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The classic, conventional System Idenfication Setup

Convexity Aspects

Bias – Variance, Model Size Selection

Regularization
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System Identification – Concrete Example

Consider a physical system, with observed input and output signals,
see Figure 1. Let us take a modern military aircraft, like the Swedish
fighter Gripen, as an example.

Figure : The Swedish aircraft Gripen
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The Aircraft Data

From one of the earlier test flights, some data were recorded as
depicted below.
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Figure : Data from an early test flight of Gripen. These data cover 3
seconds of flight and are sampled at 60 Hz.
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Build a model from the data!

Try a simple difference equation relation:

y(t) =a1y(t− 1)− a2y(t− 2)− a3y(t− 3)
+ b1,1u1(t− 1) + b1,2u1(t− 2)
+ b2,1u2(t− 1) + b2,2u2(t− 2)
+ b3,1u3(t− 1) + b3,2u3(t− 2)

We use only the 90 first data points of the observed data. That gives
certain numerical values of the 9 parameters above:

y(t)− 1.15y(t− 1) + 0.50y(t− 2)− 0.35y(t− 3)
= −0.54u1(t− 1) + 0.04u1(t− 2)

+0.15u2(t− 1) + 0.16u2(t− 2)
+0.16u3(t− 1) + 0.07u3(t− 2) (1)
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Evaluating the Model

We may note that this model is unstable – it has a pole in 1.0026,
which is a correct property.
We may compare the model’s 5 samples ahead predictions with the
measured output (note that second half was not used for estimation):

0 0.5 1 1.5 2 2.5 3
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Time (seconds)

pitch rate

Figure : The measured output (solid line) compared to the 5 step ahead
predicted one (dashed line).
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Typical, Important Questions

What type of model should be used? (like the difference
equation)

Which orders should be used? (like 3,2,2,2)

How should the parameters be adjusted to data?

What inputs should be applied when collecting the data?

How to assess the quality of the estimaed model?

How to gain confidence in the estimated model?
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System Identification: State-of-the-Art Setup

A Typical Problem

Given Observed Input-Output Data: Find a Description of the Sys-
tem that Generated the Data [Simulator or Predictor. Linear System:
Impulse response or Bode plot].

Basic Approach

Find a suitable Model Structure, Estimate its parameters, and com-
pute the response of the resulting model

Techniques

Estimate the parameters by ML techniques/PEM (prediction error
methods). Find the model structure by AIC, BIC or Cross Validation
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More Formally

Models:

Model Structure: M. Parameters: θ. Model: M(θ).
Observed input–output (u, y) data up to time t: Zt

Model described by predictor: M(θ) : ŷ(t|θ) = g(t, θ, Zt−1).

Estimation:

log likelihood function VN(θ) = ∑N
t=1 |y(t)− ŷ(t|θ)|2

”Prediction Error Fit”
θ̂N = arg min VN(θ)

Model Structure (size) determination, AIC, BIC:

M(θ̂N) = arg minM,θ [log VN(θ) + g(N)dimθ]
g(N) = 2 or log N
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Comment on Model Structure Selection

The model fit as measured by ∑N
t=1 |y(t)− ŷ(t|θ)|2 for a certain set

of data will always improve as the model structure becomes larger
(more parameters). The parameters will start adjusting also to the
actual noise effects in the data [”Overfit”]
There are two ways of counteracting this effect:

Compute the model on one set of (estimation) data and evaluate
the fit on another (validation) data set. [Cross-Validation]

Add a penalty term to the criterion which balances the overfit:

M(θ̂N) = arg min
M,θ

[log VN(θ) + g(N)dimθ]

AIC :g(N) = 2, BIC : g(N) = log(N)

AIC: Akaike’s Information Criterion. BIC: Bayesian Information
Criterion [= MDL: MInimum Description Length]
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Model Estimate Properties

As the number of data, N, tends to infinity

θ̂N → θ∗ ∼ arg minθ E|ε(t, θ)|2 the best possible predictor in
M
IfM contains a true description of the system
• Cov θ̂N = λ

N [Eψ(t)ψT(t)]−1 [ψ(t) = d
dθ ŷ(t|θ), λ : noise level]...

• ... is the Cramér-Rao lower bound for any (unbiased) estimator.

E: Expectation. These are very nice optimal properties:

The model structure is large enough: The ML/PEM estimated
model is (asymptotically) the best possible one. Has smallest
possible variance (Cramér- Rao)

The model structure is not large enough: The ML/PEM estimate
converges to the best possible approximation of the system.
Smallest possible “asymptotic bias”.
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Experiment Design

Experiment design is the question of choosing which signal to
measure, the sampling rate, and designing the input. The theory of
experiment design primarily relies upon analys of how the covariance
matrix
Cov θN = λ

N [Eψ(t)ψT(t)]−1 [ψ(t) = d
dθ ŷ(t|θ)]

depends on these variables:

” min
X

trace{C[Eψ(t)ψT(t)]−1}”

C reflecting the intended use of the model. For linear systems the
input design is often expressed as selecting the spectrum (frequency
contents) of u.
Bottom line: let the input’s power be concentrated to frequency
regions where a good model fit is essential, and where disturbances
are dominating.
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Model Validation and Gaining Confidence in Models

An easy method with a simple interpretation is to simulate the model
with input data for which the system’s response has been recorded.
Then it can easily be judged how well the model can reproduce the
actual system’s behavior. [Cross Validation.]

This as such does not tell if all the noise free response has been
covered. It is customary to check of the residuals [=measured output
− (predicted) model output] have some trace of the input and/or if
these prediction errors seem to be unpredictable. This is called
residual analysis and there is an extensive theory for how to analyse
certain correlation functions for such traces.
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Linear Models

General Description

y(t) = G(q, θ)u(t) + H(q, θ)e(t), q : shift op. e : white noise

G(q, θ)u(t) =
∞

∑
k=1

gku(t− k), H(q, θ)e(t) = 1 +
∞

∑
k=1

hke(t− k)

Predictor

ŷ(t|θ) = G(q, θ)u(t) + [I−H−1(q, θ)][y(t)−G(q, θ)u(t)]

Asymptotics: [Φu, Φv: Spectra of input and additive noise v = He.]

θ̂N → θ∗ = arg min
θ

∫ π

−π
|G(eiω, θ)−G0(eiω)|2 Φu(ω)

|H(eiω, θ)|2 dω

CovG(eiω, θ̂N) ∼
n
N

Φv(ω)

Φu(ω)
as n, N → ∞ n : model order
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Common Black-Box Parameterizations:

BJ (Box-Jenkins)

G(q, θ) =
B(q)
F(q)

; H(q, θ) =
C(q)
D(q)

B(q) = b1q−1 + b2q−2 + . . . bnbq−nb

F(q) = 1 + f1q−1 + . . . + fnf qnf

θ = [b1, b2, . . . , fnf ]

ARX:

y(t) =
B(q)
A(q)

u(t) +
1

A(q)
e(t) or

A(q)y(t) = B(q)u(t) + e(t) or

y(t) + a1y(t− 1) + . . . + anay(t− na)
= b1u(t− 1) + . . . + bnbu(t− nb)
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Common Black and Grey Parameterizations

State-Space with Possibly Physically Parameterized Matrices

x(t + 1) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t)
y(t) = C(θ)x(t) + e(t)

Corresponds to

G(q, θ) = C(θ)(qI−A(θ))−1B(θ).

H(q, θ) = C(θ)(qI−A(θ))−1K(θ) + I
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Continuous Time (CT) Models

ẋ(t) = F (θ)x(t) + G(θ)u(t) + w(t)
y(t) = C(θ)x(t) + D(θ)u(t) + v(t)

Sample it (with correct Input Intersample Behaviour):

x(t + 1) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t)
y(t) = C(θ)x(t) + e(t)

Now apply the discrete time formalism to this model, which is
parameterized in terms of the CT parameters θ
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An Example

Equipped with these tools, let us now test some data (selected but
not untypical). The example uses complex dynamics and few (210)
data, so this is a case where asymptotic properties are not important.
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Estimate a Model: State-of-the-Art

We will try the state-of-the art approach: Estimate SS models of
different orders. Determine the order by the AIC criterion.

for k=1:30
m{k}= ssest(z,k);

end
(dum,n) = min(aic{:});
mss = m{n};
impulse(mss)
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Is this a good model? An oracle tells us that the fit to the true
impulse response is 83.55% Preview: We can do better!
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Status of the State-of-the-Art Framework

Well established statistical theory
Optimal asymptotic properties
Efficient software
Many applications in very diverse areas. Some examples:

• Aircraft Dynamics:
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• Brain Activity (fMRI):
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• Pulp Buffer Vessel:
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Time-out

This is a bright and rosy picture. Any issues and problems?

Convexity Issues: For most model structures the criterion
function VN(θ) = ∑N

t=1 |y(t)− ŷ(t|θ)|2 is non-convex and
multi-modal (several local minima). Evolutionary Minimization
Algorithms could be applied, but no major successes for
identification problems have been reported.

Small data sizes – complex systems (asymptotics do not apply):
Need well tuned bias–variance trade–off. Model selection rules
are a bit shaky in this case.
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Bias – Variance Trade Off

Any estimated model is incorrect. The errors have two sources:

Bias: The model structure is not flexible enough to contain a
correct description of the system.

Variance: The disturbances on the measurements affect the
model estimate, and cause variations when the experiment is
repeated, even with the same input.

Mean Square Error (MSE) = |Bias|2 + Variance.
When model flexibility ↑,Bias ↓ and Variance ↑.
To minimize MSE is a good trade-off in flexibility.
In state-of-the-art Identification, this flexibility trade-off is governed
primarily by model order.
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Linear Black-Box Models: Fundamental Role of ARX

ARX can Approximate Any Linear System

Arbitrary Linear System: y(t) = G0(q)u(t) + H0(q)e(t)

ARX model order n, m : An(q)y(t) = Bm(q)u(t) + e(t)

as N >> n, m→ ∞

[Ân(q)]−1B̂m(q)→ G0(q), [Ân(q)]−1 → H0(q)

The ARX-model Is a Linear Regression

Note that the ARX-model is estimated as a linear regression
Y = Φθ + E, (Φ containing lagged y, u and θ containing a, b)
A convex estimation problem.

Virtually all methods to find a linear intial estimate for the non-convex
minimization of the ML criterion are based on an ARX-model of some
kind.
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How High Orders are Required for ARX? Test on Our
Data

Estimate ARX-model of order 10 and 30: Bode plots of models
together with true system:
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Order 10. Order 30. True. The high order model picks up the true
curves better, but seem more ”shaky”. Look at Uncertainty regions!
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How to Curb Variance/Flexibility?

The ARX approximation property is valuable, but high orders come
with high variance.
Can we curb the flexibility that causes high variance other than by
lower order? Regularization
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High Order Models – Regularization

Curb the freedom of the model by adding a regularization term to the
Least Squares Criterion:

Y = Φθ + E

θ̂N
R = arg min

θ
|Y−Φθ|2+θTP−1θ

P is the Regularization Matrix. θ̂R
N = (RN + P−1)−1ΦTY MSE:

E[(θ̂R
N − θ0)(θ̂

R
N − θ0)

T] = (RN + P−1)−1×
(RN + P−1θ0θT

0 P−1)(RN + P−1)−1 RN = ΦΦT, θ0 = true par

Minimized by P = θ0θT
0 : MSE = (RN + P−1)−1 How to select P?
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Regularization – Bayesian Interpretation

Suppose θ is a random variable, that a priori (before the
measurement data have been observed) is assumed to be Gaussian
with zero mean and covariance matrix P: θprior ∈ N(0, P)

Y = Φθ + E, so Y and θ are dependent variables. After Y has been
measured, we know more about θ:

θpost ∈ N(θ̂R
N, Ppost)

where θ̂R
N is the regularized LS estimate from the previous slide.

So, the a posteriori estimate is equal to the regularized LS estimate
with P as the regularization matrix.

So that is a natural way to think of a good regularization matrix: Let it
mimic what is known or assumed about the parameter to be
estimated. – It is the covariance matrix of the parameter vector.
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Tuning the Regularization Matrix

θ is a Gaussian random vector with zero mean and covariance matrix
P: θ ∈ N(0, P). The measured data in Φ is a known matrix, and the
noise E ∈ N(0, I). Then the output Y = Φθ + E is itself a Gaussian
vector:

Y = Φθ + E ∈ N(0, Z(P)), Z(P) = ΦPΦT + I

So we know the pdf of Y given P, and P can be estimated by ML:
ML Estimate of P

P̂ = arg minP YTZ(P)−1Y + log det Z(P)

If P is parameterized by some hyperparameters α, P(α), these can
be estimated by
ML Estimate of Hyperparameters

α̂ = arg minα YTZ(P(α))−1Y + log det Z(P(α))
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ARX Model Priors

When estimating an ARX-model, we can think of the predictor

ŷ(t|θ) = (1−A(q))y(t) + B(q)u(t)

as made up of two impulse responses, A and B. The vector θ should
thus mimic two impulse responses, both typically exponentially
decaying and smooth.We can thus have a reasonable prior for θ:

P(α1, α2) =

[
PA(α1) 0

0 PB(α2)

]
Block Diagonal A&B

where the hyperparameters α describe decay and smoothness of the
impulse responses. Typical choice:
TC kernel

Pk,` = C min(λk, λ`); α = [C, λ],
E|bk|2 = Cλk, corr(bk, bk+1) =

√
λ
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Our Test Data: State-of-the-Art

Recall: The state-of-the art approach: Estimate SS models of
different orders. Determine the order by the AIC criterion.

for k=1:30
m{k}= ssest(z,k);

end
(dum,n) = min(aic{:});
mss = m{n};
impulse(mss)
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Estimate a Model: Regularized ARX

Now, let us try an ARX model with na=5, nb=60. Estimate a
regularization matrix with the ’TC’ kernel (2 parameters, C, λ each for
the A and B parts):

aopt = arxOptions;
(L,R) = arxRegul(z,[5 60 0],’TC’);
aopt.Regularization.R = R;
aopt.Regularization.Lambda = L;
mr = arx(z,[5 60 0],aopt);
impulse(mr)
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The Oracle

The examined data were ob-
tained from a randomly gener-
ated model of order 30:

y(t) = G0(q)u(t) + H0(q)e(t)

The input is Gaussian white noise
with variance 1, and e is white
noise with variance 0.1. The im-
pulse responses of G and H are
shown at the right.
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How Well Did Our Models mss And mr Do?
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G : fit: mss: 79.42% mr: 83.55% H: fit mss: 77.05%, mr: 81.59%
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Objections?

We were just unlucky to pick order 3 (AIC). Other model
selection criteria would have given better results.
• If we ask the oracle what is the best possible state-space order

for ML estimated model, the answer is order 12 for G with a fit
82.95 % and order 3 for H with a fit 77.04% So the regularized
ARX -model gives better fit to both G and H than is at all
possible for ML estimated state-space models [for these data].

The R-ARX model is of order 60, and it is unfair to compare it
with SS models of low order.
• Try mred = balred(mr,7) to create a 7th order SS-model.

It still outperforms the oracle-selected ML SS models.
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Discussion

In this case Regularized ARX gave a much better and more
flexible bias–variance trade off through the continuously
adjustable hyperparameters in the regularization matrix —
Compared to the state-of-the art bias–variance trade off in
terms of discrete model orders.
Can we forget about ssest and move over to regularized
ARX?
• No, recall that the studied situation had quite few data, and the

good asymptotic properties of ML were not so prominent.
• But one should be equipped with regularized ARX in one’s

toolbox
Regularized ARX (possible followed by balred) can be seen
as a convexification of the state-of-the art SS model estimation
techniques.
NB: Tuning of hyperparameters normally non-convex
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Conclusions

The State-of-the art system identification relies upon a solid
statistical ground, with (ML-like) parameter estimation in chosen
model stuctures.

The theory, practice, algorithms, software and applications are
well established

The non-convexity of the criterion in state-of-the-art system
identification is a source of concern

The bias-variance trade-off in terms of model order could be
unsatisfactory, esp. for smaller data sets.

Regularized ARX-models offer a fined tuned choice for efficient
bias–variance trade-off and form a viable convex alternative to
state-of-the-art ML techniques for linear black-box models.
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