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Prologue 

 
 
 
 
 
 

 C: I have this data set. I have collected it from a cell 
metabolism experiment. The input is Glucose 
concentration and the output is the concentration of G6P. 
Can you help me building a model of this system? 

 

Prologue 

The PI, the Customer and 
the Data Set 
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The Data Set 

Input 

 

Output 

Input 
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A Simple Linear Model 

Try the simplest model 

y(t) = a u(t-1) + b u(t-2) 

Fit by Least Squares: 

m1=arx(z,[0 2 1]) 

compare(z,m1) 

Red: Model  
Black: Measured 
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A Picture of the Model 

Depict the model as 
y(t) as a function of 

u(t-1) and u(t-2) 

u(t-2) 




Lennart Ljung 
Identification of Non-linear Dynamical Systems 

ICARCV 2006, Singapore 
 December 7, 2006 

A Nonlinear Model 
Try a nonlinear model 

y(t) = f(u(t-1),u(t-2)) 

m2 = arxnl(z,[0 2 1],’sigm’) 

compare(z,m2) 
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More Flexibility 
A more flexible, nonlinear model 
y(t) = f(u(t-1),u(t-2)) 
m3 = arxnl(z,[0 2 1],’sigm’,’numb’,100) 
compare(z,m3) 
compare(zv,m3) 
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The Fit Between Model and Data 




Lennart Ljung 
Identification of Non-linear Dynamical Systems 

ICARCV 2006, Singapore 
 December 7, 2006 

More Regressors 
Try other arguments: 
y(t) = f(y(t-1),y(t-2),u(t-1),u(t-2)) 
m4 = arxnl(z,[2 2 1],’sigm’) 
compare([z;zv],m4) 
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Biological Insight 

Pathway diagram 

For sampled data, approximately 

y(t) = f(y(t-1),y(t-2),u(t-1),u(t-2),θ) 
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Tailor-made Model Structure 

cell = nlgrey(eqns,nom_pars) 

m5 = pem(z,cell); 

compare([z;zv],m5) 
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End of Prologue 
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Outline 
 Problem formulation 
 How to parameterize black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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 State-Space 

The Basic Picture 

 Output predictor 
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The Predictor Function 
General structure 

Common/useful special case: 

Think of the simple case 

of fixed dimension m (”state”, ”regressors”) 
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The Predictor Function 
General structure 

Common/useful special case: 

of fixed dimension m (”state”, ”regressors”) 

Think of the simple case 



Lennart Ljung 
Identification of Non-linear Dynamical Systems 

ICARCV 2006, Singapore 
 December 7, 2006 

The Data and the Identification Process 
The observed data 

ZN=[y(1),φ1,…y(N),φN] 

are N points in Rm+1 

Identification is to find  
the predictor surface  
from the data: 

The predictor model  

 

is a surface in this 
space 
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Mathematical Formulation 

 Collect observations:  ZN , y(t)=f0(φ(t))+noise,  
 Non-parametric: Smooth the y(t)’s locally over selected φ(t)-

regions 
 Parametric: 

 Parameterize the predictor function: f(θ,φ), f2F when θ 2 D 
 Fit the parameters to the data: 

 

 
 

 Use model  
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Outline 
 Problem formulation 
 Parameterizing black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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Predictor Function Parameterization 

How to parameterize the predictor                
function f(θ,φ)? 
  Grey-box (Physical insight of some sort) 

 Black-box (Flexible function expansions) 
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Choice of Functions: Methods 

 Neural Networks 
 Radial Basis Neural Networks 
 Wavelet-networks 
 Neuro-Fuzzy models 
 Spline networks 
 Support Vector Machines 
 Gaussian Processes 
 Kriging 

 
ALL THESE USE 
 
 Several layers…. 
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An Aspect for Dynamical Systems 

 Let  
 (One-step ahead) predicted output:  

 
 

 This is normally what is fitted to data. 
 A tougher test for the model is to simulate the output from 

past inputs only: 
 
 

 Stability issues! 
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The Basic Challenge 
 

 Non-linear surfaces in high dimensions can be very 
complicated and need support of many observed data  
points. 

 How to find parameterizations of such surfaces that both 
give a good chance of being close to the true system, and 
also use a moderate amount of parameters? 

 The data cloud of observations is by necessity sparse in 
the surface space. 
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How to Deal with Sparsity 

 Need ways to interpolate and extrapolate in the 
data space 

 Leap of Faith: Search for global patterns in 
observed data to allow for data-driven 
interpolation 

 Use Physical Insight: Allow for few parameters to 
parameterize the predictor surface, despite the 
high dimension. 
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Outline 
 Problem formulation 
 Parameterizing black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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Using Physical Insight: Light Version 

Semiphysical 
Modeling 

T 

u 
Input: heater voltage u 

Output: Fluid temperature T 

Square the voltage: 
u u2  

f 
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Example: Semiphysical Modeling 

 Outflow 
 Flow 
  κ-number 

Inflow 

 κ-number 
Level 

Buffer Vessel for 
Pulp 

Find the 
dynamics of this 

process! 
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Measured Data from the Vessel 

 

κ number in output flow κ number in input flow 

Level Flow 
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Fit a Linear Model to Data 
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Using All 3 Inputs to Predict the Output 
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Think … 

 Plug Flow: The system is a pure time delay of 
Volume/Flow 

 Perfectly stirred tank: First order system with time 
constant = Volume/Flow 

 Natural Time variable: Volume/Flow 
 Rescale Time: 
 Pf  = Fl ow/ Level  
 Newt i me = 

i nt er p1( cumsum( Pf ) , t i me, [ Pf ( 1) : sum( Pf ) ] ) ;  
 Newdat a = i nt er p1( Ti me, Dat a, Newt i me) ;  
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The Data with a New Time-scale 
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Simple Linear Model for Rescaled Data 
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Using Physical Insight: Serious Version 

 Careful modeling leading to systems of 
Differential Algebraic Equations (DAE)  
parameterized by physical parameters. 

 Support by modern modeling tools. 
 The ”statistically correct” approach is to estimate 

the parameters by the Maximum Likelihood 
method. 
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 Local  Minima of the Criterion 

 This sounds like a general and reasonable 
approach 
 Are there any catches? 
 Well, to minimize the criterion of fit 

(maximizing the likelihood function) could 
be a challenge. 
 Can be trapped in local minima…. 
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Maximum Likelihood: The Solution? 

 Example: A Michaelis-
Menten equation: 

 The output: 
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The ML Criterion (Gaussian Noise) 

V(θ) as a function of θ 
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Outline 
 Problem formulation 
 How to parameterize black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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Can We Handle Local Minima ? 

 Can the observed data be linked to the parameters in a 
different (and simpler) way? 

 Manipulate the equations … 
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Ex: The Michaelis-Menten Equation 

 In our case (noisefree) 
 

For observed y and u this is  a linear regression in the 
parameters. With noisy observations, the noise structure 
will be violated, though, which could lead to biased estimates. 
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Identifiability and Linear Regression 

 
 Result of conceptual interest: 

A parameterized set of DAEs is globally 
identifiable 

if and only if 

the set can be rearranged as a linear 
regression 

Ritt’s algorithm from differential algebra provides a finite 
procedure for constructing the linear regression 

Crucial Challenge for physically parameterized 
models: Find a good initial estimate 

(Ljung, Glad, 1994) 
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Example of Ritt’s Algorithm 

 
 

Original 
equations 

Differentiate y 
twice 

Square the last 
expression which is a linear 

regression 
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Challenge for Parameter Initialization 

 Only small examples treated so far. Make the initialization 
work in bigger problems. 

 Potential for important contributions: 
 Handle the complexity by modularization 
 Handle the noise corruption so that good quality initial estimates 

are secured 

 Room for innovative ideas using algebra and semidefinite 
programming! 

s 



Lennart Ljung 
Identification of Non-linear Dynamical Systems 

ICARCV 2006, Singapore 
 December 7, 2006 

A Control Aspect 

 Despite all the work and results on non-linear models, the 
most common situation will still be 
 

How to live with an estimated LTI model  
approximation of a Non-linear system. 
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Outline 
 Problem formulation 
 Generalization properties 
 How to parameterize black box predictors 
 Using physical insight 
 Initialization of parameter search 
 LTI approximation of non-linear systems 
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Non-linear System Approximation 
 Given an LTI Output-error model structure y=G(q,θ)u+e, 

what will the resulting model be for a non-linear system? 
 Assume that the inputs and outputs u and y are such that 

the spectra Φu and  Φyu are well defined.  
 Then the LTI second order equivalent is  

 
 

    The limit model will be 

Note: G0 depends on u 
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An Example 

 Two data sets  
 Input u and output y 
 y = u   
 y = u + 0.01u3 

The corresponding LTI 
equivalents (amplitude 

Bode plot) 

(Enqvist, 2003) 

Note that the LTI 
equivalent is dynamic! 

Input Output (Lin/NL) 
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An Example 

 Two data sets  
 Input u and output y 
 y = u   
 y = u + 0.01u3 

The corresponding LTI 
equivalents (amplitude 

Bode plot) 

(Enqvist, 2003) 

Is the red Bode plot a good 
basis for control design? 

Input Output (Lin/NL) 

So, oe(z,[2 2 1]) give very different 
results for the two data sets! s 
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Epilogue: Tasks for the Control Community 

 Black-box models 
 Working stability theory: Prediction/Simulation 

 Semiphysical Models 
 Tools to generate and test non-linear transformations of data 

 Fully integrated software for modeling and identification 
 Object oriented modeling 
 Differential Algebraic Equations – including disturbance modeling 
 Robust parameter initialization techniques 

 Understand LTI approximation of nonlinear dynamic 
systems 

 


	Identification of Non-linear Dynamical Systems
	Prologue
	The Data Set
	A Simple Linear Model
	A Picture of the Model
	A Nonlinear Model
	More Flexibility
	The Fit Between Model and Data
	More Regressors
	Biological Insight
	Tailor-made Model Structure
	Bildnummer 12
	Outline
	The Basic Picture
	The Predictor Function
	The Predictor Function
	The Data and the Identification Process
	Mathematical Formulation
	Outline
	Predictor Function Parameterization
	Choice of Functions: Methods
	An Aspect for Dynamical Systems
	The Basic Challenge
	How to Deal with Sparsity
	Outline
	Using Physical Insight: Light Version
	Example: Semiphysical Modeling
	Measured Data from the Vessel
	Fit a Linear Model to Data
	Using All 3 Inputs to Predict the Output
	Think …
	The Data with a New Time-scale
	Simple Linear Model for Rescaled Data
	Using Physical Insight: Serious Version
	 Local  Minima of the Criterion
	Maximum Likelihood: The Solution?
	The ML Criterion (Gaussian Noise)
	Outline
	Can We Handle Local Minima ?
	Ex: The Michaelis-Menten Equation
	Identifiability and Linear Regression
	Example of Ritt’s Algorithm
	Challenge for Parameter Initialization
	A Control Aspect
	Outline
	Non-linear System Approximation
	An Example
	An Example
	Epilogue: Tasks for the Control Community

