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System Identification

A Typical Problem

Given Observed Input-Output Data: Find the Impulse Response (IR)
of the System that Generated the Data

Basic Approach

Find a suitable Model Structure, Estimate its parameters, and com-
pute the IR of the resulting model

Techniques

Estimate the parameters by ML techniques/PEM (prediction error
methods). Find the model structure by AIC, BIC or Cross Validation
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Status of the “Standard Framework”

The model structure is large enough (to contain a correct
system description): The ML/PEM estimated model is
(asymptotically) the best possible one. Has smallest possible
variance (Cramér- Rao)

The model structure is not large enough: The ML/PEM estimate
converges to the best possible approximation of the system (for
the experiment conditions in question). Smallest possible
“asymptotic bias”

The mean square error (MSE) of the estimate is
MSE=Bias2+Variance

The choice of “size” of the models structure governs the
Bias/Variance Trade Off.
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What are the Structure Issues? - Part I

Structure = Model Structure

M(θ) e.g.

x(t + 1) = A(θ)x(t) + B(θ)u(t) + w(t)
y(t) = C(θ)x(t) + e(t)

Find the parameterization!
Today: No particular internal structure, just need to determine the
order n = dim x. Also, no noise model (w ≡ 0) (“Output error
models.”)
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A Simple Experiment

Look at data from a randomly generated system (selected, but
typical)
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Estimate models of different orders k = 1, . . . , 30 by PEM/ML
m(k)= pem(data,k,’dist’,’no’);
Now we have 30 models, which one to pick?
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Hypothesis Tests: Compare Loss Functions (Criteria)

Loss function (neg log likelihood):
V = 1/N ∑N

t=1 |y(t)− ŷ(t|t− 1)|2
Model Order Log V

1 -0.41
2 -2.08
4 -2.40
6 -2.57
9 -2.76

11 -2.80
17 -2.88
19 -2.88
22 -2.96
29 -3.22
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Hypothesis Tests: Compare Fits

Fit= (1−
√

V
1/N ∑ |y|2 ) ∗ 100): The percentage of the output

variation, reproduced by the model.

Model Order Log V Fit
1 -0.41 7.04
2 -2.08 61.28
4 -2.40 65.52
6 -2.57 68.28
9 -2.76 71.19

11 -2.80 71.68
17 -2.88 72.87
19 -2.88 72.91
22 -2.96 74.00
29 -3.22 77.25
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Hypothesis Tests: Compare Fits for Validation Data

CVFit=Compute the model’s fit on independent validation data.

Model Order Log V Fit CVFit
1 -0.41 7.04 -2.14
2 -2.08 61.28 57.40
4 -2.40 65.52 60.37
6 -2.57 68.28 61.29
9 -2.76 71.19 60.32

11 -2.80 71.68 61.43
17 -2.88 72.87 56.01
19 -2.88 72.91 58.07
22 -2.96 74.00 56.37
29 -3.22 77.25 -57.89
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Hypothesis Tests: Compare AIC and BIC Criteria

AIC = log (Loss) + 2*dim( θ)/N
BIC = log (Loss) + log(N)*dim( θ)/N
N = number of observed data

Model Order Log V Fit CVFit AIC BIC
1 -0.41 7.04 -2.14 6.01 4.50
2 -2.08 61.28 57.40 58.64 57.30
4 -2.40 65.52 60.37 63.52 59.85
6 -2.57 68.28 61.29 65.46 60.13
9 -2.76 71.19 60.32 67.26 59.40

11 -2.80 71.68 61.43 66.88 56.92
17 -2.88 72.87 56.01 65.40 48.04
19 -2.88 72.91 58.07 64.39 43.91
22 -2.96 74.00 56.37 64.34 39.67
29 -3.22 77.25 -57.89 65.25 30.49
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Enter ZZZ: A New Method for Order Determination

H. Hjalmarsson gave me some new code: mz = ZZZ(data).
His algorithm is not published yet. It is a way to find the simplest model that
has a fit (sum of squared innovations) that is not falsified relative to a crude
estimate of the innovations variance.

Model Order Log V Fit CVFit AIC BIC ZZZ
1 -0.41 7.04 -2.14 6.01 4.50 -
2 -2.08 61.28 57.40 58.64 57.30 -
4 -2.40 65.52 60.37 63.52 59.85 *
6 -2.57 68.28 61.29 65.46 60.13 -
9 -2.76 71.19 60.32 67.26 59.40 -

11 -2.80 71.68 61.43 66.88 56.92 -
17 -2.88 72.87 56.01 65.40 48.04 -
19 -2.88 72.91 58.07 64.39 43.91 -
22 -2.96 74.00 56.37 64.34 39.67 -
29 -3.22 77.25 -57.89 65.25 30.49 -
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Where Are We Now?

We have computed 30 models of orders 1 to 30. We have four
suggestion for which model to pick:

Cross Validation: Order 11

AIC Criterion: Order 9

BIC Criterion: Order 6

ZZZ Criterion: Order 4

Which choice is really best?
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Enter the Oracle!

In this simulated case the true systems is known, and we can
compute the actual fit between the true impulse response (from time
1 to 100) and responses of the 30 models:

Order Log V Fit CVFit AIC BIC ZZZ Actual Fit
1 -0.41 7.04 -2.14 6.01 4.50 - 6.89
2 -2.08 61.28 57.40 58.64 57.30 - 77.01
4 -2.40 65.52 60.37 63.52 59.85 * 85.80
6 -2.57 68.28 61.29 65.46 60.13 - 83.18
9 -2.76 71.19 60.32 67.26 59.40 - 80.81

11 -2.80 71.68 61.43 66.88 56.92 - 79.57
17 -2.88 72.87 56.01 65.40 48.04 - 77.65
19 -2.88 72.91 58.07 64.39 43.91 - 79.66
22 -2.96 74.00 56.37 64.34 39.67 - 78.91
29 -3.22 77.25 -57.89 65.25 30.49 - 72.61
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Lessons from This Test of the Traditional Approach

Relatively straightforward (but somewhat time-consuming) to
estimate all models.

No definite rule to select the best model order.

In this case Hjalmarsson’s ZZZ order test gave the best advice
(showing that there is much more to model order selection than
the traditional tests)

The fit 85.80% is the best fit among all the 30 models, showing
that this is the best impulse response we can achieve within the
traditional approach.
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Enter XXX

Another friend of mine (Gianluigi Pillonetto) gave me an m-file to test:
mx = xxx(data)
It produces an FIR model mx of order 100. The fit of this model’s
impulse response to the true one is
87.51 %!!
Recall that the best possible fit among the traditional models was
85.80 %!
Well, mx is not a state space model of manageable order. But e.g.
m7=balred(mx,7) is a 7th order state space model with a IR fit of
87.12 %. Note that the 7th order ML model had a fit of 77.56 %.
Some cracks in the foundation of the standard approach.

So what does xxx do?
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XXX: Regularized FIR Models

From an (finite)impulse response model

y(t) =
n

∑
k=1

g(k)u(t− k) + v(t); t = 1, . . . , N

a simple linear regression can be formed

Y = ΦTθ + V

with θ being the vector of g(k) and Φ constructed from the inputs
u(s).
XXX then estimates θ as the regularized Least Squares estimate

θ̂N = arg min
θ
‖Y−ΦTθ‖2 + θTD−1θ

for some carefully chosen regularization matrix D.
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Structure Issues – Part II: How to Choose the
Regularization Matrix D?

The focus of the question of suitable structures for the identification
problem is then shifted from discrete model orders to continuous
tuning of D.

The bias-variance trade-off has thus become a richer problem.

There are not many concrete analytical method for how to
parameterize and tune the regularization matrix (which contains
≈ n2/2, n ∼ 100 elements). The more technical part of this
presentations will discuss one particular parametrization and tuning
algorithm.
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Choice of D: Classical Perspective

From a classical, frequentist point of view we can compute the MSE
matrix of the impulse response vector: Let EVVT = I, R = ΦΦT

and θ0 be the true impulse response. Then

MSE(D) =E(θ̂N − θ0)(θ̂N − θ0)
T =

(R + D−1)−1(R + D−1θ0θ0
TD−T)(R + D−1)−1

This is minimized wrt D (also in matrix sense) by

Dopt = θ0θT
0

What is the best average MSE over a set {θ0} with Eθ0θT
0 = P?

E MSE(D) = (R + D−1)−1(R + D−1PD−T)(R + D−1)−1

Minimized by Dopt = P. Notice the link to Bayesian framework!
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Parameterization of D

So, the matrix – or the Kernel –D should mimic typical behavior of
the impulse responses, like exponential decay and smoothness. A
common choice is TC (“Tuned/Correlated”) (what was used in XXX);

DTC
j,k (α) = C min(λk, λj), λ < 1 α = [C, λ]

Related, common kernels are DC(Diagonal/Correlated) and SS
(Stable Splines).

DDC
j,k (α) = Cλ(j+k)/2ρ|j−k|, α = [C, λ, ρ]

DSS
j,k (α) = C

λ2k

2
(λj − λk

3
), k ≥ j, α = [C, λ]

Lennart Ljung

Using Multiple Kernal-based Regularization for Linear System Identification

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Tuning of the Parameters D

The kernel D(α) depends on the hyper-parameters α. They can be
tuned by invoking a Bayesian interpretation:

Y = ΦTθ + V

V ∈ N(0, σ2I), θ ∈ N(0, D(α)), Φ known

Y ∈ N(0, Σ(α)), Σ(α) = ΦTD(α)Φ + σ2I

ML estimate of α: (“Empirical Bayes”)

α̂ = arg min
α

YTΣ(α)−1Y + log det Σ(α)

(Typically Non-Convex Problem)
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Wish List for D: Three Properties

1. Should have a flexible structure so that diverse and complicated
dynamics can be captured

2. Should make the non-convex hyper-parameter estimation
problem (”the empirical Bayes estimate”) easy to solve

• an efficient algorithm and implementation to tackle the marginal
likelihood maximization problem

3. Should have the capability to tackle problems of finding sparse
solutions arising in system identification

• sparse dynamic network identification problem
• segmentation of linear systems
• change detection of linear systems

Lennart Ljung

Using Multiple Kernal-based Regularization for Linear System Identification

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET



Suggested Solution: Multiple Kernels

The multiple kernel given by a conic combination of certain suitably
chosen fixed kernels has these features.

D(α) =
m

∑
i=1

αiPi, α =
[
α1, · · · , αm

]T
(1)

where Pi � 0 and αi ≥ 0, i = 1, · · · , m

The fixed kernels Pi can be instances of any existing kernels,
such as SS, TC and DC for selected values of their
hyper-parameters
The fixed kernels Pi can also be constructed as

Pi = θ̂iθ̂
T
i (2)

where θ̂i contains the impulse response coefficients of a
preliminary model.
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1. Capability to Better Capture Diverse Dynamics

Consider second order systems in the form of

G0(q) =
z1q−1

1− p1q−1 +
z2q−1

1− p2q−1 (3)

where z1 = 1, z2 = −50 and pi, i = 1, 2 are generated as p1 =
rand(1)/2+0.5 and p2 = sign(randn(1))*rand(1)/2.
Compare conventional kernels (TC, SS, DC) with a multiple kernel
consisting of 20 fixed TC kernels for different vales of λ (TC-M).
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Boxplots of Fits over 1000 Systems.

The Fit is as before the relative fit between the impulse responses of
the true system and the model, in %. (100% is a perfect fit)
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2. Efficient Hyper-parameter Estimation

Recall the Empirical Bayes kernel tuning:

[α̂, σ̂2] = arg min
σ,α≥0

H(α, σ2)

H(α, σ2) = YTΣ(α, σ2)−1Y + log |Σ(α, σ2)|
Σ(α, σ2) = ΦTD(α)Φ + σ2; D(α) = ∑ αiPi

Note that for the multiple kernel approach, D(α) is linear in α, so

• YTΣ(α, σ2)−1Y is convex in α ≥ 0 and σ2 > 0.
• log |Σ(α, σ2)| is concave in α ≥ 0 and σ2 > 0.

So H is a difference of two convex functions, which means that the
minimization is a difference of convex programming (DCP) problem
Such problems can be solved efficiently as a sequence of convex
optimization problems, for example by the Majorization Minimization
(MM) method.
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3. Sparse Solutions for Structure Detection

Unknown structural issues may be model order, existing or
non-existing connecting links in networks, abrupt changes at some
time instant and so on.

A Generous parameterization, with zero/non-zero parameters
defining structures is thus a desired feature.

That is, an estimation routine that favors sparse solutions is a
important asset.

It is easy to use many kernels in the multiple kernel approach, since
the estimation problem is a DCP problem. Kernel terms can be
introduced, that correspond to structural issues as above.

But, does the algorithm favor sparse solutions?
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3. Capability to Find Sparse Solutions

The kernel estimation problem is

α̂ = arg min YT(ΦT[
p

∑
i=1

αiPi]Φ + σ2I)−1Y + log |ΦT[
p

∑
i=1

αiPi]Φ + σ2I|

Define xi = αi/σ2, Qi = ΦTPiΦ For a given σ2, the estimation
problem is equivalent to

x̂ = arg min
x≥0

YT(
p

∑
i=1

xiQi + I)−1Y + σ2 log |
p

∑
i=1

xiQi + I|

Clearly, there exists σ2
max such that x̂ = 0 for σ2 ≥ σ2

max. The value of
σ2 will also control the sparsity of the minimizing x.

Same as the tuning of the regularization parameter in l1-norm
regularization techniques, e.g., LASSO. σ2 can also be tuned by CV.
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Back to Our Test System

Recall that we had fits to the true impulse response of
PEM + CV: 79.57 %
PEM + AIC: 80.81 %
PEM + BIC: 83.16 %
PEM + ZZZ: 85.80 %
Regularization by TC kernel: 87.51 %

Now, test it with Multiple kernels regularization: 90.27 %
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Monte Carlo Tests over 2000 Systems

Methods:

AIC, CV and ZZZ are Parametric methods (PEM/ML) with
different order selections.

TC, SS , DC are regularized FIR models with common kernels

OE-M, DC-M, TCSS-M are multiple kernels containing 6, 54,
and 29 fixed kernels

Data:

Data: D1, D2 are 1000 systems with WGN input and SNR 10
and 1, resp. 210 data points

Legend: x|m: x average fit; m number of ”failures” (fit < 0).

AF|NO PEM-AIC PEM-CV ZZZ TC SS DC OE(2:7)-M DC-M TCSS-M

D1 85.9|0 83.8|9 84.6|0 81.5|0 82.1|0 82.1|0 86.6|0 84.4|0 84.4|0
D2 56.5|7 62.2|13 63.3|2 55.9|25 56.1|6 54.3|24 61.1|0 63.2|0 63.7|0
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Boxplots of Fits over 1000 + 1000 Random Systems
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Conclusions

Regularization in simple FIR models is a valuable alternative to
conventional system identification techniques for estimation of
unstructured linear systems

The Regularization approach offers a greater variety of tuning
instruments (kernels, regularization matrices) as an alternative
to model orders for the bias-variance trade-off
Regularization kernels that are formed as linear combinations of
fixed, given kernels offer several advantages:
• Potentially greater flexibility to handle diverse systems
• Hyper-parameter tuning employing efficient convex programming

techniques
• Potential to handle sparsity in the estimation problems
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