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Abstract

Identi�cation of nonlinear systems is a problem with many facets and roots

in several diverse �elds. It is not possible to survey the area in a short text.

The current presentation gives a subjective view on some essential features

in the area. These concern a classi�cation of methods, the use of physical

insight in models, and some overall issues like bias-variance trade-o�. It is

also discusses how the methods can be made available in software packages.
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Abstract— Identification of nonlinear systems is a problem
with many facets and roots in several diverse fields. It is
not possible to survey the area in a short text. The current
presentation gives a subjective view on some essential features
in the area. These concern a classification of methods, the use
of physical insight in models, and some overall issues like bias-
variance trade-off. It is also discusses how the methods canbe
made available in software packages.

I. I NTRODUCTION

To construct and estimate models on non-linear dynamic
systems is an important and difficult task. It relies upon
many different disciplines: Physical modeling, e.g. (Fritzson,
2004), (Bohlin, 2006), mathematical statistics, e.g. (Hastie et
al., 2001), neural network techniques, e.g. (Barron, 1989),
learning theory and support vector machines, e.g. (Vapnik,
1998), (Suykenset al., 2002), automatic control and system
identification, e.g. (Sjöberget al., 1995), (Ljung, 2006), and
several others. Nonlinear models play important roles in many
different application fields, and many specific problem areas
have developed their own techniques and nomenclatures. As a
consequence, there is a pronounced proliferation of methods,
concepts and results, and it is not so easy to orient oneself in
the area.

It is not possible to give a short, comprehensive survey of
the field, and many highly relevant papers and results will not
be discussed here. Rather, the paper gives my own subjective
views on a few issues that I consider to be central for the
estimation of nonlinear models.

II. T HE BASIC STATISTICAL PROBLEM

Most basic ideas from system identification, choice of model
structures and model sizes are brought out by considering the
basic curve fitting problem from elementary statistics: There
is an unknown functiong0(x). For a sequence ofx-values
(regressors){x1, x2, . . . , xN} (that may or may not be chosen
by the user) observe the corresponding function values with
some noise:

y(k) = g0(xk) + e(k) (1)

The problem is to construct an estimate

ĝN(x) (2)

from
ZN = {y(1), x1, y(2), x2, . . . , y(N), xN} (3)

This is a well known basic problem, that many people have
encountered already in high-school. In most applications,x
is a vector of dimension, say,d. This means thatg defines a

surface inRd+1 if y is scalar. Ify(k) itself is ap-dimensional
vector, it is in this perspective convenient to view the problem
asp separate surface-fitting problems, one for each component
of y. The construction of the function estimateĝN (x) involves
several issues that will be treated in this paper, primarilyfor
the application to dynamic system models:

• What are the regressorsx in system identification? (Sec-
tion III-A)

• How to classify the various approaches to find the esti-
mate? (Section III-B)

• What are the user questions involved in the choice of
method? (Section III-C)

• Basic issues in non-parametric and parametric methods
(Section IV and Sections V – VII)

• How to make methods and algorithms available and
accessible in software? (Section VIII)

III. SOME OVERALL ISSUES

A. Choice of Regressors for Dynamic Systems

When models of dynamic systems are soughtk would be
a time index and the raw observation data are sequences of
inputsu(t) and outputsy(t):

ZN
yu = {y(1), u(1), y(2), u(2), . . . , y(N), u(N)} (4)

The task is then to provide a model that is capable of predicting
future outputs from past observations:

ŷ(t|t − 1) = g(Zt−1
yu , t) (5)

To cast this formulation into the curve-fitting framework (1)-
(3) we need fist to define what are the regressorsx. This
is a problem related to the choice of states in a state space
representation of the system. In general, the regressors are
chosen as finite-dimensional projections of past data:

xt = ϕ(t) = ϕ(Zt−1
yu ) (6)

We shall return to a discussion of regressor choices in Section
V-D, but for the time being, think of regressors as being a
finite collection of past inputs and outputs:

xt = ϕ(t) = [y(t − 1), . . . , y(t − na),

u(t − 1), . . . , u(t − nb)]
T (7)

See, among many references, e.g. (Billings, 1990), (Nelles,
2001) for accounts that specifically deal with dynamic systems.
Generally speaking, many issues that relate to methods and
algorithms do not really depend on the nature ofx. This
means that the niche for dynamic systems applications is less
pronounced in the nonlinear case than in the linear systems
case.
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B. Characterization of Methods and Models

The large family of methods for estimation of nonlinear
models can be classified along several different aspects. In
many cases the dividing line is not sharp, but it is anyway a
useful way to get a grip on the various possibilities. Below
we list a number of contrasting terms that can be used to
characterize models and methods for nonlinear identification.
The different terms are in no way orthogonal – indeed they
are typically quite correlated.

Parametric vs. Nonparametric Methods:A parametric
method is one that forms a family of candidate function
descriptions

G = {g(x, θ)|θ ∈ D ⊆ Rn} (8)

parameterized by ann-dimensional parameter vectorθ. The
search for the function (2) is then carried out in terms
of θ, typically by optimizing some criterion. The resulting
parameter estimatêθN then gives the estimated function by

ĝN(x) = g(x, θ̂N ) (9)

A nonparametric methoddoes not explicitly work with pa-
rameterized function families. It typically formŝgN (x) by
averaging over relevant measurements ofyk. In some cases
the distinction may be difficult.

Global vs. Local Methods:A global methodbasically
uses all data in (3) to form the estimateĝN(x) for any x. A
local methodonly uses observation pairs{yk, xk} with xk in a
local neighborhood ofx. Nonparametric methods are typically
local.

Regression vs. Classification Problems:In a regression
problemthe task is to estimate a functiong as described above.
In a classification problemthe task is to classify observations
x into two or more distinct classes. The latter problem can
be described as a function estimation problem, by letting
the range space ofg be discrete, assuming as many values
as there are classes. Therefore there are many similarities
between classification and regression problems, but the area
of classification orpattern recognitionhas several unique
features, see, e.g. (Fukunaga, 1990).

Black-box vs. Grey-box Models:A black-box modelis
estimated from data without using any specific insights into
how the data were generated. Agrey-box modelis estimated
using some ideas about the character of the process that
generated the data. Now, there are many different variants,
depending on the level of insights used. See Sections VI–VII.

Off-the-Shelf Models vs. Models-on-Demand:An off-the-
shelf modelis estimated from all data and put on the shelf to
deliver its value for anyx, whenever asked for. Amodel-on-
demandis computed from the data (3) at a particular valuex
only when this function value has come in demand.

Batch Methods vs. Recursive Methods:A batch method
uses all dataZN to compute the estimatêgN (x). A recursive
methodcondenses the information in the dataZN into a fixed-
dimensional vectorRN and computes the estimatêgN+1(x)
from ĝN(x), RN and{y(N + 1), xN+1}. For recursive meth-
ods,k typically is a time index.

C. The Basic Choices

Bias-variance Trade-off:The objective if of course to
find a modelĝN(x) that is as close as possible tog0(x). If
the disturbancese(k) in (1) are thought of as random variables,
ĝN(x) is a random variable, and a natural measure of size or
the error is the mean square error (MSE)

MN(x) = E(g0(x) − ĝN (x))2

= BN (x)2 + WN (x) (10a)

BN (x) = g0(x) − g∗N (x), (10b)

g∗N (x) = EĝN(x) (10c)

WN (x) = E(g∗N (x) − ĝN (x))2 (10d)

where the MSE is split into thebias errorBN (x) and the
variance errorWN (x). The symbolE denotes mathematical
expectation w.r.t.e(·). A typical case is thatg∗N does not
depend onN and that we have

ĝN (x) → g∗(x) asN → ∞ (11)

In order to make the MSE small, we like both the bias error
and the variance error to be small. All methods for estimating
ĝN have in one way or another some knob to tune the estimate.
This knob turned one way will decrease bias as variance is
increased, and vice versa, when turned the other way. A crucial
problem is to find the best trade-off in this tuning. Note that
the trade-off as such may depend on the function argumentx.
One may pick a particularx for the tuning or look at some
average overx.

One such average is over the regressors that were used in
the collected data:

M̄N =
1

N

N
∑

k=1

MN(xk) (12a)

W̄N =
1

N

N
∑

k=1

WN (xk) (12b)

Choice of Norms:A typical parametric method uses a
least squares criterion of fit to select the parameter estimate:

θ̂N = argmin
θ

VN (θ) (13a)

VN (θ) =
1

N

N
∑

k=1

ℓ(y(k) − g(xk, θ)) (13b)

ℓ(ε) = ε2 (13c)

The choice of normℓ(ε) can be any measure of size, not
necessarily a quadratic norm.

Regularization:When the dimension ofθ is large, it turns
out to be useful to add a term to the criterion (13a):

θ̂N = argmin
θ

VN (θ) + r(θ) (14a)

wherer(θ) is a regularizationterm that somehow penalizes
large/bad values ofθ. A typical form is

r(θ) = δ‖θ − θ#‖2 (14b)

Hereθ# is a value toward which the parameters are adjusted,
typically 0. Theregularization parameterδ is then a knob that
will control the bias-variance trade-off.



3

Sparseness of Data:The nonlinear estimation problem
with ad-dimensionalx can be seen as a surface-fitting problem
in Rd+1. Now, even for moderately larged, this is a huge
space. There are several ways to illustrate this. Consider for
example the unit cube inRd+1, i.e. {x; |xk| ≤ 1∀k}. Even
with a moderate resolution of 0.2 along each coordinate, it
takes10d+1 small cubes with side length 0.2 to fill the unit
cube. To describe a surface in the unit cube the required
amount of data to have at least one observation in each small
cube is overwhelming even ford = 5. The observed data set
(3) will by necessity be very sparse in the space where the
surface is going to be estimated.

Local Optima: Typical optimization techniques to find
the estimate employ algorithms like (13). The minimization
can seldom be done by closed form expressions (essentially
only whenℓ(ε) = ε2 and g(x, θ) is linear in θ.) The search
for the minimum is then typically carried out by iterative
local search, like Gauss-Newton algorithms. They can only
guarantee convergence to alocal optimum, while it is the
global one that is the target. This could be a serious problem
in several methods.

Validation and Generalization:There is a saying that you
can draw an elephant if only given four parameters (and make
it wag its tail with one more.) The meaning is that it is not
so impressive that you can reproduce observed behavior by
adjusting a model to the observations. The real test comes
when you have to use your model to reproduce new, fresh
data. This is the essence ofmodel validation(nowadays often
calledmodel generalization). The traditional statistical term is
cross validation. See among many references, e.g. (Golubet
al., 1979).

To be able the describe the outcome of an experiment
before it has been carried out is clearly a very good and
convincing quality aspect of the model used. Such cross
validation techniques are often at the heart of methods that
determine the bias-variance trade-off.

IV. N ONPARAMETRIC FUNCTION APPROXIMATION

According to (1), the function values are observed in
additive noise. If many observations were made for the same
value of xk it would thus be possible to estimateg0(xk)
by averaging over the correspondingy(k). This is the basic
idea behind nonparametric methods: To average over relevant
observationsy(k) to form an estimate of the function at
a particular valuex. A general reference to nonparametric
regression is (Härdle, 1990).

A. Kernel Methods

The averaging or smoothing of observations takes the basic
form

ĝN (x) =

N
∑

k=1

wky(k) (15a)

N
∑

k=1

wk = 1 (15b)

The weightswk will depend both on the target pointx and
the observation pointxk:

wk = C(x, xk) (16a)

Typically, they depend only on the distance between the two
points:

C(x, xk) =
Kh(x − xk)

∑N
j=1 Kh(x − xj)

(16b)

Kh(x̃) = K(x̃/h) (16c)

where h is a parameter that scales the functionK. This is
an example of akernel method, more precisely theNadaraya-
Watson estimator, (Nadaraya, 1964). Typical choices of the
kernel functionK are

K(x̃) =
1√
2π

e−x̃2/2 (Gaussian) (17a)

K(x̃) =
3

4
max{1 − x̃2, 0} (Epanechnikov) (17b)

If the kernel is (essentially) zero for|x̃| > 1, observations that
are further away thanh (thebandwidth) from the target point
x in (15) will not be used in the function estimate.

It is obvious that the bandwidth parameter in this case is
what controls the bias-variance trade-off: A small bandwidth
gives few data to average over and hence a large variance. A
large bandwidth means that the averaging takes place over a
large area, where the true function may change quite a bit,
thus leading to large bias.

B. Local Polynomial Methods

In a kernel estimator, the function value is estimated as
a mean over a local neighborhood. A more sophisticated
approach would be to compute a more advanced estimate
within the neighborhood. For example, the function could
be approximated as a polynomial within the chosen neigh-
borhood. The coefficients of the polynomial are computed
using a weighted least squares fit, the weights typically chosen
as a kernelKh(u), (16c)-(17), giving more weight to the
observations close to the target valuex. The estimatêgN (x)
would then be this polynomial’s value atx. This is the
local polynomial method, see, e.g. (Fan and Gijbels, 1996).
Clearly, the Nadaraya-Watson estimator corresponds to a local
polynomial approach with polynomials of zero order. It also
follows that the local polynomial method is closely relatedto
local composite models, (Section VII-C), often used in control
applications.

C. Direct Weight Optimization

A very direct approach to determine the weights in a
nonparametric estimator (15) would be to choose them so that
the MSE MN(x),(10a), at the target pointx, is minimized
w.r.t. wk. To carry out the minimization, the true function
g0(x) needs to be known. To handle that, first a maximization
of the MSE is carried out w.r.t. a function familyG that g0 is
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assumed to belong to:

ĝN =

N
∑

k=1

wky(k) (18a)

N
∑

k=1

wk = 1 (18b)

wk = arg min
wk

max
g0∈G

MN (x)g (18c)

This method is described in (Rollet al., 2005). The result
depends, of course, on the function familyG. For example, if
G is chosen to be a parametric family of functions, like (8),
linearly parameterized inθ, the resulting estimate is (naturally
enough) the least squares estimate (9). If, on the other hand,
the family consists of Lipschitz continuous functions

G2(L) = {g(x); |g(x1) − g(x2)| ≤ L|x1 − x2|} (19)

the resulting estimate (18) is a kernel type estimator, typically
with the Epanechnikov kernel, and a bandwidth that is auto-
matically selected fromL, the assumed noise level, and the
available observations. See also (Sacks and Ylvisaker, 1978).

V. BLACK -BOX PARAMETRIC MODELS

A. Basis Function Expansion

In a black-box setting the idea is to parameterize the func-
tion g(x, θ) in a flexible way, so that it can well approximate
any feasible true functionsg0(x). A typical choice is to use
function expansion

g(x, θ) =

m
∑

k=1

αkgk(x) (20a)

with some basis functionsgk.
Scalar Regressor Case.:It turns out that a powerful

choice of basis functions is to let them be generated from one
and the same “mother function”κ(x) and scale and translate
it according to

gk(x) = κ(βk(x − γk)) (20b)

For example, withκ(x) = cos(x) this gives a Fourier
transform expansion withβ andγ corresponding to frequency
and phase. A more typical example is given by the unit pulse
κ(x) = U(x)

U(x) =

{

1 if 0 ≤ x ≤ 1

0 else
(21)

The parameterγ will place this unit pulse anywhere along
the real axis, andβ will give an arbitrary width to it. The
expansion (20) will then describe any piecewise constant func-
tion. This, in turn, can approximate any reasonable functions
arbitrarily well for large enoughm. Clearly a similar result is
obtained ifκ is chosen as the kernels in (17). This illustrates
the approximation power of the choice (20). Ifκ is chosen as
a step, or a soft step

κ(x) = σ(x) =
1

1 + e−x
(22)

the conclusions are similar.

Several Regressors.:It is convenient to letκ be a function
of a scalar argument, even in casex is a vector, and interpret
the argumentβ(x − γ) accordingly. Three interpretations are
commonly used:

Radial:Interpretβ(x − γ) as‖x − γ‖β with
‖x−γ‖2

β = (x−γ)T β(x−γ), (β being a psd matrix)
so that the argument is constant over ellipsoids.

Ridge: Interpretβ(x−γ) asβT x−γ with β a column vector
and γ a scalar. Then the argument is constant over
hyperplanes.

Tensor:Interpretκ is a product of factors corresponding
to the components of the vector:κ(β(x − γ)) =
∏d

k=1 κ(βk(xk − γk)). γ and β are d-dimensional
vectors and subscript denotes component.

B. Examples of Named Structures

There is a very extensive literature on black-box linear
models of the kind just described. Many terms and names
and derivations from different starting points have been used.
Among the most commonly used terms we have (cf (Sjöberg
et al., 1995), (Ljung, 1999), ch 5):

• ANN: Artificial Neural Networks
– The common one hidden layer Sigmoidal Neural

Networks use the sigmoid basic function (22) and
the ridge extension to higher regressor dimensions.

– The Radial Basis Networks use radial regressor
extension, typically with the Gaussian basic function
(17a).

• Least Squares Support Vector Machines, (Suykenset
al., 2002), are derived using an argument in an abstract
feature space, but in action they have many features in
common with radial basis neural networks with fixed
scale and location parameters.

• The wavelet expansion of a function is obtained with
κ as the “mother wavelet” and double indexing (over
j and k) in the sum (20) withβj = 2j and γk =
2−jk as fixed choices. The wavenet structure, (Zhang
and Benveniste, 1992) is based on an initial wavelet
expansion, suppressing of smallαk,j , followed by a
possible refinement of scale and location parameters.

• So called (Neuro)-Fuzzy modeling, (Jang and Sun,
1995),(Harriset al., 2002), is based on fuzzy modeling:
Signal levels are characterized by fuzzy logic, and numer-
ical values are adjusted to data. This corresponds to (20)
with κ being the membership functions and with tensor
expansion to higher regressor dimensions.

Linear Regressions:With fixed scale and location param-
etersβ andγ, the expansion (20) will be a linear regression.
This makes the estimation ofα a linear least squares problem,
and is an often used special case, e.g., (Suykenset al., 2002),
and (Harriset al., 2002).

C. Simulation and Prediction

A model of a dynamical system can be used both for simu-
lation and prediction. It is important to realize the distinction
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between these uses, and we shall here define it for the simplest
case.

Suppose the regressor isxt = ϕ(t) = [y(t − 1), u(t − 1)]T

The (one-step ahead) predicted output at time for a given
modelθ is then

ŷp(t|θ) = g([y(t − 1), u(t − 1)]T , θ) (23)

It uses the previous measurementy(t − 1).
A tougher test is to check how the model would behave

in simulation, i.e., when only the input sequenceu is used.
The simulated output is obtained as above, by replacing the
measured output by the simulated output from the previous
step:

ŷs(t, θ) = g([ŷs(t − 1, θ), u(t − 1)]T , θ) (24)

Notice that this simulation algorithm is a dynamical system.
It could very well show instability, even if the the predictor
(23) is stable. It is in general difficult to analyze the stability
properties of (24).

D. Choice of Regressors

We can now return to a more detailed discussion on how to
choose regressors for a dynamical model. There are essentially
four players:

• Outputsy(t − k), Inputsu(t − k)
• Simulated model outputŝys(t − k, θ)
• Predicted model outputŝyp(t − k|θ)

as defined above.
Regressors for dynamical systems are often chosen among

those. In analogy with linear models (e.g., (Ljung, 1999),
Section 4.2) they can be named as follows (see also (Billings,
1990)):

• NLFIR-models use past inputs
• NLARX-models use past inputs and outputs
• NLOE-models use past inputs and past simulated outputs
• NLARMAX-models use inputs, outputs and predicted

outputs
• NLBJ-models use all four regressor types

VI. PARAMETRIC MODELS WITH SUBSTANTIAL PHYSICAL

INSIGHT

Grey-box models incorporate in some way physical insights.
Models with lightest shade of grey are obtained by diligent
and extensive physical modeling, resulting in a model of
fixed structure, but with physical parameters of unknown or
uncertain numerical values.

A. Physical Modeling: DAEs

Modern object oriented modeling tools, like MODELICA,
((Fritzson, 2004)) do not necessarily deliver the resulting
model in state space form, but as a collection of differential
algebraic equations (DAE):

Fk(ξ(t), ξ̇(t), z(t), w(t), θ), k = 1, . . . , K (25)

Here z are measured signals, being inputs and outputs, but
not necessarily distinguished as such.w are unmeasured

disturbance signals, possibly modeled as stochastic processes.
θ are the unknown physical parameters.ξ are internal variables
that are used to describe the dynamic relationships.

The nonlinear identification problem is to estimateθ from
the measuredz(t). In general, this is a difficult problem, that
has not yet been treated in full generality. A good referencefor
a deterministic setting is (Schittkowski, 2002). Identification of
nonlinear DAEs in a stochastic setting is discussed in (Gerdin,
2006).

Identifiability of models that are given as sets of (polyno-
mial) DAEs is treated in (Ljung and Glad, 1994).

B. State-space Models

If the model equations can be transformed into a state space
form

ẋ(t) = f(x(t), u(t), θ) (26a)

y(t) = h(x(t), u(t), θ) + w(t) (26b)

wherew is white noise, a formal treatment is possible: For
each parameterθ this defines a simulated (predicted) output
ŷ(t|θ) which is the parameterized function

ŷ(t|θ) = g(Zt−1
yu , θ)

in somewhat implicit form. Minimizing a criterion like (13)
will then actually be the Maximum Likelihood method. This
really requiresw to be white measurement noise. Some more
sophistical noise modeling is possible, usually involvingad
hoc nonlinear observers.

The approach is conceptually simple, but could be very
demanding in practice, since the minimization problem will
take substantial effort and the criterion may have several local
minima.

A recent approach using the EM-method, for the case
where f and h in (26) are affine inθ is described in
(Schönet al., 2006). Particle filter techniques to deal with
Maximum Likelihood methods to identify nonlinear systems
are described in (Andrieuet al., 2004).

VII. PARAMETRIC MODELS WITH SOME PHYSICAL

INSIGHT

Models with darker shades of grey typically result after a
more leisurely modeling work.

A. Semi-physical Modeling

By semi-physical modelingwe mean to find nonlinear
transformations of the measured data, so that the transformed
data stand a better chance to describe the system in a linear
relationship. The basic rule for this process (to ensure its
leisurely aspect) is that only high-school physics should be
required and the work must take no more than 10 minutes.

To give a trivial example, consider a process where water
is heated by an immersion heater. The input is the voltage
applied to the heater, and the output is the temperature of
the water. Any attempt to build a linear model from voltage
to temperature will fail. A moment’s reflection (obeying the
rules of semi-physical modeling) tells us that it is the power
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of the heater that is the driving stimulus for the temperature:
thus let the squared voltage be the input to a linear model
generating water temperature at the output. Despite the trivial
nature of this example, it is good to keep as a template for
data preprocessing. Many identification attempts have failed,
due to lack of adequate semi-physical modeling. See, e.g.,
(Ljung, 1999), Examples 5.1 and pages 533 - 536 for more
examples of this kind.

B. Block-oriented Models

A much used idea is to build up structures from simple
building blocks. This could correspond both to physical in-
sights and as a means for generating flexible structures.

Building Blocks:

Basic building blocks for block-oriented models. Square: A
linear dynamic system. Oval: A nonlinear static transformation

Common Models:

Typical block oriented models. Above: A Wiener model. Mid-
dle: A Hammerstein model, Below: A Hammerstein-Wiener
model.

These connections may correspond to physical phenomena.
The Wiener model is a linear system followed by nonlinear
sensors and the Hammerstein model has nonlinear actuators.
Both these cases are common in practice. One may also note
that the Wiener model, if allowed to have multiple linear
outputs becomes a universal approximator to a wide class of
nonlinear systems, cf (Boyd and Shua, 1985).

Other Combinations:A Wiener-Hammerstein
model is the counterpart with two linear dynamic systems
connected via a static nonlinearity. It is also possible to define
more complex combinations of the blocks, with feedback etc.

Recently, such structured have been found to be useful in
several contexts, see (Hsuet al., 2006) and (Schoukenset
al., 2003). With the linear blocks parameterized as a linear
dynamic system and the static blocks parameterized as a
function (“curve”), this gives a parameterization of the output
as

ŷ(t|θ) = g(Zt−1, θ)

and the general approach of parametric model fitting can be
applied.

However, in this contexts many algorithmic variants have
been suggested, especially to initialize the search, e.g.,(Bai,
2002)

C. Composite Local Models

Nonlinear systems are often handled by linearization around
a working point.

The idea behindcomposite local modelsis to deal with
the nonlinearities by developing local models, which are good
approximations in different neighborhoods, and then compose
a global model from these. Often, the local models are linear,
so a common name for composite models is alsolocal linear
models. See, e.g. (Johansen and Foss, 1995), and (Murray-
Smith and Johansen, 1997).

The concept is best illustrated by a simple example: Con-
sider a tank with inflowu and outflowy and levelh: The
dynamics is described by the following equations:

ḣ = −
√

h + u

y =
√

h

Linearize around levelh∗ with corresponding flowsu∗ = y∗ =√
h∗:

ḣ = − 1

2
√

h∗
(h − h∗) + (u − u∗)

y = y∗ +
1

2
√

h∗
(h − h∗)

Sample this linearized model with sampling timeTs to obtain
a one-step ahead prediction of the output:

ŷh∗(t) = θT
h∗ϕ(t)

ϕ(t) =
[

1 −y(t − Ts) u(t − Ts)
]T

θh∗ =
[

γh∗ αh∗ βh∗

]T

whereα, β, γ are numerical values that depend on the level
h∗. To form a total, composite model, select or average over
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these local predictions, computed at a grid of values ofh∗

ŷ(t) =

d
∑

k=1

wk(h, hk)ŷhk
(t)

The choice of weightswk is similar to (15). One choice could
be that only onewk is non-zero, thus selecting the local model
that is closest to the actual value ofh.

General Comments.:Let the measured working point
variable (tank levelh in the example) be denoted byρ(t)
(sometimes calledregime variable). If the regime variable is
partitioned intod valuesρk, the predicted output will be

ŷ(t) =
d

∑

k=1

wk(ρ(t), ρk)ŷ(k)(t)

The predictionŷ(k)(t) is the local model corresponding to
ρk. This prediction depends on some parameters that are
associated with thek :th local model, which we denote byθ(k).
(The vectorθ will contain the parameters of all local models.)
If this model is linear in the parameters,ŷ(k)(t) = ϕT (t)θ(k)

the whole model will be a linear regression in the parameters
θ.

Building a Composite Local Model.:To build the model,
we need to

• Select the regime variableρ
• Decide the partition of the regime variablewk(ρ(t), η).

Hereη is a parameter that describes the partition
• Find the local models in each partition.

If the local models are linear regressions, the total model will
be

ŷ(t, θ, η) =

d
∑

k=1

wk(ρ(t), η)ϕT (t)θ(k) (27)

which for fixedη is a linear regression.

D. Hybrid Models and LPV Models

The model (27) is also an example of ahybrid model. It
is piecewise linear (or affine), and switches between different
modes as the “state”ϕ(t) varies over the partition. The regime
variableρ is then a known function ofϕ. If the partition is
given, so thatη is known, the estimation problem is simple: It
is a linear regression. However, if the partition has to be esti-
mated too, the problem is considerably more difficult, due to
the discrete/logical nature of the influence ofη. Methods based
on mixed integer and linear (or quadratic) programming are
described in (Rollet al., 2004) and (Bemporadet al., 2003).

So calledLinear Parameter Varying (LPV)models are also
closely related to composite local models. In state space form
they are described by:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t)

y(t) = C(ρ(t))x(t) + D(ρ(t))u(t)

where theexogenousor regime parameterρ(t) is measured
during the operation of the system. Identification of such
models have been the subject of recent interest. See, e.g., (Lee
and Poolla, 1999) and (Bamieh and Giarré, 2002).

VIII. M AKING THE TECHNIQUESAVAILABLE AND

ACCESSIBLE

The field of non-linear system identification is, as stressed
several times here, an extensive and versatile area. It is easy
to get confused by the vast number of approaches and variants
of methods available. Therefore it is especially importantto
package (a subset of) the possible identification tools in a user-
friendly way. It is clearly a special challenge to design the
syntax so that the complex theory may be accessible to users
without having them exposed to all the the intricate choices.
An attempt to do that will be contained in the next version of
the MathWorks System Identification Toolbox (SITB), (Ljung,
2003) which will integrate techniques for non-linear and linear
models. This is a joint project with several contributors, as
outlined in (Ljunget al., 2006).

The basic idea is to do this integration in a transparent
manner, so that the rather complex problem of estimating and
analyzing non-linear models will appear simple and natural. It
is also desirable that it can be done with a syntax which has
the same look and feel as for linear models.

The non-nonlinear model structures supported by the tool-
box are

• idnlgrey:
(Cf Section VI)
Grey-box models corresponding to arbitrary non-linear
state-space equations in continuous or discrete time. The
user supplies code in the form of MATLAB m-file or C-
mex file that defines the right hand side of these state-
space equations.
grey-box models corresponding to arbitrary explicit non-
linear state-space equations in continuous or discrete
time. The user supplies the model structure in the form
of a MATLAB m-file or C-mex file that defines the right
hand side of the state-space equations.

• idnlarx:
Non-linear ARX models: (cf. Section V-D) The system
output is modeled as a nonlinear regression of past inputs
and past outputs.

• idnlhw:
these are non-linear block-oriented models of
Hammerstein-Wiener type (Section VII-B).

Like the linear models of the SITB, each nonlinear model is
implemented as a MATLAB object. A model thus has a certain
number of properties, like all MATLAB objects. Once a model
is created, its properties can be accessed by the commands
get/set following the standard syntax. Property/Value pairs
can also be used in other method functions. For example, when
a nonlinear model objectm0 has been created, the estimation
syntax is the same as for linear models:

m = pem(data,m0,P1,V1,..,Pn,Vn)

wherePk,Vk are optional Property/Value pairs, anddata is
aniddata object.

The quality of the estimated modelsm1,m2,...,mn can
also be evaluated similarly to the linear case by commands
like

compare(data,m1,m2,...,mn)
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resid(data,m1)
sim(data,m1)
predict(data,m1)

for model simulation error comparison, residual analysis,
simulation and prediction, respectively. The nonlinearities in
estimated models are basically plotted by

plot(m1,m2,...,mn)

For an idnlgrey model, the model structure must be
specified in a m-file or C-mex file before being estimated with
data.

Foridnlarx andidnlhw models, a simple command can
be used to specify a model structure and to estimate the model
with data. For example:

m = nlarx(data,[2 2 1],’sigmoidnet’)
m = nlwh(data,[2 2 1], ’sigmoidnet’,...

’wavenet’)

where’sigmoidnet’ and’wavenet’ indicate the types
of nonlinearity estimators.

IX. EXAMPLE

In this example we load data from a hydraulic crane (forest
machine to lift logs). The input is the pressure in the cylinder
and the output is the position of the crane tip. First a linear
model is estimated based on the first half of the data. The
simulated output is then compared to the measured output for
the whole data record. After that a Hammerstein model is tried
out, with a sigmoidal neural net with 10 neurons as the input,
static nonlinearity The third model is an nlarx model with a
Wavenet nonlinearity affecting only the past inputs (the past
outputs entering linearly).

The figures show the measured output as a thick line, and
the model simulated output as a thin line. They also show the
fit of the model (in terms of the percentage of the measured
output variation that is reproduced by the model). Clearly,the
Hammerstein model gives the best performance in this case.
The physical explanation for this could be that the measured
hydraulic cylinder pressure is transformed to forces acting on
the mechanical parts by a non-linear static function, where-
after the dynamics is described by linear mechanical motion
equations.

load robotarm
data = iddata(y,u);
date=data(1:512);
datv=data(513:end);
ml = arx(date,[3 2 1]);
compare(data,ml);
mh=nlhw(date,[2 3 1],’sig’,unitgain);
compare(data,mh);
mw=nlarx(date,[3 2 1],’wave’,’nlreg’,[4 5]);
compare(data,mw);
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Linear model: Fit 41.71 %
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Wavenet model: Fit 57.31 %

X. CONCLUSIONS

Identification of nonlinear models is indeed a problem with
many facets. What makes the area so overwhelmingly rich is
that so many different research communities have contributed
and continue to contribute. Many issues are purely statistical
and do not depend on whether the underlying process is a
dynamical system or not. For the control community it is worth
while to find its niche with the best chances to give valuable
contributions. A few suggestions are

• Find a working relationship between modern physical
modeling tools and the estimation of dynamical models.
Deal directly with Differential Algebraic Equations, and
sort out how to work with disturbance descriptions in
such models.

• Study identifiability questions when sub-models are con-
nected in such object oriented modeling environments.
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• Consider both algebraic tools (like Ritt’s algorithm) and
algorithmic tricks to convexify estimation problems in
order to provide powerful initialization steps for parame-
ter estimation. Can particle filters and the EM algorithm
offer help in dealing with (i.e. avoiding) local optima of
the likelihood function?

• Can tools of considerable generality be developed from
block-oriented models (Section VII-B)?

• Can black-box models be developed that allow a better
handle on stability for simulation (cf. Section V-C)?

• Since linear dynamic models will remain the basic arena
for control applications, it is important to fully under-
stand how linear models approximate real-life nonlinear
systems. Cf. (Enqvist, 2005).
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