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Questions

e How do the rudder angles affect thejpitch |
rate?

e Aerodynamical derivatives?

e How to use the information in flight data?
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Questions
» Time mark the pulp as it passes through

the different vessels!
e What about the residence time in the ves- .
sels? | | -

e How to use the informatic')n" in the ob-
_served data? |




"~ The Engineer’s PerSpective

e How to use the information in the_ ob-
served data to build a model?

o How to know if the model is any good?

e What Kind of software is available for the
tasks?




‘The Essence of
- the Problem

; See 2(t) = [y(t), o(t)] for t =1,2,... N :
° .c,o'(t).:. " Available Information, Past Data” |
e Now see (N - 1)! |

e Say stething about y(N 4 1)! |

e y(t) and o(t) could take values in any kind
of sets. |
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attems

What we have really is a number of points in

Rd d= d!my + dimep

See the pattern!

-p
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"~ Two Basic Problems:

e Cannot have all possible o(t) in the ob-
served data set. : |

— Interpolatio'n', extrapolation

e NO EXxact Reproducibility

— "noise”, disturbance assumptions
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Perspectives

- o Statistical

— model for non-reproducibility

‘

e Pattern Recog nition

— y discrete-valued

e Projection methods (in statistics)

— Subspaces

— linear/nonlinear regressions
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Learning theory

— how many data points are reciuired to distin-

guish patterns? y

Machihe learning, Knowledge Acquisition

— build up rules from examplés "

— trees
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Bottom line: | _ P

o Parameterize the “data cluster areas’!

— Ry, 0(D).0)~0 ¢

— jThe function h provides for the extra-
and interpolations |

— Adjust 6 using the “examples”

of {y(t), v(t)}

— Non—reproducibility = "l
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The Control Scuenttst S --erspectlve:
System Identlﬂcatlon |

The two basic problems:

e Interpolations and extrapolatio‘ns over the

data-space is the task of the Model Struc-
ture

e Non-reproducibility is blamed on the Un-
measured Input v(t) = Average out by re-
dundancy in a selection'crite_rion. |

&
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How to cope with the unmeasured input
( “disturbances, noise” )?

How to pick a “selection rule”?
° Constr'ain the set of possible v's
lv(t)| < C Vi
e Assign probabilities to the different possi-
ble v:s: o

v ﬁhas Ddf pv(,g)
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- Approaches
e Non-probabilistic v(t) € V
— Unknown-but-bounded

— Set membership-

e Probabilistic |
— The pdf for v gives a pdf for z

— Maximum likelihood
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® Pragm'atic ,
— §(0) = g4(0, o(t)) The Model Struc-
ture -
— y(¥) = §(t0) + (t) _
— min V(0) = X |ly(t) — 5(¢0)||
* Contains ML and set membership
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he Crux:
The Model Structure
How to extra-/interpolate over
the data-space

y(t]0) = g:(0, p(8))
e Black-Box

e Physical Modeling

o Semi-Physical Modeling
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The Crux:
The Model Structure |
How to extra-/interpolate over
the data- spac,e |

o Black-Box
e Physical Modeling

 e.Semi-Physical Modeling
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~ Black Boxes

Idea: Interpolate between the «:s by smooth
standard functions | |

4 -
g(tl0) = ) Ochp(e(t)) =

k=1 o
hi(p) are basis functions that are mappings

from the yp-space to the y-space.: They may
depend on 6: - - | o

hi (@, 0)
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Black-Box Basis Functions
- Basic property:

® hk(c,o),k = 1,... form a basis for all (rea-
sonable) functions from the- p-space to
the y-space. |

o d= d(N) — oo as N — oo: Non-parametric
(regression) methods. |

e Hope to “do well” with juSt_a few of them

21




e Local

e Global




ommon Choices of Basis Functio

e ‘“Classic System Identific’atioh”

— Linear p-Spaces: hk(go(i)). — u(t — k)

Cor y(t — k) (or §(t — k|0)): The black-
box difference. equatlon fam:ly (ARX
ARMAX, etc) -

-Can also be wewed as bases in the space
of frequency funct|0ns |

— Volterra and other non-linear counter-
~ parts .
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e “Classic non-parametric regression”

= Nearest Neighbor: -hk(cp) indicator func-
tion for smallest possible data box

9;!
e

.o

H"}F ﬂﬁ B

— Average boxes (Radial basis Neural Net-
works): (Smooth) indicator function
for somewhat bigger boxes.

<X

— Trees
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@ Neural Nétworks

— Explicit equations for h; complicated,
but easy recursions

e Fuzzy Models

— Membership functlons — mterpolatlon
functions — Ay

4
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Physical Model Structures

Basic Guideline: Don't Est-i';m'ate Vvhat You

Already Know! o0

' u-RL
| J’V/

i=f(x,u{v;6)
Y h(x, 4 0)

au
ANE

[6)=g(6 P(t)

~ The Physics is used to interpolate and EX—,
- TRAPOLATE in the cp-sp‘iace_
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mi-Physical Model Structures
B IhtrOduce essential non-linearities by hand'

- Again: Don't estimateé what you already know

@ e | Y q’,.(z‘_)_*f,z(f)“mz(f), o
w(?) EICRYOPAG,
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"The Heart of the Matter:
Model Validation
The basic process of identification can be seen
as a way to provide candidate models to be
subjected to validation:

e How far away might it be from a correct
description? |
— Nextpage! |

e Are my model structure a_s_sum:ptions con-
sistent with the observed data?

— (Classical) residual analysis

e Is it good eno"ugh?l

— Subjective!

- 21




‘@ Again the two basic problemsﬁ

'— Not the right interpolation rulesj: Bias
Error ‘

— Getting fooled by the ‘“noise”:: Ran-
dom Error |
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‘o Basic Advice: | ;
— Determine a model that passes the val-
idation tests. | |
— = Bias error < random error
— Reducé model if necessary_— with re-
spect to its purpose -
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The Engineer’s Perspective II
Solving the Problem

| A recipe for dynamical systems:

1. compare(z,arx(z(1:200,:),[4 4 11)) |

4

2. Does it look good?
e Yes: Congratulations!
e NO:
— Higher ordei'
— More inputs
— Apply semi- phys:cal modelllng

— Give up! |

27




Aircraft Dynamics
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Dashed line: Actual Pitch rate. Solid line: 10
step ahead predicted pitch rate, based on the
fourth order model from canard angle only.
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0 20 40 60 80 100 120 140 160 180

- As above but using all three inputs.
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Buffer Vessel Dynamics

=]
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Dashed line: k-number after the vessel, ac-
tual measurements. Solid line: Simulated «-
number using the input only and a fourth or-
der linear model with delay 12, estimated us-
“ing the first 200 data points.

Think:
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z.='[y;u];~pf = flow./level;

t = 1l:length(z) | - |
newt = tablel([cumsum(pf),t],[pf(l):sum(pf)]’)}
newz = tablel([t,z], newt);

0. 50 100 150 200 © 250 300 350 400

Same as previous figu're but applied"to _resam-
pled data | N -
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What's the impulse response
of our model7?
m=arx(zé,nn);
.impres=idsim([1;zeros(49,1)],m);

plot (impres)

4
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~ What's the_uncertainty? ;.

idsimsd([1;zeros(49,1)],m)
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Conclusions

Process identification is meeting place for
practical problems and fairly advanced the-
ory

The pragmatic approach (“Curve fitting” )
has many theoretical interpretations

' Important to see the links between “hot”
new approaches and classic theory

Good software support

The area starts and ends with real data
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