PERSPECTIVES on the PROCESS of IDENTIFICATION

Lennart Ljung Linköping

9 公公 **\\$** \$\$ **2**/3

Questions

- How do the rudder angles affect the pitch rate?
- Aerodynamical derivatives?
- How to use the information in flight data?

Questions

- Time mark the pulp as it passes through the different vessels!
- What about the residence time in the vessels?
- How to use the information in the observed data?

The Engineer's Perspective

- How to use the information in the observed data to build a model?
- How to know if the model is any good?
- What kind of software is available for the tasks?

The Essence of the Problem

- See $z(t) = [y(t), \varphi(t)]$ for t = 1, 2, ..., N
- $\varphi(t)$: "Available Information, Past Data"
- Now see $\varphi(N+1)!$
- Say something about y(N+1)!
- y(t) and $\varphi(t)$ could take values in any kind of sets.

Patterns

What we have really is a number of points in $R^d, d = \dim\! y + \dim\! \varphi$

See the pattern!

Two Basic Problems:

- Cannot have all possible $\varphi(t)$ in the observed data set.
 - Interpolation, extrapolation
- No Exact Reproducibility
 - "noise", disturbance assumptions

Perspectives

- Statistical
 - model for non-reproducibility
- Pattern Recognition
 - y discrete-valued
- Projection methods (in statistics)
 - subspaces
 - linear/nonlinear regressions

- Learning theory
 - how many data points are required to distinguish patterns?
- Machine learning, Knowledge Acquisition
 - build up rules from examples
 - trees

Bottom line:

Parameterize the "data cluster areas"!

$$-h(y(t),\varphi(t),\theta)\approx 0$$

- The function h provides for the extraand interpolations
- Adjust θ using the "examples" of $\{y(t), \varphi(t)\}$
- Non-reproducibility \iff " pprox"

The Control Scientist's Perspective: System Identification

The two basic problems:

- Interpolations and extrapolations over the data-space is the task of the Model Structure
- Non-reproducibility is blamed on the *Un-measured Input* $v(t) \Rightarrow$ Average out by redundancy in a selection criterion.

How to cope with the unmeasured input ("disturbances, noise")?

How to pick a "selection rule"?

ullet Constrain the set of possible v:s

$$|v(t)| \le C \quad \forall t$$

• Assign probabilities to the different possible v:s:

v has pdf $p_v(\cdot, \theta)$

Approaches

- Non-probabilistic $v(t) \in V$
 - Unknown-but-bounded
 - Set membership

- Probabilistic
 - The pdf for v gives a pdf for z
 - Maximum likelihood

Pragmatic

- $-\hat{y}(t|\theta)=g_t(\theta,\varphi(t))$ The Model Structure
- $-y(t) = \hat{y}(t|\theta) + e(t)$
- min $V(\theta) = \sum ||y(t) \hat{y}(t|\theta)||$
 - * Contains ML and set membership

The Crux: The Model Structure How to extra-/interpolate over the data-space

$$\hat{y}(t|\theta) = g_t(\theta, \varphi(t))$$

- Black-Box
- Physical Modeling
- Semi-Physical Modeling

The Crux: The Model Structure How to extra-/interpolate over the data-space

Dest data guessed output $\widehat{y}(t|\theta) = g_t(\theta, \varphi(t))$ parameters to adjust

- Black-Box
- Physical Modeling
- Semi-Physical Modeling

Black Boxes

Idea: Interpolate between the φ :s by smooth standard functions

$$\widehat{y}(t|\theta) = \sum_{k=1}^{d} \theta_k h_k(\varphi(t))$$

$$\varphi(t) = [y(t-1), \dots, y(t-n), u(t-1), \dots, u(t-m)]$$

 $h_k(\varphi)$ are basis functions that are mappings from the φ -space to the y-space. They may depend on θ :

$$h_k(\varphi,\theta)$$

Black-Box Basis Functions

Basic property:

- $h_k(\varphi), k=1,\ldots$ form a basis for all (reasonable) functions from the φ -space to the y-space.
- $d = d(N) \to \infty$ as $N \to \infty$: Non-parametric (regression) methods.
- Hope to "do well" with just a few of them

Character of the basis functions:

Local

Global

Common Choices of Basis Function

- "Classic System Identification"
 - Linear φ -spaces: $h_k(\varphi(t)) = u(t-k)$ or y(t-k) (or $\hat{y}(t-k|\theta)$): The blackbox difference equation family. (ARX, ARMAX, etc)

Can also be viewed as bases in the space of frequency functions:

 Volterra and other non-linear counterparts

- "Classic non-parametric regression"
 - Nearest Neighbor: $h_k(\varphi)$ indicator function for smallest possible data box

- Average boxes (Radial basis Neural Networks): (Smooth) indicator function for somewhat bigger boxes.
- Trees

Neural Networks

- Explicit equations for h_k complicated, but easy recursions

Fuzzy Models

– Membership functions – interpolation functions – h_k

Physical Model Structures

Basic Guideline: Don't Estimate What You

Already Know!

The Physics is used to interpolate and EX-TRAPOLATE in the φ -space

Semi-Physical Model Structures

Introduce essential non-linearities "by hand"

Again: Don't estimate what you already know

The Heart of the Matter: Model Validation

The basic process of identification can be seen as a way to provide candidate models to be subjected to validation:

- How far away might it be from a correct description?
 - Next page!
- Are my model structure assumptions consistent with the observed data?
 - (Classical) residual analysis
- Is it good enough?
 - Subjective!

"Model Error Modeling"

- Again the two basic problems:
 - Not the right interpolation rules: Bias
 Error
 - Getting fooled by the "noise": Random Error

Basic Advice:

- Determine a model that passes the validation tests.
- \Rightarrow Bias error \leq random error
- Reduce model if necessary with respect to its purpose

The Engineer's Perspective II Solving the Problem

A recipe for dynamical systems:

- 1. compare(z,arx(z(1:200,:),[4 4 1]))
- 2. Does it look good?
 - Yes: Congratulations!
 - NO:
 - Higher order
 - More inputs
 - Apply semi-physical modelling
 - Give up!

Aircraft Dynamics

Dashed line: Actual Pitch rate. Solid line: 10 step ahead predicted pitch rate, based on the fourth order model from canard angle only.

As above but using all three inputs.

Buffer Vessel Dynamics

Dashed line: κ -number after the vessel, actual measurements. Solid line: Simulated κ -number using the input only and a fourth order linear model with delay 12, estimated using the first 200 data points.

Think:

```
z = [y,u]; pf = flow./level;
t = 1:length(z)
newt = table1([cumsum(pf),t],[pf(1):sum(pf)]');
newz = table1([t,z], newt);
```


Same as previous figure but applied to resampled data

What's the impulse response of our model?

```
m=arx(ze,nn);
impres=idsim([1;zeros(49,1)],m);
plot(impres)
```


What's the uncertainty?

idsimsd([1;zeros(49,1)],m)

Conclusions

- Process identification is meeting place for practical problems and fairly advanced theory
- The pragmatic approach ("Curve fitting") has many theoretical interpretations
- Important to see the links between "hot" new approaches and classic theory
- Good software support
- The area starts and ends with real data

Bottom line: See the pattern in observed data!

