The Confusion Support Vector Machines* Manifold learning *prediction error method * Partial Least Squares * Regularization * Local Linear Models * Neural Networks * Bayes method * Maximum Likelihood * Akaike's Criterion * The Frisch Scheme * MDL * Errors in Variables * MOESP * Realization Theory * Closed Loop Identification * Cram'er - Rao * Identification for Control * N4SID * Experiment Design * Fisher Information * Local Linear Models * Kullback-Liebler Distance * MaximumEntropy * Subspace Methods * Kriging * Gaussian Processes * Ho-Kalman * Self Organizing maps * Quinlan's algorithm * Local Polynomial Models * Direct WeighlOptimization * PCA * Canonical Correlations * RKHS * Cross * Validation * op-integration * GARCH * Box-Jenkins * Output Error * Total Least Squares * ARMAX * Time Series * ARX * Nearest neighbors * Vector Quantization * VC-dimension * Rademacher averages * Manifold Learning * Local Linear Embedding * Linear Parameter Varying Models * Kernel smoothing * Mercer * Conditions * The Kernel trick * ETFE * Blackman-Tukey * GMDH * Wavelet Transform * Regression Trees * Yuler - Walker equations * Inductive Logic Programming * Machine Learning * Perceptron * Backpropagation * Threshold Logic * LS* SVM Generalizion* CCA * Mestimator * Boosting * Additive Trees * MART * MARS * EM algorithm * MCMC * Particle Filters * PRIM * BIC * Innovations form * Adaboost * ICA * LDA * Boostrap * Sparrating * University * Shrinkage * Factor Analysis * ANOVA * * Multivariate Analysis ### This Talk ### Two objectives: - Place System Identification on the global map. Who are our neighbours in this part of the universe? - Discuss some open areas in System Identification. ### The communities - Constructing (mathematical) models from data is a prime problem in many scientific fields and many application areas. - Many communities and cultures around the area have grown, with their own nomenclatures and their own ``social lives". - This has created a very rich, and somewhat confusing, plethora of methods and approaches for the problem. A picture: There is a core of central material, encircled by the different communities # The core Model \mathfrak{m} – Model Set \mathcal{M} – Complexity (Flexibility) \mathcal{C} Information \mathcal{I} – Data ZEstimation – Validation (Learning – Generalization) Model fit $\mathcal{F}(\mathfrak{m}, Z)$ ing/generalization result, Rademacher averages ...) So don't be impressed by a good fit to data in a flexible model set! # Information Contents in Data and the CR Inequality The value of information in data depends on prior knowledge. Observe Y. Let its probability density function be $f_Y(x,\theta)$ The (Fisher) Information Matrix is $$\mathcal{I} = E\ell_Y'(\ell_Y')^T, \qquad \ell_Y' = \frac{\partial}{\partial \theta} \log f_Y(x, \theta)$$ The Cramér-Rao inequality tells us that $$\cos \hat{\theta} \ge \mathcal{I}^{-1}$$ for any (unbiased) estimator $\hat{\theta}$ of the parameter. \mathcal{I} is thus a prime quantity for Experiment Design. ### The Communities Around the Core I - Statistics : The the mother area - ... EM algorithm for ML estimation - Resampling techniques (bootstrap...) - Regularization: LARS, Lasso ... - Statistical learning theory - Convex formulations, SVM (support vector machines) - VC-dimensions - Machine learning Grown out of artificial intelligence: Logical trees, Self-organizing maps. Applications influence from statistics: - More and more influence from statistics: Gaussian Proc., HMM, Baysian nets ### The Communities Around the Core II ### Manifold learning - Observed data belongs to a high-dimensional space - The action takes place on a lower dimensional manifold: Find that! ### Chemometrics - High-dimensional data spaces (Many process variables) - Find linear low dimensional subspaces that capture the essential state: PCA, PLS (Partial Least Squares), .. ### Econometrics - Volatility Clustering - Common roots for variations ### The Communities Around the Core III ### Data mining - Sort through large data bases looking for information: ANN, NN, Trees, SVD... Google, Business, Finance... ### Artificial neural networks - Origin: Rosenblatt's perceptron - Flexible parametrization of hypersurfaces Fitting ODE coefficients to data No statistical framework: Just link ODE/DAE solvers to optimizers ### System Identification - Experiment design - Dualities between time- and frequency domains # System Identification Past and Present ### Two basic avenues, both laid out in the 1960's - Statistical route: ML etc: Åström-Bohlin 1965 - Prediction error framework: postulate predictor and apply curve-fitting - Realization based techniques: Ho-Kalman 1966 - · Construct/estimate states from data and apply LS (Subspace methods). ### Past and Present: - Useful model structures - Adapt and adopt core's fundamentals - Experiment Design - ...with intended model use in mind ("identification for control") # System Identification - Future: Open Areas - Spend more time with our neighbours! - Report from a visit later on - Model reduction and system identification - Issues in identification of nonlinear systems - Meet demands from industry - Convexification - Formulate the estimation task as a convex optimization problem ### **Model Reduction** System Identification is really "System Approximation" and therefore closely related to Model Reduction. Model Reduction is a separate area with an extensive literature (``another satellite"), which can be more seriously linked to the system identification field. - Linear systems linear models Divide, conquer and reunite (outputs)! - Non-linear systems linear models Understand the linear approximation is it good for control? - Nonlinear systems -- nonlinear reduced models Much work remains # **Linear Systems - Linear Models** Divide - Conquer - Reunite! Next fit 8 SISO models of order 12, one for each output: Helicopter data: 1 pulse input; 8 outputs (only 3 shown here). zd; measured mm; fit: 99.28 - Spend more time with our neighbours! - Report from a visit later on - Model reduction and system identification - Issues in identification of nonlinear systems - Meet demands from industry - Convexification - Formulate the estimation task as a convex optimization problem