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Abstract
Identification of nonlinear systems is a problem with many facets and roots
in several diverse fields. It is not possible to survey the area in a short text.
The current presentation gives a subjective view on some essential features
in the area. These concern a classification of methods, the use of physical
insight in models, and some overall issues like bias-variance trade-off. It is
also discusses how the methods can be made available in software packages.

Keywords: identification, non-linear systems
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Abstract—  Identification of nonlinear systems is a problem surface inR**! if y is scalar. Ify(k) itself is ap-dimensional
with many facets and roots in several diverse fields. It is vector, it is in this perspective convenient to view the peab
not possible to survey the area in a short text. The curent ¢, separate surface-fitting problems, one for each component

presentation gives a subjective view on some essential faegs fu Th tructi f the functi i . |
in the area. These concern a classification of methods, the ais ©' ¥- 'N€ construction ot the function es imae () involves

of physical insight in models, and some overall issues likeids- Several issues that will be treated in this paper, primddly
variance trade-off. It is also discusses how the methods cdme the application to dynamic system models:

made available in software packages. « What are the regressorsin system identification? (Sec-
tion [=4)
|. INTRODUCTION » How to classify the various approaches to find the esti-

mate? (SectiofTI-B)

What are the user questions involved in the choice of

method? (SectiofII[EC)

« Basic issues in non-parametric and parametric methods
(Section ¥ and Sectiorls]V EII)

« How to make methods and algorithms available and
accessible in software? (SectibnVIII)

To construct and estimate models on non-linear dynamic
systems is an important and difficult task. It relies upon *
many different disciplines: Physical modeling, e.g. (&n,
2004), (Bohlin, 2006), mathematical statistics, e.g. (tdast
al., 2001), neural network techniques, e.g. (Barron, 1989),
learning theory and support vector machines, e.g. (Vapnik,
1998), (Suyken®t al, 2002), automatic control and system
identification, e.g. (Sjobergt al, 1995), (Ljung, 2006), and 1. SOME OVERALL ISSUES
s_everal 0ther§. N_onlln_ear models play |mpo_rt_ant roles inyna, -~ ice of Regressors for Dynamic Systems
different application fields, and many specific problem area _
have developed their own techniques and nomenclatures. As ¥/hen models of dynamic systems are soughwould be
consequence, there is a pronounced proliferation of metho@ time index and the raw observation data are sequences of
concepts and results, and it is not so easy to orient oneselfPUtsu(t) and outputsy(t):
the area. . ) . Zﬁ; ={y(1),u(1),y(2),u(2),....y(N),u(N)}  (4)

It is not possible to give a short, comprehensive survey of ) ) ) _
the field, and many highly relevant papers and results wiil nd"€ t@sk is then to provide a model that is capable of pregjcti
be discussed here. Rather, the paper gives my own subject{gré outputs from past observations:
views on a few issues that | consider to be central for the gttt —1) = 9(th1 t) (5)

yu
estimation of nonlinear models. . L -
To cast this formulation into the curve-fitting framewoEB1

@) we need fist to define what are the regressarshis

o ] o ) is a problem related to the choice of states in a state space
Most basic ideas from system identification, choice of mOdF'épresentation of the system. In general, the regressers ar

structures and model sizes are brought out by considerig #hosen as finite-dimensional projections of past data:
basic curve fitting problem from elementary statistics: rehe

Il. THE BASIC STATISTICAL PROBLEM

is an unknown functioryy(x). For a sequence of-values ze = p(t) = SO(Zzt;Zl) (6)
(regressorsjas, za, ..., zx } (that may or may not be chosemwe shall return to a discussion of regressor choices in &ecti
by the user) observe the corresponding function values W3] but for the time being, think of regressors as being a
Some noise: finite collection of past inputs and outputs:
k) = go(xy) + e(k 1

v = golin) - e(h) ® 21 = plt) = [yt = 1)t = o), ,

The problem is to construct an estimate w(t —1),...,u(t —np)]T 7
gn(x) (2) See, among many references, e.g. (Billings, 1990), (Nelles
from 2001) for accounts that specifically deal with dynamic syste
Generally speaking, many issues that relate to methods and
ZN = {y(l)axlay(2)7x2a ay(N)7xN} (3) y sp 9 y

algorithms do not really depend on the nature aof This
This is a well known basic problem, that many people havaeans that the niche for dynamic systems applications $s les
encountered already in high-school. In most applicatians,pronounced in the nonlinear case than in the linear systems
is a vector of dimension, say, This means thay defines a case.
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B. Characterization of Methods and Models C. The Basic Choices

The large family of methods for estimation of nonlinear ~ Bias-variance Trade-off:The objective if of course to
models can be classified along several different aspects.fil}fl @ modeljy(z) that is as close as possible go(z). If
many cases the dividing line is not sharp, but it is anywaytBe disturbances(k) in () are thought of as random variables,
useful way to get a grip on the various possibilities. Below~ (%) is @ random variable, and a natural measure of size or
we list a number of contrasting terms that can be used ¢ error is the mean square error (MSE)
charagterize models and_ methods for nonlinear iglentiﬁoati My(z) = E(go(z) — gn(2))>
The different terms are in no way orthogonal — indeed they

are typically quite correlated. = By(a)* + Wn(2) (10)

Parametric vs. Nonparametric MethodsA parametric By(x) = go() — gy (2), (10b)
method is one that forms a family of candidate function gn(z) = Egn(x) (10c)
descriptions Wy (z) = E(gx(z) — gn(2))? (10d)

G={g(=,0)|0 € D R"} (®)  where the MSE is split into théias error By(x) and the

variance errofVy (x). The symbolE denotes mathematical
expectation w.r.te(-). A typical case is thaty does not
aepend onVN and that we have

parameterized by an-dimensional parameter vectér The

search for the function[}2) is then carried out in term
of 0, typically by optimizing some criterion. The resulting
parameter estimatéy then gives the estimated function by gn(z) = g*(z) asN — oo (11)

gn(z) = g(a?,ézv) 9) In order to make the MSE small, we like both the bia_s error
and the variance error to be small. All methods for estingatin
A nonparametric methodoes not explicitly work with pa- gn have in one way or another some knob to tune the estimate.
rameterized function families. It typically formgy(z) by This knob turned one way will decrease bias as variance is
averaging over relevant measurementsypf In some cases increased, and vice versa, when turned the other way. Aaruci
the distinction may be difficult. problem is to find the best trade-off in this tuning. Note that
Global vs. Local MethodsA global methodbasically e trade-off as such may depend on the function argument
uses all data ind3) to form the estimajg (z) for any z. A One may pick a particulat for the tuning or look at some
local methodonly uses observation paifgy, z; } with 2; ina 3VErage over. _ _
local neighborhood of. Nonparametric methods are typically ©One€ such average is over the regressors that were used in
local. the collected data:
Regression vs. Classification Problemist a regression _ 1Y
problemthe task is to estimate a functigras described above. My = N Z M (z) (12a)

In a classification problemhe task is to classify observations k;l
z into two or more distinct classes. The latter problem can =1
be described as a function estimation problem, by letting Wi = NI;WN(xk) (12)

the range space aof be discrete, assuming as many values

as there are classes. Therefore there are many similarities Choice of Norms:A typical parametric method uses a

between classification and regression problems, but the alr%aSt squares criterion of fit to select the parameter etima

of classification orpattern recognitionhas several unique éN = argmin Vi (6) (13a)
features, see, e.g. (Fukunaga, 1990). N"
Black-box vs. Grey-box ModelsA black-box modelis 1
. 4 . P . Vn(0) = — Ly(k) — ,0 13b
estimated from data without using any specific insights into ~ () N ; (y(k) = g(ax, 0) (13b)
how the data were generated.gkey-box modelis estimated Ye) = &2 a (13¢)

using some ideas about the character of the process that
generated the data. Now, there are many different variant§ie choice of normé(s) can be any measure of size, not
depending on the level of insights used. See SecliohEMI-Vilecessarily a quadratic norm.
Off-the-Shelf Models vs. Models-on-Demadah off-the- Regularization:When the dimension df is large, it turns
shelf modelis estimated from all data and put on the shelf teut to be useful to add a term to the criterignl(13a):
deliver its value for any:, whenever asked for. /_knodel-on- On = argmin Vi (8) + r(0) (14a)
demandis computed from the dat@l(3) at a particular vatue g
only when this function value has come in demand. wherer(0) is a regularizationterm that somehow penalizes
Batch Methods vs. Recursive Methods:batch method large/bad values of. A typical form is
uses all data&Z? to com_pute the_ es_t|mat@v(x). _A recursive r(0) = 5|0 — 0% |2 (14b)
methodcondenses the information in the d&td into a fixed-
dimensional vectoiR y and computes the estimage; 1 (z) Hered* is a value toward which the parameters are adjusted,
from gn(z), Ry and{y(N + 1), zx1y. For recursive meth- typically 0. Theregularization parameteris then a knob that
ods, k typically is a time index. will control the bias-variance trade-off.



Sparseness of DataThe nonlinear estimation problem The weightsw; will depend both on the target point and
with ad-dimensionak: can be seen as a surface-fitting problerthe observation point;:
in R4+, Now, even for moderately largé, this is a huge
space. There are several ways to illustrate this. Consiufer f wy, = C(z, xk) (16a)
example the unit cube iR+, i.e. {x;|z;| < 1Vk}. Even
with a moderate resolution of 0.2 along each coordinate,

Tiypically, they depend only on the distance between the two
takes109+! small cubes with side length 0.2 to fill the unitPO!N's:

cube. To describe a surface in the unit cube the required Kp(x — xp)

amount of data to have at least one observation in each small Clz,zy) = —x K (16b)
cube is overwhelming even faf = 5. The observed data set 2= K@ — )

@) will by necessity be very sparse in the space where the Kp(z) = K(z/h) (16¢)

surface is going to be estimated. . . -
going where h is a parameter that scales the functiin This is

Local Optima: Typical optimization techniques to find .
the estimate employ algorithms likEZ{13). The minimizatiof‘u/\;l example of a&ernel methogmore precisely thdvadaraya-
I

. . Watson estimator(Nadaraya, 1964). Typical choices of the
can seldom be done by closed form expressions (essentlieymeI functionk are
only when/(¢) = ¢% andg(z, ) is linear in#.) The search

for the minimum is then typically carried out by iterative &) = 1
local search, like Gauss-Newton algorithms. They can only Vor
guarantee convergence tolacal optimum while it is the . 3 - .

global one that is the target. This could be a serious problem K(z) = 4 max{1 — 2%, 0} (Epanechnikov) (17b)
in several methods.

Validation and GeneralizationThere is a saying that you
can draw an elephant if only given four parameters (and mak in () will not be used in the function estimate
It Wag s té” with one more.) The meaning is that it |s_no% It is obvious that the bandwidth parameter in this case is
so impressive that you can reproduce observed behavior b

adjusting a model to the observations. The real test (:om\’(\ées{at controls the bias-variance trade-off: A small bandiid

when you have to use your model to reproduce new, fre s Lewc?a_tgft]o averageh ovehr and hen_ce a Isrge \I/anance. A
data. This is the essence wfodel validation(nowadays often large anaw r: mesns t atft € averaging rt]a €s place OVif a
called model generalizatioyy The traditional statistical term is arge area, where t e_true unction may change quite a bit,
S thus leading to large bias.

cross validationSee among many references, e.g. (Gadtb
al., 1979).

To be able the describe the outcome of an experimeggt | ocal Polynomial Methods
before it has been carried out is clearly a very good and ) ) ) )
convincing quality aspect of the model used. Such cross/N @ kernel estimator, the function value is estimated as

validation techniques are often at the heart of methods tifatmean over a local neighborhood. A more sophisticated
determine the bias-variance trade-off. approach would be to compute a more advanced estimate

within the neighborhood. For example, the function could
be approximated as a polynomial within the chosen neigh-
borhood. The coefficients of the polynomial are computed
According to [1), the function values are observed insing a weighted least squares fit, the weights typicallyseho
additive noise. If many observations were made for the sar@@ a kernelK},(u), [@8c)-[IT), giving more weight to the
value of z; it would thus be possible to estimaig(z;,) Observations close to the target valueThe estimate)y ()
by averaging over the correspondip¢k). This is the basic would then be this polynomial's value at. This is the
idea behind nonparametric methods: To average over releviagal polynomial methodsee, e.g. (Fan and Gijbels, 1996).
observationsy(k) to form an estimate of the function atClearly, the Nadaraya-Watson estimator corresponds toa lo
a particular valuex. A general reference to nonparametri@olynomial approach with polynomials of zero order. It also
regression is (Hardle, 1990). follows that the local polynomial method is closely related
local composite model§SectiodVII=Q), often used in control
applications.

e~/2 (Gaussian) (17a)

If the kernel is (essentially) zero fo#| > 1, observations that
re further away thah (the bandwidth from the target point

IV. NONPARAMETRIC FUNCTION APPROXIMATION

A. Kernel Methods

The averaging or smoothing of observations takes the basic ) o
form C. Direct Weight Optimization

N A very direct approach to determine the weights in a

gn(x) = Z wiy (k) (15a) nonparametric estimatdr{}L5) would be to choose them so that
k=1 the MSE My (z),([I0&), at the target point, is minimized

N w.r.t. wg. To carry out the minimization, the true function

Zwk =1 (15b)  go(z) needs to be known. To handle that, first a maximization

k=1 of the MSE is carried out w.r.t. a function famify that go is



assumed to belong to: Several Regressorslt is convenient to let be a function

of a scalar argument, even in casés a vector, and interpret

N
iN = Zwky(k) (18a) the argumenti(z — ) accordingly. Three interpretations are
— commonly used:
N Radial:Interpret3(x — ) ag|z — v||5 with
> we =1 (180) Jo =13 = (2—7)7 8(z—7), (3 being a psd mairix)
k=1 so that the argument is constant over ellipsoids.
wy = argminmax My (z)g (18c)

Wk go€G

This method is described in (Ro#it al, 2005). The result
depends, of course, on the function family For example, if

Ridge: Interpref3(x —~) as37 z—~ with 3 a column vector

and~ a scalar. Then the argument is constant over
hyperplanes.

G is chosen to be a parametric family of functions, liké (8), Tensorinterprets is a product of factors corresponding

linearly parameterized ifi, the resulting estimate is (naturally
enough) the least squares estiméle (9). If, on the other,hand
the family consists of Lipschitz continuous functions

Go(L) = {g(x);19(z1) — g(w2)| < Llw1 — 22|} (19)

to the components of the vector(G(z — 7))
szl k(B (zr — ). v and 8 are d-dimensional
vectors and subscript denotes component.

B. Examples of Named Structures

the resulting estimat@€{IL8) is a kernel type estimatorcaipi
with the Epanechnikov kernel, and a bandwidth that is auto-
matically selected fronl, the assumed noise level, and the

V. BLACK-BOX PARAMETRIC MODELS
A. Basis Function Expansion

In a black-box setting the idea is to parameterize the func-
tion g(x,0) in a flexible way, so that it can well approximate
any feasible true functiongy(z). A typical choice is to use
function expansion

m

9(x,0) = argr(z) (20a)
k=1

with some basis functiong.

Scalar Regressor Case.lt turns out that a powerful
choice of basis functions is to let them be generated from one
and the same “mother function(z) and scale and translate
it according to

gk(z) = K(Br(T — k) (20b)

For example, withx(x) cos(z) this gives a Fourier
transform expansion wit and~ corresponding to frequency
and phase. A more typical example is given by the unit pulse
k(z) =U(x) .

{1WO§I§1

U(x) (21)

0 else
The parametery will place this unit pulse anywhere along
the real axis, and3 will give an arbitrary width to it. The

expansion[{20) will then describe any piecewise constamnt-fu

There is a very extensive literature on black-box linear
models of the kind just described. Many terms and names
7and derivations from different starting points have beesdus
Among the most commonly used terms we have (cf (Sjoberg
et al, 1995), (Ljung, 1999), ch 5):

ANN: Artificial Neural Networks

— The common one hidden layer Sigmoidal Neural
Networks use the sigmoid basic functidnd(22) and
the ridge extension to higher regressor dimensions.

— The Radial Basis Networks use radial regressor
extension, typically with the Gaussian basic function

([L2a).

o Least Squares Support Vector Machines (Suykenset

al., 2002), are derived using an argument in an abstract
feature space, but in action they have many features in
common with radial basis neural networks with fixed
scale and location parameters.

The wavelet expansion of a function is obtained with

k as the “mother wavelet” and double indexing (over
j and k) in the sum [20) with3; = 27 and v, =
277k as fixed choices. The wavenet structure, (Zhang
and Benveniste, 1992) is based on an initial wavelet
expansion, suppressing of small, ;, followed by a
possible refinement of scale and location parameters.
So called (Neuro)-Fuzzy modeling (Jang and Sun,
1995),(Harriset al, 2002), is based on fuzzy modeling:
Signal levels are characterized by fuzzy logic, and numer-
ical values are adjusted to data. This correspondsio (20)
with « being the membership functions and with tensor
expansion to higher regressor dimensions.

Linear Regressionswith fixed scale and location param-

tion. This, in turn, can approximate any reasonable funstioeters and~, the expansior{20) will be a linear regression.
arbitrarily well for large enoughn. Clearly a similar result is This makes the estimation ofa linear least squares problem,
obtained ifx is chosen as the kernels {1]17). This illustrategnd is an often used special case, e.g., (Suykeias, 2002),
the approximation power of the choidel20)xlfis chosen as and (Harriset al., 2002).

a step, or a soft step

1 C. Simulation and Prediction

(22)

the conclusions are similar.

A model of a dynamical system can be used both for simu-
lation and prediction. It is important to realize the distion



between these uses, and we shall here define it for the simpléisturbance signals, possibly modeled as stochastic gsese

case. 0 are the unknown physical parametergre internal variables
Suppose the regressoris = p(t) = [y(t — 1),u(t — 1)]7 that are used to describe the dynamic relationships.

The (one-step ahead) predicted output at time for a givenThe nonlinear identification problem is to estim#tdrom

modelf is then the measured(¢). In general, this is a difficult problem, that

has not yet been treated in full generality. A good referdace

gp(110) = g(ly(t = 1), u(t = DI, 0) (23) " 4 deterministic setting is (Schittkowski, 2002). Idenétion of
It uses the previous measuremeiit — 1). nonlinear DAEs in a stochastic setting is discussed in (@erd
A tougher test is to check how the model would beha006).
in simulation, i.e., when only the input sequencés used. Identifiability of models that are given as sets of (polyno-

The simulated output is obtained as above, by replacing théal) DAEs is treated in (Ljung and Glad, 1994).
measured output by the simulated output from the previous

step: B. State-space Models
s(t,0) = g([9s(t — 1,0),u(t — 1)],0) (24) If the model equations can be transformed into a state space
. o . . . . form
Notice that this simulation algorithm is a dynamical system
It could very well show instability, even if the the predicto x(t) = fa(t),u(t),0) (26a)
(23) is stable. It is in general difficult to analyze the slifbi y(t) = h(z(t),u(t),d) + w(t) (26b)

properties of [2K). . . . . _
wherew is white noise, a formal treatment is possible: For

each parametef this defines a simulated (predicted) output

D. Choice of Regressors N o . ;
g ] ) ] 9(t|0) which is the parameterized function
We can now return to a more detailed discussion on how to

choose regressors for a dynamical model. There are edsentia 9(t10) = 9(Z;,", 0)

four players: in somewhat implicit form. Minimizing a criterion like{13)

« Outputsy(t — k), Inputsu(t — k) will then actually be the Maximum Likelihood method. This
« Simulated model outputg, (¢ — &, 0) really requiresw to be white measurement noise. Some more
« Predicted model outputs,(t — k|6) sophistical noise modeling is possible, usually involviandy

as defined above. hoc nonlinear observers.

Regressors for dynamical systems are often chosen amonghe approach is conceptually simple, but could be very
those. In analogy with linear models (e.g., (Ljung, 19994emanding in practice, since the minimization problem will
Section 4.2) they can be named as follows (see also (Billingske substantial effort and the criterion may have sevecalll

1990)): minima.
o NLFIR-models use past inputs A recent approach using the EM-method, for the case
o NLARX-models use past inputs and outputs where f and h in 8) are affine ind is described in

« NLOE-models use past inputs and past simulated outp@&chonet al, 2006). Particle filter techniques to deal with
o NLARMAX-models use inputs, outputs and predictedvlaximum Likelihood methods to identify nonlinear systems
outputs are described in (Andrieat al, 2004).
o NLBJ-models use all four regressor types
VIl. PARAMETRIC MODELS WITH SOME PHYSICAL
VI|. PARAMETRIC MODELS WITH SUBSTANTIAL PHYSICAL INSIGHT

INSIGHT Models with darker shades of grey typically result after a
Grey-box models incorporate in some way physical insightsiore leisurely modeling work.
Models with lightest shade of grey are obtained by diligent
and extensive physical modeling, resulting in a model of Semi-physical Modeling
fixed structure, but with physical parameters of unknown or

uncertain numerical values. By semi-physical modelingne mean to find nonlinear

transformations of the measured data, so that the transfbrm
) ) data stand a better chance to describe the system in a linear
A. Physical Modeling: DAEs relationship. The basic rule for this process (to ensure its
Modern object oriented modeling tools, like MELICA, leisurely aspect) is that only high-school physics showd b
((Fritzson, 2004)) do not necessarily deliver the resgltinrequired and the work must take no more than 10 minutes.
model in state space form, but as a collection of differéntia To give a trivial example, consider a process where water
algebraic equations (DAE): is heated by an immersion heater. The input is the voltage
: B applied to the heater, and the output is the temperature of
Fi(£®),€(0), 2(t), w(®),0),k = 1., K (25) the water. Any attempt to build a linear model from voltage
Here z are measured signals, being inputs and outputs, lattemperature will fail. A moment's reflection (obeying the
not necessarily distinguished as such. are unmeasured rules of semi-physical modeling) tells us that it is the powe



of the heater that is the driving stimulus for the tempesmatur
thus let the squared voltage be the input to a linear model
generating water temperature at the output. Despite thialtri — ——>
nature of this example, it is good to keep as a template for
data preprocessing. Many identification attempts havedail
due to lack of adequate semi-physical modeling. See, e.g.,
(Ljung, 1999), Examples 5.1 and pages 533 - 536 for more
examples of this kind.

Recently, such structured have been found to be useful in
_ several contexts, see (Ht al, 2006) and (Schoukenst
B. Block-oriented Models al., 2003). With the linear blocks parameterized as a linear
dynamic system and the static blocks parameterized as a
A much used idea is to build up structures from simpl&unction (“curve”), this gives a parameterization of thetymut
building blocks. This could correspond both to physical iras
sights and as a means for generating flexible structures.

. y(tlo) = g(2'~*,0)
Building Blocks: _ o
and the general approach of parametric model fitting can be
applied.

However, in this contexts many algorithmic variants have
been suggested, especially to initialize the search, @ai,

2002)

- C. Composite Local Models
Nonlinear systems are often handled by linearization atoun

a working point.
Basic building blocks for block-oriented models. Square: A The idea behindcomposite local modelss to deal with
linear dynamic system. Oval: A nonlinear static transfaiora  the nonlinearities by developing local models, which aredyo
approximations in different neighborhoods, and then casepo
a global model from these. Often, the local models are linear
so a common name for composite models is adégm@l linear

models See, e.g. (Johansen and Foss, 1995), and (Murray-
w Smith and Johansen, 1997).

Common Models:

The concept is best illustrated by a simple example: Con-
sider a tank with inflowu and outflowy and levelh: The

 —
9‘9) — > dynamics is described by the following equations:

h:—\/ﬁ—i—u

Linearize around level* with corresponding flows™* = y* =

Typical block oriented models. Above: A Wiener model. Mid-Y hr:
dle: A Hammerstein model, Below: A Hammerstein-Wiener : 1

h=———=(h-"h" —u”
model. 2~/h*( )+ (u—u’)
These connections may correspond to physical phenomena. o L h— h*
. > e ; y=y" + ( )
The Wiener model is a linear system followed by nonlinear 2V h*

sensors and the Hammerstein model has nonlinear actuatgigmple this linearized model with sampling tiffig to obtain
Both these cases are common in practice. One may also ntene-step ahead prediction of the output;

that the Wiener model, if allowed to have multiple linear
outputs becomes a universal approximator to a wide class of On=(t) = 0. (1)

1 T
nonlinear systems, cf (Boyd and Shua, 1985). ot) = [1 —y(t—T,) u(t— Ts)}

Other Combinations:A Wiener-Hammerstein
model is the counterpart with two linear dynamic systems
connected via a static nonlinearity. It is also possibledfird where «, 3, are numerical values that depend on the level
more complex combinations of the blocks, with feedback etk*. To form a total, composite model, select or average over

Hh* = I:’yh* Qp* ﬁh*]T



these local predictions, computed at a grid of valuesof VIIl. M AKING THE TECHNIQUESAVAILABLE AND

d ACCESSIBLE
g(t) = Zwk(h’ R )Gn, () The field of non-linear system identification is, as stressed
k=1 several times here, an extensive and versatile area. Itsis ea

The choice of weights, is similar to [I¥). One choice could to get confused by the vast number of approaches and variants

be that only oneu;, is non-zero, thus selecting the local modé?f methods available. Therefore it is especially important
that is closest to the actual value jof package (a subset of) the possible identification tools isea-u

General Comments.Let the measured working poimfriendly way. It is clearly a special challenge to Qesign the
variable (tank levels in the example) be denoted hyt) Syntax so that the complex theory may be accessible to users

(sometimes calledegime variablg If the regime variable is Without having them exposed to all the the intricate choices
partitioned intod valuespy, the predicted output will be An attempt to do that will be contained in the next version of

the MathWorks System Identification Toolbox (SITB), (Ljung
I d (k) 2003) which will integrate techniques for non-linear andbhr
y(t) = Zwk(p(t)’pk)y (t) models. This is a joint project with several contributors, a
=1 outlined in (Ljunget al, 2006).

The predictiony*) (¢) is the local model corresponding to The basic idea is to do this integration in a transparent
pr. This prediction depends on some parameters that amanner, so that the rather complex problem of estimating and
associated with the :th local model, which we denote 8"*). analyzing non-linear models will appear simple and natutal
(The vectord will contain the parameters of all local models.)s also desirable that it can be done with a syntax which has
If this model is linear in the parameterg® (t) = o' (t)0*)  the same look and feel as for linear models.
the whole model will be a linear regression in the parametersThe non-nonlinear model structures supported by the tool-

0. box are
Building a Composite Local ModelTo build the model, . i dnl grey:
we need to (Cf Sectior[ M)
o Select the regime variable Grey-box models corresponding to arbitrary non-linear
» Decide the partition of the regime variable, (p(t),n). state-space equations in continuous or discrete time. The
Heren is a parameter that describes the partition user supplies code in the form of AMLAB m-file or C-
« Find the local models in each patrtition. mex file that defines the right hand side of these state-
If the local models are linear regressions, the total modiél w ~ SPace equations.
be grey-box models corresponding to arbitrary explicit non-
d linear state-space equations in continuous or discrete
- _ T 1\ p(k) time. The user supplies the model structure in the form
§(t,0,m) ;wk(p(t)’nw )¢ @7 of a MATLAB m-file or C-mex file that defines the right

. . . . . hand side of the state-space equations.
which for fixedr is a linear regression. P q

e idnlarx:
Non-linear ARX models: (cf. Section~VID) The system
D. Hybrid Models and LPV Models output is modeled as a nonlinear regression of past inputs
The model [2) is also an example ofhgbrid model. It and past outputs.

is piecewise linear (or affine), and switches between difier i dnl hw
modes as the “state?(¢) varies over the partition. The regime ~ these are non-linear  block-oriented models of
variable p is then a known function of. If the partition is Hammerstein-Wiener type (Sectibn VII-B).
given, so that) is known, the estimation problem is simple: It Like the linear models of the SITB, each nonlinear model is
is a linear regression. However, if the partition has to ke esimplemented as a MrLAB object. A model thus has a certain
mated too, the problem is considerably more difficult, due twumber of properties, like all MrLAB objects. Once a model
the discrete/logical nature of the influencejoMethods based is created, its properties can be accessed by the commands
on mixed integer and linear (or quadratic) programming aget / set following the standard syntax. Property/Value pairs
described in (Rolkt al, 2004) and (Bemporadt al, 2003). can also be used in other method functions. For example, when
So calledLinear Parameter Varying (LPMnodels are also a nonlinear model objectD has been created, the estimation
closely related to composite local models. In state spaea fosyntax is the same as for linear models:

they are described by: m = pen(data, nD, P1, V1, .., Pn, Vn)

a(t) = Alp(t))a(t) + B(p(t))u(t) wherePk, Vk are optional Property/Value pairs, addt a is
y(t) = Clp(t))z(t) + D(p(t))u(t) ani ddat a object.
The quality of the estimated modeid, n2, . .., m can

where theexogenousor regime parametes(t) is measured L .
g g P A(t) :il'I(so be evaluated similarly to the linear case by commands
‘(i.

during the operation of the system. Identification of su
models have been the subject of recent interest. See, leeg.,
and Poolla, 1999) and (Bamieh and Giarré, 2002). conpare(data, mL, n2, ..., m)

e



resi d(dat a, m)
si m(dat a, nl)
predi ct (dat a, nl)

for model simulation error comparison, residual analysis,

simulation and prediction, respectively. The nonlinéasitin
estimated models are basically plotted by

pl ot (ni, N2, ..., M)

For ani dnl grey model, the model structure must be
specified in a m-file or C-mex file before being estimated with

data.

Fori dnl ar x andi dnl hwmodels, a simple command can o
be used to specify a model structure and to estimate the model

with data. For example:

m = nlarx(data,[2 2 1], signoidnet’)
m = nlwh(data,[2 2 1], ’'signoidnet’,...
"wavenet ')

where’ si gnoi dnet’ and’ wavenet’ indicate the types
of nonlinearity estimators.

IX. EXAMPLE

In this example we load data from a hydraulic crane (forest
machine to lift logs). The input is the pressure in the cydind
and the output is the position of the crane tip. First a linear
model is estimated based on the first half of the data. The
simulated output is then compared to the measured output for
the whole data record. After that a Hammerstein model il trie
out, with a sigmoidal neural net with 10 neurons as the input,
static nonlinearity The third model is an nlarx model with a
Wavenet nonlinearity affecting only the past inputs (thstpa

outputs entering linearly).

The figures show the measured output as a thick line, and
the model simulated output as a thin line. They also show the
fit of the model (in terms of the percentage of the measured

output variation that is reproduced by the model). Cledhy,

Linear model: Fit 41.71 %

. | . .
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Hammerstein model: Fit 71.61 %

. . . .
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Wavenet model: Fit 57.31 %

.
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. . . .
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.
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1200

Hammerstein model gives the best performance in this case.

The physical explanation for this could be that the measured

hydraulic cylinder pressure is transformed to forces gctin

X. CONCLUSIONS
Identification of nonlinear models is indeed a problem with

the mechanical parts by a non-linear static function, wher@any facets. What makes the area so overwhelmingly rich is
after the dynamics is described by linear mechanical moti¢hat so many different research communities have conétbut

equations.

| oad robotarm

dat a i ddata(y, u);

dat e=dat a( 1: 512) ;

dat v=dat a(513: end) ;

m arx(date,[3 2 1]);

conpare(data, m);

nmh=nl hw(date,[2 3 1],’sig ,unitgain);

conpar e(dat a, mh) ;

mav=nl arx(date,[3 2 1], wave’', ' nlreg’ ,[4 5]);
conpar e(dat a, my) ;

and continue to contribute. Many issues are purely stedisti
and do not depend on whether the underlying process is a
dynamical system or not. For the control community it is Wort
while to find its niche with the best chances to give valuable
contributions. A few suggestions are
o Find a working relationship between modern physical
modeling tools and the estimation of dynamical models.
Deal directly with Differential Algebraic Equations, and
sort out how to work with disturbance descriptions in
such models.
« Study identifiability questions when sub-models are con-
nected in such object oriented modeling environments.



order to provide powerful initialization steps for param

e-
ter estimation. Can particle filters and the EM algorithm

Consider both algebraic tools (like Ritt's algorithm) andang, J-S. R. and C-T. Sun (1995). Neuro-fuzzy modeling antral. Proc.
algorithmic tricks to convexify estimation problems in

of the IEEE83(3), 378-406.

Johansen, T. A. and B. A. Foss (1995). Identification of m@dr-system
structure and parameters using regime decompositiutomatica
31(2), 321-326.

offer help in dealing with (i.e. avoiding) local optima oftee, L. and K. Poolla (1999). Identification of linear paraemevarying

the likelihood function?
block-oriented models (Sectidn VI B)?
handle on stability for simulation (cf. Sectifn \W-C)?

for control applications, it is important to fully under-

Can black-box models be developed that allow a bett't‘sj

systems using non-linear programmingSME Journal of Dynamic
Systems, Measurement and Contt@ll, 71-78.

Can tools of considerable generality be developed fronung, L. (1999). System Identification - Theory for the Useind ed..

Prentice-Hall. Upper Saddle River, N.J.
ung, L. (2003). The System Identification Toolbox: The Manu@he
I "Mathworks Inc. 1st edition 1986, 6th edition 2003. NatickAMJSA.
Ljung, L. (2006). Some aspects of nonlinear system ideatiia. In: Proc.

Since linear dynamic models will remain the basic arena 14th IFAC Symposium on System Identificatibiewcastle, Australia.

Ljung, L. and T. Glad (1994). On global identifiability of atrfary model
parameterizationsAutomatica30(2), pp 265-276.

stand how linear models approximate real-life nonlineajung, L., Q. Zhang, P. Lindskog, A. Juditsky and R. Singh Q@D An

systems. Cf. (Enqvist, 2005).
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