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The Problem
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The Problem

Aircraft Dynamics:

Brain Activity (fMRI):

Pulp Buffer Vessel:

Industrial Engineering:

From Data to Model
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The Communities

Constructing (mathematical) models from data is a prime problem in many
scientific fields and many application areas.
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Constructing (mathematical) models from data is a prime problem in many
scientific fields and many application areas.

Many communities and cultures around the area have grown, with their own
nomenclatures and their own “social lives”.
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The Communities

Constructing (mathematical) models from data is a prime problem in many
scientific fields and many application areas.
Many communities and cultures around the area have grown, with their own

nomenclatures and their own “social lives”.
This has created a very rich, and somewhat confusing, plethora of methods

and approaches for the problem.
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The Communities

Constructing (mathematical) models from data is a prime problem in many
scientific fields and many application areas.
Many communities and cultures around the area have grown, with their own

nomenclatures and their own “social lives”.
This has created a very rich, and somewhat confusing, plethora of methods

and approaches for the problem.

A picture: There is a core of cen- 1
tral material, encircled by the different °
communities.
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E The Core

Central terms
" Model m — Model Class M — Complexity (Flexibility) C

® |nformation Z — Data Z
m Estimation — Validation (Learning — Generalization)

= Model fit 7(m, 2)
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E Estimation

From Data to Model
Lennart Ljung

iInformation in data
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E Estimation

Squeeze out the relevant information in data
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E Estimation

Squeeze out the relevant information in data. (BUT NOT MORE!)
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E Estimation

Squeeze out the relevant information in data. (BUT NOT MORE!)
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All data contain Information and Misinformation (“Signal and noise”).
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E Estimation

Squeeze out the relevant information in data. (BUT NOT MORE!)
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All data contain Information and Misinformation (“Signal and noise”).

So need to meet the data with a prejudice!
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Bl cstimation Prejudices
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Nature is Simple!
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Nature is Simple! (Occam’s razor, Lex Parsimoniae...)

God is subtle, but He is not malicious (Einstein)
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Bl cstimation Prejudices

Nature is Simple! (Occam’s razor, Lex Parsimoniae...)
God is subtle, but He is not malicious (Einstein)

So, conceptually:

m = arg n{%% (Fit + Complexity Penalty)
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Bl cstimation Prejudices

Nature is Simple! (Occam’s razor, Lex Parsimoniae...)
God is subtle, but He is not malicious (Einstein)

So, conceptually:

m = arg min (Fit + Complexity Penalty)
meM
Examples:
m Search for a model in sets with a maximal Complexity

m The Akaike criterion
®m Regularization
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E Estimation and Validation

Fit to estimation data Z"  (IN: Number of data points)

F(m,zN)  ("The empirical risk")
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E Estimation and Validation

Fit to estimation data Z"  (IN: Number of data points)
F(m,zN)  ("The empirical risk")
Now try your model on a fresh data set (Validation data Z,):

EF(w, Z,) = F(t, Z;) + f(C(M), N)
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E Estimation and Validation

Fit to estimation data Z»  (IN: Number of data points)
F(m,zN)  ("The empirical risk")
Now try your model on a fresh data set (Validation data Z,):
EF(, Zy) = F(i, Z,' ) + f(C(M), N)

f increases with the complexity C and decreases with N, so the more
flexible the model set the worse fit to validation data.
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Fit to estimation data Z»  (IN: Number of data points)
F(m,zN)  ("The empirical risk")
Now try your model on a fresh data set (Validation data Z,):
EF(, Zy) = F(i, Z,' ) + f(C(M), N)

f increases with the complexity C and decreases with N, so the more
flexible the model set the worse fit to validation data.

In words: If you have a model that describes the estimation data well, the fit
will be (much) worse when you try it on validation data.
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E Estimation and Validation

Fit to estimation data Z»  (IN: Number of data points)
F(m,zN)  ("The empirical risk")
Now try your model on a fresh data set (Validation data Z,):
EF(, Zy) = F(i, Z,' ) + f(C(M), N)

f increases with the complexity C and decreases with N, so the more
flexible the model set the worse fit to validation data.

In words: If you have a model that describes the estimation data well, the fit
will be (much) worse when you try it on validation data.

So don’t be impressed by a good fit to estimation data in a flexible model set!
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E Bias and Variance

S — True system M — Model set m — Estimate
m* — Expected model m* = Em Typically m* = arg mingen [|S — m||?
Then
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S — True system M — Model set m — Estimate
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Then
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E Bias and Variance

S — True system M — Model set m — Estimate
m* — Expected model m* = Em Typically m* = arg mingen [|S — m||?
Then
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MSE = B: BIAS + V: Variance

Error: = Systematic+Random
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E Bias and Variance

S — True system M — Model set m — Estimate
m* — Expected model m* = Em Typically m* = arg mingen [|S — m||?
Then

E||S —m|? = IS — m*|*+E|k — m*|?
MSE = B: BIAS -+ V: Variance

Error: = Systematic+Random

As model complexity increases, Bias decreases and Variance increases
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E Bias and Variance

S — True system M — Model set m — Estimate
m* — Expected model m* = Em Typically m* = arg mingen [|S — m||?
Then

E||S —m|? = IS — m*|*+E|k — m*|?
MSE = B: BIAS -+ V: Variance

Error: = Systematic+Random
As model complexity increases, Bias decreases and Variance increases

This bias/variance trade-off is at the heart of estimation.

Note that the model complexity that minimizes the MSE typically has a
non-zero systematic error.
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Information Contents in Data and the CR Inequality

Bottom line: There is a theoretic best accuracy that can be achieved in
estimation, independent of methods and computational effort. This bound
depends on prior knowledge and data quality.
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Information Contents in Data and the CR Inequality

Bottom line: There is a theoretic best accuracy that can be achieved in
estimation, independent of methods and computational effort. This bound
depends on prior knowledge and data quality.

Formalization: Observe Y. Let its probability density function (pdf) be fy (x, 0)
The (Fisher) Information Matrix is
0

T = E0, (07T, 05 = = log fy (x, 0)
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Information Contents in Data and the CR Inequality

Bottom line: There is a theoretic best accuracy that can be achieved in
estimation, independent of methods and computational effort. This bound
depends on prior knowledge and data quality.

Formalization: Observe Y. Let its probability density function (pdf) be fy (x, 0)
The (Fisher) Information Matrix is

.
T = E0, (07T, 05 = = log fy (x, 0)

The Cramér-Rao inequality tells us that

covl > 71

for any (unbiased) estimator 6 of the parameter.

7 is thus a prime guantity for Experiment Design.
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The Communities Around the Core |

m Statistics, The Mother Area

e Recent activities...
e Bootstrap

e Regularization to control complexity (LASSO, LARS,...)
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The Communities Around the Core |

m Statistics, The Mother Area

e Recent activities...
e Bootstrap

e Regularization to control complexity (LASSO, LARS,...)

= Econometrics
e \olatility Clustering (varying variance), GARCH

e Common roots for variations (co-integration)
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m Statistics, The Mother Area

e Recent activities...
e Bootstrap

e Regularization to control complexity (LASSO, LARS,...)
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e \olatility Clustering (varying variance), GARCH

e Common roots for variations (co-integration)

m Statistical Learning Theory

e Convex Formulations, SVM
e VC-dimensions
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The Communities Around the Core Il

® Chemometrics — Statistical Process Control
e High-dimensional Data Spaces (Many process variables)
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The Communities Around the Core Il

® Chemometrics — Statistical Process Control

e High-dimensional Data Spaces (Many process variables)
®m Data Mining

e The Internet!
® Machine Learning

e Grown out of artificial intelligence, more and more statistically
oriented
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The Communities Around the Core Il

® Chemometrics — Statistical Process Control

e High-dimensional Data Spaces (Many process variables)
®m Data Mining

e The Internet!
® Machine Learning

e Grown out of artificial intelligence, more and more statistically
oriented

= System ldentification
e Dynamical systems
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. The System

Output

rgdders speed
ailerons pitch angle

th ru§t velocity vector
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: The Model

rgdders speed
ailerons pitch angle

thrust

velocity vector
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The ldentification: Prediction Error Identification

Let the model predict the next output and minimize the error in prediction:.

Fitting Models to Data

Measured Output

MINIMIZE
Measured

Model Output
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How to come up with the class of models?

m Use physical insights/common sense together with standard flexible
model classes:

m Color Coded: Black-box, Grey-box, White and Off-White Models.

m | et us look at a concrete example from Process Industry
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Buffer Vessel Dynamics

x-number of outflow, flow
x-number of inflow, volume
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Model Based on Raw Data

Measured and Model Output

0 1 2 3 4 5 6
Time (hours)

Black line: k-number after the vessel, actual measurements.
Blue line: Simulated x-number using the input only and a process model

estimated using the first 200 data points. G(s) = 1yt e
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Now It's time to

Think: ....
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Now It's time to

Think: ....

If no mixing in tank (“plug flow”) a particle that enters the top will exit T’
seconds later, where

m3/s

Tank Volume m3
T = : S
Flow
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f

_  Now It's time to

Think: ....

If no mixing in tank (“plug flow”) a particle that enters the top will exit T’
seconds later, where

~ Tank Volume [ m> ]

Flow m3/s —

But this "natural delay time” is time-varying: 7' = T'(t), since flow and volume
changes
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So: Resample Data!

z = [y,u]; pf =flow/level;

t = 1: ength(z)

newt = interpl([cunsunm(pf),t],[pf(1l):sumpf)]’);
newz = interpl([t, z], nevvt)

K—number of Inflow
T T T

25 T T T T
20 N
15 N
10+ T
5 I I I I I I I

k—number of Outflow
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Semi-physical Model

Measured and Model Output
6 T T T T T

0 200 400 600 800 1000 1200
Production units G(S) = - 0i81%)1268 6—369.585
+ .28s
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System ldentification - General Remarks

= Another satellite encircling the core.
= Deals with mathematical models of dynamic systems.
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System ldentification - General Remarks

= Another satellite encircling the core.
= Deals with mathematical models of dynamic systems.

= Typical themes:

e Useful model structures
e Adapt and adopt the core’s fundamentals: Prediction error methods

e Experiment design (make 7 large)
- with intended model use in mind (“identification for control”)
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Rather From Data to Action
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Rather From Data to Action

Let us first watch a thought-provoking video (from Carl Rasmussen at
Cambridge). It takes 1.5 minutes.
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Rather From Data to Action

Let us first watch a thought-provoking video (from Carl Rasmussen at
Cambridge). It takes 1.5 minutes.

What is going on?

At time ¢, let the position of the pendulum be y(t) and the control action (the

force on the cart) u(t).
Somehow we need to understand the mapping u(t) = y(t).
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Let us first watch a thought-provoking video (from Carl Rasmussen at
Cambridge). It takes 1.5 minutes.

What is going on?

At time ¢, let the position of the pendulum be y(t) and the control action (the
force on the cart) u(t).
Somehow we need to understand the mapping u(t) = y(t).

But the result of the action depends on where the pendulum is, so if
x(t): pendulum’s angle, angular velocity, cart position and cart velocity

we need to find a function y(t) = f(x(t), u(t))
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Rather From Data to Action

Let us first watch a thought-provoking video (from Carl Rasmussen at
Cambridge). It takes 1.5 minutes.

What is going on?

At time ¢, let the position of the pendulum be y(t) and the control action (the
force on the cart) u(t).
Somehow we need to understand the mapping u(t) = y(t).

But the result of the action depends on where the pendulum is, so if
x(t): pendulum’s angle, angular velocity, cart position and cart velocity
we need to find a function y(t) = f(x(t), u(t))

How to estimate a function f?
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Function (curve) Estimation

25
20
15

10

5 red: The unknown
curve
blue: our current guess

5 yellow: our uncertainty

10 20 30 40 50 60 70 80 90 100
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Learning by Bayes Theorem

star: observation

blue: smooth curve
with certain correlation
yellow: our uncertainty

The info from the mea-
surement propagates

due to the correlation

10 20 30 40 50 60 70 80 90 100
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Learning by Bayes Theorem - Gaussian Processes

star: observation

blue: smooth curve
with certain correlation
yellow: our uncertainty

The info from the mea-
surement propagates

due to the correlation

10 20 30 40 50 60 70 80 90 100
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Learning by Bayes Theorem - Kriging

star: observation

blue: smooth curve
with certain correlation
yellow: our uncertainty

The info from the mea-
surement propagates

due to the correlation

10 20 30 40 50 60 70 80 90 100
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Learning by Bayes Theorem

star: observation

blue: smooth curve
with certain correlation
yellow: our uncertainty

The info from the mea-
surement propagates

due to the correlation
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Learning with Bayes — “Gaussian Processes”

We have a good esti-

mate of the curve with
10 observations (which

are pretty dense com-
pared to the 880 ob-

servations in the b5-
dimensional space of

_15) | the pendulum)
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Connection to System ldentification

BTW, finding the function f that predicts the next output(pendulum position)
from the currect input (force on cart) and “state” (pendulum and cart
movement) is the same problem as a prediction error method.

It is just that we have no parameterization of the prediction fuction, and don’t

want to introduce any physical knowledge, but just estimate it as a (smooth)
curve.
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= Relatively few leading principles (“The core”)

m Basic Principles are “classical”
e Prediction error identification <= K.F. Gauss (1777-1855)
e Pendulum — Prediction function learning <= T. Bayes (1702-1761)

m [uture:
e Can’t beat the theoretical limits
e Can use (massively) more data

e More “data mining” in model building
e More contacts between the Communities
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Methods — Bottom Line

Find function for predicting next observation!
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