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2Dynamic Systems

A Dynamic system has an out-
put response y that depends on
(all) previous values of an input
signal u. It is also typically af-
fected by a disturbance signal v.
So the output at time t can be
written as

y(t) = g(ut, vt)

where superscript denotes the
signal’s values from the remote
past up to the indicated time.
The input signal u is known
(measured), while the distur-
bance v is unmeasured.
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3The Problem
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■ How do the control surface angles affect the pitch rate?

■ Aerodynamic derivatives?

■ How to use the information in flight data?
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5More Formalized Questions

Think discrete time data sequences:
ut, yt = [u(1), u(2), ..., u(t), y(1), y(2), ..., y(t)]
We need to get hold of a “simulation function”

y(t) = g(ut)

and/or a prediction function

ŷ(t|t − 1) = f̃(ut−1, yt−1)

in order to
■ be able to simulate and/or predict the input-output behavior of the

system — “black-box”

■ find parameters associated with a physical description (like the
aerodynamic derivatives) of the system — “grey-box”
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6State or Regression Vector

More concretely, assume that the relevant past can be condensed into a finite
dimensional state, x(t)

x(t) = h(ut−1, yt−1)

that is sufficient for the prediction

ŷ(t|t − 1) = f̃(ut−1, yt−1) = f(x(t))

We thus need to find the function f (and h).
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6State or Regression Vector

More concretely, assume that the relevant past can be condensed into a finite
dimensional state, x(t)

x(t) = h(ut−1, yt−1)

that is sufficient for the prediction

ŷ(t|t − 1) = f̃(ut−1, yt−1) = f(x(t))

We thus need to find the function f (and h). For simplicity, in this talk think of

x(t) =
[

y(t − 1), . . . , y(t − n), u(t − 1), . . . u(t − m)
]T
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7The Estimation Problem

So, the estimation problem is, given
ZN = [yN , uN ] find the mapping f .
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7The Estimation Problem

So, the estimation problem is, given
ZN = [yN , uN ] find the mapping f .

Suppose that the mapping h is known.

Then the observations are equivalent
to [y(t), x(t)], t = 1, . . .N and we seek
a mapping so that

y(t) ≈ ŷ(t|t − 1) = f(x(t))
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7The Estimation Problem

So, the estimation problem is, given
ZN = [yN , uN ] find the mapping f .

Suppose that the mapping h is known.

Then the observations are equivalent
to [y(t), x(t)], t = 1, . . .N and we seek
a mapping so that

y(t) ≈ ŷ(t|t − 1) = f(x(t))

Statistically, this is a classical curve
fitting problem
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8How are Models Adjusted to Data?
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■ Non-parametric: Smooth observed data over
suitable neighborhoods
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■ Parametric: Postulate a parametrized surface
and adjust its parameters to the data
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■ Parametric: Postulate a parametrized surface
and adjust its parameters to the data

■ Semi-parametric: Adjust local, parameterized
surface patches.
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■ Parametric: Postulate a parametrized surface
and adjust its parameters to the data

■ Semi-parametric: Adjust local, parameterized
surface patches.

■ Always a “knob” that controls bias/variance trade-off
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8How are Models Adjusted to Data?
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■ Non-parametric: Smooth observed data over
suitable neighborhoods

■ Parametric: Postulate a parametrized surface
and adjust its parameters to the data

■ Semi-parametric: Adjust local, parameterized
surface patches.

■ Always a “knob” that controls bias/variance trade-off

■ Basic headache: Curse of dimensionality
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9Some Statistical Complements

1. The estimated function value f̂(x) is a random variable, inheriting its pdf
from the disturbances v in a rather complex manner. One must therefore be
content with finding its asymptotic distribution as N → ∞. This can be
calculated using the LLN (limit value) and CLT (Gaussian distribution around
this limit). The standard calculations carry over to the case of dynamic
systems with more or less effort.
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9Some Statistical Complements

1. The estimated function value f̂(x) is a random variable, inheriting its pdf
from the disturbances v in a rather complex manner. One must therefore be
content with finding its asymptotic distribution as N → ∞. This can be
calculated using the LLN (limit value) and CLT (Gaussian distribution around
this limit). The standard calculations carry over to the case of dynamic
systems with more or less effort.

2. The basic Bias/Variance trade-off knob for dynamic models is the order of
the model, i.e. the number of states required to describe its prediction
function. It can be complemented by regularization and all its modern
variants (lasso, lars, nn-garrote ...)

∑

|y(t) − f(x(t), θ)|2 + δ|θ|2

in the same way as for pure curve-fitting problems.
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10Some Issues Specific for System Identification

■ Parameterization of the predictor mapping ŷ(t|t − 1) = f(ut−1, yt−1)
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10Some Issues Specific for System Identification

■ Parameterization of the predictor mapping ŷ(t|t − 1) = f(ut−1, yt−1)

■ Adopting and adapting the statistical theory to analyze the asymptotic
properties in this context.
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10Some Issues Specific for System Identification

■ Parameterization of the predictor mapping ŷ(t|t − 1) = f(ut−1, yt−1)

■ Adopting and adapting the statistical theory to analyze the asymptotic
properties in this context.

■ Special techniques for minimizing the function of fit for these structures.
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10Some Issues Specific for System Identification

■ Parameterization of the predictor mapping ŷ(t|t − 1) = f(ut−1, yt−1)

■ Adopting and adapting the statistical theory to analyze the asymptotic
properties in this context.

■ Special techniques for minimizing the function of fit for these structures.

■ Choice of the properties of the input signal.
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10Some Issues Specific for System Identification

■ Parameterization of the predictor mapping ŷ(t|t − 1) = f(ut−1, yt−1)

■ Adopting and adapting the statistical theory to analyze the asymptotic
properties in this context.

■ Special techniques for minimizing the function of fit for these structures.

■ Choice of the properties of the input signal.

■ Selection of which signals to measure and when to measure them.
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11Linear and Non-Linear Models

Linearity and nonlinearity concerns
ŷ(t|t − 1) = f(yt−1, ut−1) as a function
of past data.
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11Linear and Non-Linear Models

Linearity and nonlinearity concerns
ŷ(t|t − 1) = f(yt−1, ut−1) as a function
of past data. If this function is linear in
the data we have a linear model, and
are seeking a linear hyperplane to fit
the observations in the data space.
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11Linear and Non-Linear Models

Linearity and nonlinearity concerns
ŷ(t|t − 1) = f(yt−1, ut−1) as a function
of past data. If this function is linear in
the data we have a linear model, and
are seeking a linear hyperplane to fit
the observations in the data space.
For a nonlinear model, an arbitrary,
suitably fitting surface is sought.
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12Parameterization of Linear Dynamic Models

A linear dynamic model is written in transfer function form

y(t) = G(q)u(t) + H(q)e(t) G and H functions of the delay operator q

e.g. y(t) = g1u(t − 1) + g2u(t − 2) + e(t) + h1e(t − 1) e white noise
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12Parameterization of Linear Dynamic Models

A linear dynamic model is written in transfer function form

y(t) = G(q)u(t) + H(q)e(t) G and H functions of the delay operator q

e.g. y(t) = g1u(t − 1) + g2u(t − 2) + e(t) + h1e(t − 1) e white noise

Typical parameterizations: rational functions in q (Black-Box)

G(q, θ) =
b1q

−1 + . . . + bnq−n

1 + a1q−1 + . . . + anq−n
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12Parameterization of Linear Dynamic Models

A linear dynamic model is written in transfer function form

y(t) = G(q)u(t) + H(q)e(t) G and H functions of the delay operator q

e.g. y(t) = g1u(t − 1) + g2u(t − 2) + e(t) + h1e(t − 1) e white noise

Typical parameterizations: rational functions in q (Black-Box)

G(q, θ) =
b1q

−1 + . . . + bnq−n

1 + a1q−1 + . . . + anq−n

State Space (Grey-Box, originating from a system of first order ODEs)

G(q, θ) = C(θ)(qI − A(θ))−1B(θ)
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13A Quick Classifiation of Non-Linear Models: B/W

1. Basis-function expansion models (Black)

ŷ(t|t − 1) = f(x(t), θ)

f(x, θ) =
∑

αkκ(βk(x − γk)) θ = {αk, βk, γk}

■ The whole neuro-fuzzy, SVM etc business
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13A Quick Classifiation of Non-Linear Models: B/W

1. Basis-function expansion models (Black)

ŷ(t|t − 1) = f(x(t), θ)

f(x, θ) =
∑

αkκ(βk(x − γk)) θ = {αk, βk, γk}

■ The whole neuro-fuzzy, SVM etc business

2. Physically parameterized DAE models (Light-Grey)

sin(θ1φ(t) + θ2) + θ3u1(t)
2 = 0; θ4u2(t)ẏ1(t)

3 + 34ÿ2(t) = 0

■ Often obtained as modules in object oriented physical modeling (e.g.
MODELICA)
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14More nonlinear models (Darker Grey)

3. Block-oriented (nonlinear static blocks mixed with linear dynamic blocks)
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14More nonlinear models (Darker Grey)

3. Block-oriented (nonlinear static blocks mixed with linear dynamic blocks)

4. Semi-physical models (non-linear transformations of measured data,
based on simple insights)
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14More nonlinear models (Darker Grey)

3. Block-oriented (nonlinear static blocks mixed with linear dynamic blocks)

4. Semi-physical models (non-linear transformations of measured data,
based on simple insights)

5. Composite Local models (local linear models)

ŷ(t, θ, η) =
d

∑

k=1

wk(ρ(t), η)ϕT (t)θ(k)
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15Experiment Design Issues

Experiment Design is about making the experiment as informative as
possible about important features in the models, given existing constraints.
The main tool is the Fisher Information Matrix as a function of given options.
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15Experiment Design Issues

Experiment Design is about making the experiment as informative as
possible about important features in the models, given existing constraints.
The main tool is the Fisher Information Matrix as a function of given options.

A beacon for experiment (input) design for linear systems is the asymptotic
expression for the variance of the estimated frequency function:

VarĜ(ω) ∼
n

N

Φv(ω)

Φu(ω)

n: Model order, N : number of observations, Φv: disturbance spectrum,
Φu input spectrum
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16A Special Feature for Experiment Design: Feedback

In control applications the input signal is often chosen as output feedback:
u(t) = k(yt, rt). This creates complications:
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16A Special Feature for Experiment Design: Feedback

In control applications the input signal is often chosen as output feedback:
u(t) = k(yt, rt). This creates complications:

1. Looking for connections between u and y gives two possibilities: The
system describes how y depends on past u. The feedback regulator
describes how u depends on past y. One may have to be careful not to
mix these up.



System Identification
Lennart Ljung

Data Driven Modelling Workshop
Hyderabad, Feb 22, 2008

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

16A Special Feature for Experiment Design: Feedback

In control applications the input signal is often chosen as output feedback:
u(t) = k(yt, rt). This creates complications:

1. Looking for connections between u and y gives two possibilities: The
system describes how y depends on past u. The feedback regulator
describes how u depends on past y. One may have to be careful not to
mix these up.

2. One can loose “identifiability”. Consider the simple case

y(t) + ay(t − 1) = bu(t − 1) + e(t); u(t) = ky(t) System with P-feedback

Clearly we have y(t) + (a − bk)y(t − 1) = e(t) and all values of a and b

such that a− bk has certain value give identical input-output signals, and
hence cannot be distinguished.
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17Concluding Remarks

■ Describing the dynamic system as a predictor of future outputs, and
finding models that minimize the prediction error gives a good common
denominator for identification of both linear and nonlinear models.
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17Concluding Remarks

■ Describing the dynamic system as a predictor of future outputs, and
finding models that minimize the prediction error gives a good common
denominator for identification of both linear and nonlinear models.

■ The process can be seen as a basic curve-fitting problem allowing both
parametric and nonparametric techniques.
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■ Describing the dynamic system as a predictor of future outputs, and
finding models that minimize the prediction error gives a good common
denominator for identification of both linear and nonlinear models.

■ The process can be seen as a basic curve-fitting problem allowing both
parametric and nonparametric techniques.

■ Classic statistical tools for curve-fitting and model quality analysis can
be readily transformed to the system identification problem.
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17Concluding Remarks

■ Describing the dynamic system as a predictor of future outputs, and
finding models that minimize the prediction error gives a good common
denominator for identification of both linear and nonlinear models.

■ The process can be seen as a basic curve-fitting problem allowing both
parametric and nonparametric techniques.

■ Classic statistical tools for curve-fitting and model quality analysis can
be readily transformed to the system identification problem.

■ For linear models, the time/frequency domain duality and the Parseval
relationship allow useful complementary view-points.
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17Concluding Remarks

■ Describing the dynamic system as a predictor of future outputs, and
finding models that minimize the prediction error gives a good common
denominator for identification of both linear and nonlinear models.

■ The process can be seen as a basic curve-fitting problem allowing both
parametric and nonparametric techniques.

■ Classic statistical tools for curve-fitting and model quality analysis can
be readily transformed to the system identification problem.

■ For linear models, the time/frequency domain duality and the Parseval
relationship allow useful complementary view-points.

■ The special features of dynamic system identification concern primarily
area-specific model parameterizations and experiment design issues
involving feedback configurations.
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17Concluding Remarks

■ Describing the dynamic system as a predictor of future outputs, and
finding models that minimize the prediction error gives a good common
denominator for identification of both linear and nonlinear models.

■ The process can be seen as a basic curve-fitting problem allowing both
parametric and nonparametric techniques.

■ Classic statistical tools for curve-fitting and model quality analysis can
be readily transformed to the system identification problem.

■ For linear models, the time/frequency domain duality and the Parseval
relationship allow useful complementary view-points.

■ The special features of dynamic system identification concern primarily
area-specific model parameterizations and experiment design issues
involving feedback configurations.

■ The intended model use plays a prominent role in experiment design.
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