more time with our neighbours!
 - Report from a visit later on
- Model reduction and system identification
- Issues in identification of nonlinear systems
- Meet demands from industry
- Convexification
 - Formulate the estimation task as a convex optimization problem

