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PERSPECTIVES ON THE PROCESS OF IDENTIFICATION
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Abstract. To identify mathematical models of dynamical systems based on observed inputs and
outputs is an important task in many different applications. Here, we shall review some perspectives
on this process. The Engineer’s perspective is considered to be the most important one.
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1 INTRODUCTION
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Figure 1: Results from test flights of the new
Swedish aircraft JAS-Gripen, developed by SAAB
Military Aircraft AB, Sweden. From above:
Pitch rate.

FElevator angle.

Canard angle.

Leading edge flap.

The problem is to use the information in these
data to determine the dynamical properties of the
aircraft for fine-tuning regulators, for simulations
and so on. Of particular interest are the aerody-
namical derivatives.
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Figure 2: From the pulp factory at Skutskir, Swe-
den. The pulp flows continuously through the
plant via several buffer tanks. From above:

The k-number of the pulp flowing from a tank.
The s-number of the pulp flowing into the tank.
Level in the tank.

Flow ou$ from the tank.

The problem is to determine the residence time in
the buffer tank. The pulp spends about 48 houts
total in the process, and knowing the residence
time in the different vessels is important in order
to associate various portions of the pulp with the
different chemical actions that have taken place in
the vessel at different times. (The s-number is a
quality property that in this context can be seen
as a marker allowing us to trace the pulp.)
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2 THE ENGINEER’S PERSPECTIVE

An engineer, who is faced with questions such as
those described in the introduction has the follow-
ing perspective:

¢ How can I best use the information in the
observed data to calculate a model of fhe sys-
tem’s properties?

» How can I know if the model is any good, and
how can I trust it for simulation and design
purposes?

o How shall T manipulate the input signals (like
the rudder angles in the airplane example) to
obtain as much information as possible about
the system?

+ What kind of software support is available for
the tasks?

From the engineer’s point of view, the end ob-
jective with the theory and methodology of Sys-
tem Identification is to provide answers and solu-
tions to these questions. Here we shall give a brief
overview of this process of identification, keeping
in mind the end objective, even though the tour
may take us via more or less sophisticated mathe-
matical frameworks.

3 THE STATISTICIAN’S
PERSPECTIVE

The science of inferring models from observations
is formally the statistician’s area, and if is po-
lite to first consider his perspective. In the tradi-
tional probabilistic/statistical framework the ob-
servations are viewed as outcomes (realizations)
of a random variable (random vector) with an un-
known probability density function (pdf). So, let
Zt denote a random vector corresponding to all
the abservations in one of the figures in the intro-

duction. Let
rze(x,0) (1)

be the pdf of this vector. This function depends on
the parameter vector §, which deseribes a family of
possible pdfs (i.e. a family of possible probability
measures).

The problem in statistical inference is to gain
information about the probability measure, i.e.,
about the parameters @, from the observation of
an outcome of the random vector %%, The most
celebrated point estimator of 8 is the mazimum
likelihood (ML) estimator which selects # so as to
make the actnal observation “most likely” accord-
ing to the pdf, i.e.

6, = arg m;ixpz«(zt, ) (2)

where z' is the actunally observed data vector
(“arg max” denotes the maximizing argument).
The ML estimator has of course a long history and
has been the subject of extensive analysis, e.g. [6],

[29], and {28].

A related, but conceptually somewhat different
statistical approach is formed by non-linear re-
gression, where a sequence of observations {y(t)}
is described by

() = g:(60) -+ e(t) (3)

where {g:(6)} is a family of ¢-dependent functions
of the parameter vectors and e(t) is a zero-mean
random variable, The time dependence of g could
very well be in terms of an observed vector (1)

9:(80) = 9(00, (1)) (1)

The basic approach to estimate the unknown pa-
rameter value 0y is to form the non-lincar least
squares estimator

by = argmin Yo () — (0, 0())? )
k=1

If the g(6, ) are linear in g, we have the familiar
linear regression/linear least squares case.

Non-linear regressions have also been the subject
of extensive study and analysis in the statistical
literature, see, e.g. [12], [10], and [3].

4 THE PATTERN LEARNING
PERSPECTIVE

Here is a typical problem in science and human
learning: We are shown a collection of vector pairs

{[y(t), 90(1)]; t=1,.. ')N} (6)

Call this “the fraining set”. We are then shown
(N +1) and asked to name a corresponding value
for y(N - 1). The variable ¢ could be thought
of as time, bui could be anything. The vectors
y(t) and @(f) may take values in any sets (finite
sets or subsets of ®" or anything else) and the
dimension of ¢(t) could very well depend on t (and
be unbounded).

This formulation covers most kinds of classifica-
tion and model building problems, Conceptually,
the problem amounts to learning a cerfain “pat-
tern” from (6) and then applying that pattern to
new data. This probably resembles human learn-
ing and the scientific process in general terms.
For the problems described in the introduction we
would let y(¢) be the variable to be explained (like
the pitch rate at time ¢) and () contains relevant
information about inputs (the rudder angles) and
past values of y(s), s < 1.
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The area of patlern recognition [7] of course explic-
itly addresses the problem, but is usually reserved
for the case where y(f) assumes values in a finite
set (the classes).

Projection methods in statistics like Projection
Pursuit [11], or partial least squares, (PLS) [30],
view each of the pairs as a point in & dimy+dimyp
dimensional space, and try to find patterns and
clusters — mostly linear subspaces — by suitably
chosen linear projections. There should be a link
between these general projection methods, factor
analysis and the new subspace methods for state-
space system identification, [20], [17], but that is
yet to be explored.

Meoreover the general problem of finding patterns
in (6) relates to learning theory, which deals with
how complex patterns can be detected from obser-
vations, e.g. [27]. Tt is for the future to explore and
exploit the connection between this theory and the
techniques of system identification.

A specific way of finding the pattern in (6) is of
course to link y(t) and (1) by a function g:

y(1) ~ g:{0, ¢(t)) (M

Fhis function may depend on ¢ and also has a num-
ber of free parameters § that are adjusted to re-
produce the pairs in the training set (6) as well as
possible, Obviously we have then come very close
to the non-linear regression formulation (3).

5 THE CONTROL SCIENTIST’S
PERSPECTIVE: SYSTEM
IDENTIFICATION

If we specify that the sought relationships between
the observations shown in Section 1 are of dynam-
ical system character, the control scientist enters
the arena. It is then natural to look for models of
the general type

z = fi(z,u,v,0)
U= ht(:t:,u,v, 9) (8)

where ¢ again denotes a vector of parameters
whose values are to be determined from data. Of
course, several variants of (8) are possible.

In (8) y denotes the output and u and v the input
signals to the dynamical system. It is convenient
to distinguish between the measured input v , and
the unmeasured input v. The set of measurements
thus consists of u and y:

2t = {u(s), y(s), s < t} (9)

The unmeasured input v is usually thought of as
“disturbances and noise”. Clearly we need some
sort of assumptions about the character of v, in

order to proceed to find a good value of §, based
on the information in 2*, There are two basic ap-
proaches to such assumptions.

o Non-probabilistic: Constrain the set of possi-
ble signals {v{f)} in some way, like

(@] <C ¥t (10)

In general we may write for the “allowed” dis-
turbances:

v € V(#) (11)

o Probabilistic: Assign probabilities to the dif-
ferent possible {v(t)} sequences. That is, de-
scribe {¥(t)} as a random process with known
or parameterized probability distribution:

v has pdf py(-,0) (12)

The non-probabilistic approach

Given a model description (8) and some constraint
on possible {v(t}}-sequences (such as (10)) the
identification problem is conceptually very simple:

Find all those values of 4, such that (8) holds for
the observed #* in (9) and a v subject to (11). This
gives

f €8y (13)

Calculating £2¢ could of course be an overwhelm-
ing task. There is a rather extensive literature on
various ways to do this. Most often one has to be
content with an overbound

Qﬁ' C QG:

with a more simple version of (8), viz

y(t) = 67 p(t) + u(t) (14)
@(t) = [—y(t=1),...,—y(t—n), u(t-1)..., u(t—m)|"
(15)

and with the simple constraint (10). The ap-
proach has been called “unknown-but-bounded”
noige, “set membership identification” and “opti-

mal algorithms”. See among many references {21}
{18, and [13].

The probabilistic approach

Given a model description like (8) and a proba-
bilistic measure (12) for v, it is, at least conceptu-
ally, possible to eliminate the unmeasured @ and »
and rewrite the expression in innovations form as

y() = g:(2*,8) + e(2) (16)

The pdf of the innovations e(t) will be a function
fe('s 9; t)
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What we have done by assigning a probability
measure to v, is of course indirectly to specify a
probabilistic measure (1) for the observations z*.

Indeed, the measure can be explicitly specified as

+
logpz+(a*,0) = > _log fu(e(k,0),0,k)  (17)
k=1

where

e(t,8) = y(t) — g:(2*,6) (18)
This gives an immediate link between the basic
statistical method of maximum likelihood, (2},
and innovation representations of dynamical sys-
tems. The link to the non-linear regression per-
spective (3) — (5) is also clear.

A pragmatic approach

A more pragmatic approach to estimating the dy-
namics of a system is simply to postulate a pre-
dictor model structure, i.e., look for a description
of the observed data within a family of models

§(t10) = g:(2",6) (19)
where the prediction of y(f) is denoted by #(z[6).
The prediction is based on observations available
at time ¢ — 1,

2= [yt — 1), u( - 1),...,3(0), U(O)] (20)

and is an arbifrary (differentiable) function of
these data and of the parameter vector . The
actual cutput will then differ from the prediction
by an error e(t)

y(t)y = §(t}0) + e(2). (21)

We then seek that value of # that has the best
track record in achieving good prediction

N
. 1
HN = arg IllﬂlIl ﬁ ;f(t; B: E(tl 9)) (22)

e(t, 0) = y(t) — §(¢10) (23)

1t is clear that by invoking a probabilistic frame-
work, i.e. by assigning a pdf to {e(f)} in (21) the
pragmatic estimate (22) can be seen as an ML es-
timate (2), (17) - (18).

It is also clear that by choosing

0 l<C
4, 6, ) :{ 0 {z} <¢ (24)

the method (22) will pick out those ¢ which are
consistent with the assumption [e(?)| < € in {20)
for all 0 < 1 € N. Thus the non-probabilistic
approach also fits into {22).

Most “traditional” control oriented descriptions of
System Identification follow this mixture of prag-
matic and probabilistic approaches. See e.g. [15]
and [23].

6 THE MODEL STRUCTURE

The single most important step in the identifica-
tion process is to decide upon a model structure
such as (8). In practice typically a whole lot of
them are tried out and the process of identifica-
tion really becomes the process of evaluating and
choosing between the resulting models in these dif-
ferent structures.

It is natural to distinguish between three types of
model structures:

1. Black-box structures
2. Structures from physical modelling

3. Structures from semi-physical modelling

Black-box structures

A black-box structure is one
where the parametrization in terms of § is chosen
so that the family of models {g:(z%, )¢ € Dy,}
covers as; “many common and interesting” ones
as possible. No particular attention to the actual
application is then paid. For a linear system (a
linear mapping from past data to future ones} we
could for example think of choosing the parame-
ters as the impulse response coeflicients of a finite
impulse response model

M
4(t]0) = z fru(t — k) (25)
k=1

More common in control applications is the ARX
black box structure for linear systems:

§(216) = —ary(t — 1} —ay(t —2) — ...
—apylt —n) + biu(t — 1)+ ...+ bpu(t —m)
(26)
“the mother of all dynamical model structures”.

In general we can write a black box structure con-
ceptually as

M
J(tley =) ouha(2*) (27)
k=1

i.e., as some kind of function expansion. In the
general case the basis functions {hz} may also de-
pend on #. In most cases the hy are also con-
strained to be functions of a fixed dimensional vec-
tor p(z*) (like

(2"} = (p(t-1),..., y{t—n), ult-1),...,u{t~m))

Fach observation thus corresponds to a point in
the space spanned by the p-vectors, which in the
case above is equal to R+, The functions h; are
thus mappings from this space to the space where
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the outputs take their values. Depending on the
character of these mappings, it is instructive to
distinguish between two principally different basis
functions:

e Local: Each of the hy has support only in
a small local box in the p-space. That is,
k() is zero unless ¢ belongs to a certain
neighborhood (that depends on k).

¢ Global: Bach of the hy have support in the
whole p-space

Among black-box structures that use global basis
functions are all the usual linear black box models,
Volterra series expansions and so omn.

The local basic functions models can be visualized
as a multidimensional table: The ¢-space has been
split up intc a number of boxes. A new observation
(1) then falls into one of these boxes, the one cor-
responding to say hy, and the predicted output is
then taken as 8 (or possibly interpolated, taking
into account a few neighboring boxes). The sizes
and locations of the boxes can be determined with
the aid of estimation data. The extreme case is
when the boxes are determined so that exactly one
data point (¢}, t = 1..., N has fallen in each box:
this is the so called nearest neighbor approach [26].
All this is well established in the statistical litera-
ture under names of “non-parametric regression”
and “density estimation” [24], [4].

Neural network model structures, e.g. [19], rep-
resent a spectacular revival of these techniques.
So called radial basis networks correspond to
localized bases (where the “boxes” overlap like
Gaussian distribution functions), while the feed-
forward sigmoid network formally would use global
basis functions (although the “dynamic effects” re-
ally are localized). Fuzzy modelling {14] is again
an example of localized basis functions with typi-
cally polynomial interpolation rules, which are in-
herited from the “membership functions”.

It is worth stressing that these new techniques of
neural net modelling and fuzzy identification rep-
resent a useful revitalization of non-linear black
box modelling with some new particular strue-
tures, but at the same time they definitely fall into
a very old and classical framework of estimation
techniques (See, e.g. [16], [2].)

Structures from physical modelling

In case we have physical insight into the proper-
ties of the system to be identified, it is natural
to exploif this: “Don’t estimate what you already
know!” Basically we then write down those phys-
ical laws and relationships that describe the sys-
tem. Most often they are then summarized in a

state space form like (8) where & denotes unknown
physical constants in the description. The identifi-
cation process is then to estimate these constants.
That route takes us from (8) via (18) (explicitly
or implicitly) and (22) to the estimate fy. We
are thus entirely within the framework of Section
4. The work to arrive at {8) and then to actually
carry out the minimization of (22) can be consid-
erable, though.

Semi-physical model structures

The logical route to utilize available physical
knowledge may - as pointed out - be quite labori-
ous. It is then tempting to instead try some simple
black-box structures, such as the ARX model (26)
(“Try Simple Things First”). This is quite OK,
but it should in any case be combined with physi-
cal insight. Here is a toy example to illustrate the
point:

“Suppose we want to build a model for how the
voltage applied to an eleciric heaier affects the
iemperature of the room. Physical modelling en-
tails writing down all eguations relating fo the
power of the heatfer, heat transfer, heat convection
and so on, This involves several equations, expres-
sions and unknown heat transfer coefficients and
so on. A simple black-bor approach would instead
be to use, say the ARX-model (26) with u as the
applied vollage and y the room femperature. Bul
that’s 1oo simple! A moment’s reflection reveals
that il’s the heater power rather than the voltage
that gives the temperature change. Thus use (26)
with u= squared vollage and y= room lempera-
ture”

I would like to coin the term semi-physical mod-
elling for introducing non-linear transformation
of the raw measurement, based on high-school
physics and common sense, The transformed mea-
surements are then used in black-box structures
such as the ARX structure.

Clearly semi-physical modelling is in frequent use.
It is however also true that many failures of iden-
tification are indeed to be blamed on not applying
this principle.

Hybrid structures

Of particular current interest is to conceive
model structures that are capable of dealing
both with dynamic effects, described by differ-
ential/difference equations and with logical con-
straints, “the if's and the but:s” of the system.
Not so many concrete results have yet been ob-
tained in this area, but quite intense work is going
on now. We may point to some work on using tree
models and pattern recognition for these hybrid
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model structures: [26], [22].

7 MODEL VALIDATION

It is not enough to come up with a nominal model
fx from (22) — we must also have a measure of its
reliability. AMoedel validation is the process of ex-
amining the model, assessing its quality and pos-
sibly rejecting its use for the purpose in question.
In a sense this could be viewed as the essential
process of identification — the estimation phase is
really just a means to provide candidate models
that might pass the needle’s eye of validation.

Model validation has at least three different objec-
tives:

1. To decide if the model is “good enough” for
the intended application.

2, To decide how “far from the true system de-
scription” the model might be.

3, To decide whether the model and the data
indeed are consistent with assumptions of the
model structuze.

These objectives partly overlap, but it is still pos-
sible to single out basic techniques:

1, The most obvious and pragmatic way to de-
cide if a model is good enough is to test
how well it is able to reproduce validation
data (data that were not used to estimate the
model) in simulation or prediction. The user
can then by eye inspection decide if the fit is
“good enough”. In my mind this is the prime
validation tool.

2. To determine error bounds — how far is the
true system from the model - is a fundamen-
tally difficult question. If we adopt a proba-
bilistic setting and assume that the true sys-
tem is to be found within the chosen struc-
ture, it becomes a matter to see how much
the stochastic disturbances might have af-
fected the model. The covariance matrix of
the asymptotic distribution is classically used
for the error bounds in this case, This covari-
ance matrix is generally given by

cov{ln} ~ 5 Be* (leov (it (26)

for the structure (21). If we (according to 3)
below) cannot disprove that the true system
can be represented in the chosen structure it
is still reasonable to use the measure (28).

The remaining cases — no probabilistic setting
adopted and/or the used madel structure is

known to be too simple — has spurred a con-
siderable interest recently. See among many
references [9] and [8]. Tt would lead too far to
review that literature here.

3. The test if the data and the model are consis-
tent with the model structure assumptions, is
again a more straightforward task. Basically
we compute the residuals y(t) — §(t|6n) = €(t)
from the model and a (validation) data set
and check if

{(a) |e(t)] < C in the deterministic setting
(10)

(b) e(?) and u(t—r) are independent random
variables, in the probabilistic setting {u
is the input to the system).

The latter test is one of many residuel analysis
tests that can be performed, and this is standard
statistical practice, see ¢.g. [5].

8 THE ENGINEER’S PERSPECTIVE:
SOLVING THE PROBLEM

The ultimate objective of the theoretical and
mathematical perspectives must of course be to
develop methods to solve the engineer’s problem
as posed in Section 2.

It follows from our discussion that the most es-
sential element in the process of identification -
once the data have been recorded — is to try out
various model structures, compute the best model
in the structures, using (22), and then validate
this model. Typically this has to be repeated with
quite a few different structures before a satisfac-
tory model can be found.

While one should not underestimate the difficul-
ties of this process, I suggest the following simple
procedure to get started and gain insight into the
models.

1. Find out a good value for the delay between
input and cutput, e.g. by using correlation
analysis.

2. Estimate a fourth order linear model with this
delay, using part of the data. Then simulate
this model with the input and compare the
model’s simulated output with the measured
output over the whole data record. In MAT-
LAB language this is simple,

z = [y ul;
compare{z,arx(z(1:200,:),{4 4 11));

If the model/systern is unstable or has integrators,
use prediction over a reasonably large time horizon
instead of simulation.

Now, either of two things happen:
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o The comparison “looks good”. Then we can
be confident that with some extra work -
trying out different orders, and various noise
models — we can fine tune the model and have
an acceptable model quite soon. Let me add
here that I am amazed by the large amount
of applications that fall into this category.

¢ The comparison “does not look good”. Then
we must do further work. There are three
basic reasons for the failure.

1. A good description needs higher order
linear dynamies. This is actually in
practice the least likely reason, except
for systems with mechanical resonances.
One then obviously has o try higher or-
der models or focus on certain frequency
bands by band pass filtering.

2. There are more signals that significantly
affect the output. We must then look
for what these signals might be, check
if they e¢an be measured and if so in-
clude them among the inputs. Signal
sources that cannot be traced or mea-
sured are called “disturbances” and we
simply have to live with the fact that
they will have an adverse effect on the
comparisons,

3. Some imporianl mnon-linearilies have
been overlooked. We must then resort
to semi-physical modelling to find out if
some of the measured signals should be
subjected to non-linear transformations.
If no such transformations suggest them-
selves, we might have to try some non-
linear black-box model, like a neural net-
work.

Clearly, this advice do not cover all the art of iden-
tification, but it is the best half page summary of
the practical process of identification that I can
offer.

Example 1 Aircraft dynamics

Let us try the recipe on the aircraft data in figure
1! Picking the canard angle only as the input, es-
timating a fourth order model based on the data
points 1 to 80, gives figure 3. (We use 10-step
ahead prediction in this example since the models
are unstable — as they should be, JAS has unsta-
ble dynamics in this flight case). It does not “look
good”. Let us try alternative 2: More inputs. We
repeat the procedure using all three inputs in fig-
ure 1. That is , the model is computed as
arx{fy ut w2 u3],[4 4 4411 11)

on the same data set. The comparison is shown
in figure 4. It “looks good”. By further fine-
tuning, as well as using model structures from

@ 20 40 80 80 100 120 140 160 180

Fig. 3: Dashed line: Actual Pitch rate. Solid line:
10 step ahead predicted pitch rate, based on the
fourth order model from canard angle only,

L L s ‘ X n : ¢
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Fig. 4: As figure 3 but using all three inputs.

physical modelling, only slight improvements are
obtained.

Example 2 Buffer vessel dynamics

Let us now consider the pulp process of figure 2.
We use x-number before the vessel as input and
the k-number after the vessel as output. The de-
lay is preliminarily estimated to 12 samples. Our
recipe, where a fourth order linear model is esti-
mated using the first 200 samples and then simu-
lated over the whole record gives figure 5. B does
not look good.

Some reflection shows that this process indeed
must be non-linear (or time-varying): the flow and
the vessel level definitely affect the dynamics. For
example, if the flow was a plug flow (no mixing)
the vessel would have a dynamics of a pure delay
equal to vessel volume divided by flow. Let us thus
resample the date accordingly, i.e. so that a new
sample is taken (by interpolation from the original
measurement) equidistantly in terms of integrated
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Fig. 5: Dashed line: x-number after the vessel,
actual measurements. Solid line: Simulated &-
number using the input only and a fourth order
linear model with delay 12, estimated using the
first 200 data points.

Fig. 6: Same as figure 5 but applied to resampled
data

flows divided by volume. In MATLAB terms this
will be

z = [y,ul; pf = flow./level;
t = 1:length(z)
newt =

tablei([cumsum{pt),t], [p£ (1) :sum(pt)]’);
newz = tablel([t,z], newt);

We now apply the same procedure to the resam-
pled data. This gives figure 6. This “locks good”.
Somewhat better results can then be obtained by
fine-tuning the orders.

9 CONCLUSIONS

'Fhe area of process identification is one where real
practical applications and rather advanced mathe-
matical tools and perspectives meet. The meeting
place is really the software into which many years’

research has been packaged. There are now many
successful such packages commercially available.
They have become standard tools in many indus-
trial applications. This again stresses that it is the
engineer’s perspective that is the ultimate one in
this area.
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