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Outline

Preamble: The classic, conventional System Identification Setup

Bias – Variance, Model Size Selection
Regularization
• Well tuned bias–variance trade-off
• Filling out missing information in data

Lennart Ljung

What can regularization offer for estimation of dynamical systems?

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

State-of-the-Art System Identification

Models:

Model Structure: M. Parameters: θ. Model: M(θ).
Observed input–output (u, y) data up to time t: Zt

Model described by predictor: M(θ) : ŷ(t|θ) = g(t, θ, Zt−1).

Estimation:

−log likelihood function ε(t, θ) = y(t)− ŷ(t|θ)
VN(θ) = ∑N

t=1 |ε(t, θ)|2
”Prediction Error Fit”
θ̂N = arg min VN(θ)

Model Structure (size) determination, AIC, BIC:

M(θ̂N) = arg minM,θ [log VN(θ) + g(N)dimθ]
g(N) = 2 or log N
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Comment on Model Structure Selection

The model fit as measured by ∑N
t=1 |y(t)− ŷ(t|θ)|2 for a certain set

of data will always improve as the model structure becomes larger
(more parameters). The parameters will start adjusting also to the
actual noise effects in the data [”Overfit”]
There are two ways of counteracting this effect:

Compute the model on one set of (estimation) data and evaluate
the fit on another (validation) data set. [Cross-Validation]

Add a penalty term to the criterion which balances the overfit:

M(θ̂N) = arg min
M,θ

[log VN(θ) + g(N)dimθ]

AIC :g(N) = 2, BIC : g(N) = log(N)

AIC: Akaike’s Information Criterion. BIC: Bayesian Information
Criterion [= MDL: Minimum Description Length]
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Model Estimate Properties

As the number of data, N, tends to infinity

θ̂N → θ∗ ∼ arg minθ E|ε(t, θ)|2 the best possible predictor in
M
IfM contains a true description of the system
• Cov θ̂N = λ

N [Eψ(t)ψT(t)]−1 [ψ(t) = d
dθ ŷ(t|θ), λ : noise level]...

• ... is the Cramér-Rao lower bound for any (unbiased) estimator.

E: Expectation. These are very nice optimal properties:

The model structure is large enough: The ML/PEM estimated
model is (asymptotically) the best possible one. Has smallest
possible variance (Cramér- Rao)

The model structure is not large enough: The ML/PEM estimate
converges to the best possible approximation of the system.
”The estimate has smallest possible asymptotic bias.”
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Linear Models

General Description

y(t) = G(q, θ)u(t) + H(q, θ)e(t), q : shift op. e : white noise

G(q, θ)u(t) =
∞

∑
k=1

gku(t− k), H(q, θ)e(t) = 1 +
∞

∑
k=1

hke(t− k)

Predictor

ŷ(t|θ) = G(q, θ)u(t) + [I−H−1(q, θ)][y(t)−G(q, θ)u(t)]

Asymptotics: [Φu, Φv: Spectra of input and additive noise v = He.]

θ̂N → θ∗ = arg min
θ

∫ π

−π
|G(eiω, θ)−G0(eiω)|2 Φu(ω)

|H(eiω, θ)|2 dω

CovG(eiω, θ̂N) ∼
n
N

Φv(ω)

Φu(ω)
as n, N → ∞ n : model order

Lennart Ljung

What can regularization offer for estimation of dynamical systems?

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Common Black-Box Parameterizations:

BJ (Box-Jenkins)

G(q, θ) =
B(q)
F(q)

; H(q, θ) =
C(q)
D(q)

B(q) = b1q−1 + b2q−2 + . . . bnbq−nb

F(q) = 1 + f1q−1 + . . . + fnf qnf

θ = [b1, b2, . . . , fnf ]

ARX:

y(t) =
B(q)
A(q)

u(t) +
1

A(q)
e(t) or

A(q)y(t) = B(q)u(t) + e(t) or

y(t) + a1y(t− 1) + . . . + anay(t− na)
= b1u(t− 1) + . . . + bnbu(t− nb)
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Common Black and Grey Parameterizations

State-Space with Possibly Physically Parameterized Matrices

x(t + 1) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t)
y(t) = C(θ)x(t) + e(t)

Corresponds to

G(q, θ) = C(θ)(qI−A(θ))−1B(θ).

H(q, θ) = C(θ)(qI−A(θ))−1K(θ) + I
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Continuous Time (CT) Models

Physical Model with unknown parameters

ẋ(t) = F (θ)x(t) + G(θ)u(t) + w(t)
y(t) = C(θ)x(t) + D(θ)u(t) + v(t)

Sample it (with correct Input Intersample Behaviour):

x(t + 1) = A(θ)x(t) + B(θ)u(t) + K(θ)e(t)
y(t) = C(θ)x(t) + e(t)

Now apply the discrete time formalism to this model, which is
parameterized in terms of the CT parameters θ

Lennart Ljung

What can regularization offer for estimation of dynamical systems?

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

An Example

Equipped with these tools, let us now test some data (selected but
not untypical). The example uses complex dynamics and few (210)
data, so this is a case where asymptotic properties are not important.
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Estimate a Model: State-of-the-Art

We will try the state-of-the art approach: Estimate SS models of
different orders. Determine the order by the AIC criterion.

for k=1:30
m{k}= ssest(z,k);

end
(dum,n) = min(aic{:});
mss = m{n};
impulse(mss)
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Is this a good model? Preview: This IR has a fit of 79.42%
But, we can do better! Another choice of model order gives a fit of
82.95 % . I will also show an estimate with a 83.56% fit.
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Status of the State-of-the-Art Framework

Well established statistical theory
Optimal asymptotic properties
Efficient software
Many applications in very diverse areas. Some examples:

• Aircraft Dynamics:
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• Brain Activity (fMRI):
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• Pulp Buffer Vessel:
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Time-out

This is a bright and rosy picture. Any issues and problems?

Convexity Issues: For most model structures the criterion
function VN(θ) = ∑N

t=1 |y(t)− ŷ(t|θ)|2 is non-convex and
multi-modal (several local minima). Evolutionary Minimization
Algorithms could be applied, but no major successes for
identification problems have been reported. We typically have to
resort to good initial estimates.

Small data sizes – complex systems: Need well tuned
bias–variance trade–off. Model selection rules are a bit shaky in
this case. [Recall: ”We can do better.”]
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Bias – Variance Trade Off

Any estimated model is incorrect. The errors have two sources:

Bias: The model structure is not flexible enough to contain a
correct description of the system.

Variance: The disturbances on the measurements affect the
model estimate, and cause variations when the experiment is
repeated, even with the same input.

Mean Square Error (MSE) = |Bias|2 + Variance.
When model flexibility ↑,Bias ↓ and Variance ↑.
To minimize MSE is a good trade-off in flexibility.
In state-of-the-art Identification, this flexibility trade-off is governed
primarily by model order. May need a more powerful tuning
instrument for bias–variance trade-off.
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Linear Black-Box Models: Fundamental Role of ARX

ARX can Approximate Any Linear System

Arbitrary Linear System: y(t) = G0(q)u(t) + H0(q)e(t)

ARX model order n, m : An(q)y(t) = Bm(q)u(t) + e(t)

as N >> n, m→ ∞

[Ân(q)]−1B̂m(q)→ G0(q), [Ân(q)]−1 → H0(q)

The ARX-model Is a Linear Regression

Note that the ARX-model is estimated as a linear regression
Y = Φθ + E, (Φ containing lagged y, u and θ containing a, b)
A convex estimation problem.

Virtually all methods to find a linear intial estimate for the non-convex
minimization of the ML criterion are based on an ARX-model of some
kind.
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Test on Our Data

Estimate ARX-model of order 10 and 30: Bode plots of models
together with true system:
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Order 10. Order 30. True. The high order model picks up the true
curves better, but seem more ”shaky”. Look at Uncertainty regions!
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How to Curb Variance?

The ARX approximation property is valuable, but high orders come
with high variance.
Can we curb the flexibility that causes high variance other than by
lower order? Regularization
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Model Structures and Regularization

Curb the Model’s Flexibility!

VN(θ) =
N

∑
t=1
|ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗)
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Bayesian View

The regularized criterion

VN(θ) = ∑N
t=1 |ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗)

Bayesian interpretation: Suppose θ is a random vector which a priori

θ ∈ N(θ∗, Π), f (θ) =
1√

(2π)d det(Π)
e−(θ−θ∗)TΠ−1(θ−θ∗)/2

Bayes rule gives posterior dist (Y denoting all measured y-signals)

P(θ|Y) = P(θ, Y)
P(Y)

=
P(Y|θ)P(θ)

P(Y)

Apart from the normalization, and other θ-independent terms, twice
the negative logarithm of P(θ|Y) is VN(θ) with λR = Π−1

That means that with the regularized estimate θ̂N = arg min VN(θ)
is the Maximum A Posteriori (MAP) Estimate.
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Tuning the Regularization

The regularized criterion

VN(θ) = ∑N
t=1 |ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗), λR = Π−1

R = I, θ∗ = 0, tune λ: Ridge regression
Cross Validation
Use ML for marginal distribution (”Empirical Bayes”):
Parameterize θ∗(α), Π(α) with hyper-parameters α. Form

P(Y|α) =
∫

P(Y|θ, α)P(θ|α)dθ

α̂ = arg max P(Y|α)

First factor essentially the likelihood function for θ and second
factor essentially the prior. The integration is simple for a linear
regression model, see next few slides.
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Linear Regression – Regularization

The regularized criterion

VN(θ) = ∑N
t=1 |ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗), λR = Π−1

Regularization for a linear regression (θ∗ = 0)

Y = Φθ + E

θ̂N = arg min |Y−Φθ|2+θTΠ−1θ

Π is the Regularization Matrix. MSE:

E [(θ̂N − θ0)(θ̂N − θ0)
T] = (RN + Π−1)−1×

(RN + Π−1θ0θT
0 Π−1)(RN + Π−1)−1 RN = ΦΦT, θ0 = true par

Minimized by Π = θ0θT
0 : MSE = (RN + Π−1)−1 How to select Π?
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Marginal Likelihood for Regularized Linear Regression

Recall Empirical Bayes (EB): Parameterize θ∗(α), Π(α). Form

P(Y|α) =
∫

P(Y|θ, α)P(θ|α)dθ

α̂ = arg max P(Y|α)
In the linear regression case

Y = Φθ + E, θ ∈ N(0, Π(α)), E ∈ N(0, I), Φ deterministic

Y = Φθ + E ∈ N(0, Z(α)), Z(α) = ΦΠ(α)ΦT + I

P(Y|α) immediate

ML estimate of α : α̂ = arg min YTZ(α)−1Y + log det Z(α)
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ARX Model Priors

When estimating an ARX-model, we can think of the predictor

ŷ(t|θ) = (1−A(q))y(t) + B(q)u(t)

as made up of two impulse responses, A and B. The vector θ should
thus mimic two impulse responses, both typically exponentially
decaying and smooth.We can thus have a reasonable prior for θ:

P(α1, α2) =

[
PA(α1) 0

0 PB(α2)

]
Block Diagonal A&B

where the hyperparameters α describe decay and smoothness of the
impulse responses. Typical choice:
TC kernel

E|bk|2 = Cλk, corr(bk, bk+1) =
√

λ
PB

k,` = C min(λk, λ`); α = [C, λ]
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Relevant References

This classical regularization framework/Bayesian tuning framework
was suggested for the estimation of linear systems impulse
responses by
Pillonetto, De Nicolao and Chiuso
in 2010/2011 (Automatica/IEEE AC) using a function learning
perspective.

The current classical regularization interpretation was made by
Chen, Ohlsson and Ljung
in 2011/2012 (IFAC WC/Automatica).
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Software Issues

The MATLAB system Identification Toolbox, ver R2013b (released
August 2013) now supports quadratic regularization for all linear and
non-linear model estimation.
The regularized criterion

VN(θ) = ∑N
t=1 |ε(t, θ)|2 + λ(θ − θ∗)TR(θ − θ∗),

is supported by a field Regularization in all the
estimationOptions (arxOptions, ssestOptions,
procestOptions) etc.:

opt.Regularization.Lambda
opt.Regularization.R
opt.Regularization.Nominal (θ∗)

ARX-regularization tuning:
[L,R]=arxRegul(data,[na,nb,nk],Kernel)
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Our Test Data: State-of-the-Art

Recall: The state-of-the art approach: Estimate SS models of
different orders. Determine the order by the AIC criterion.

for k=1:30
m{k}= ssest(z,k);

end
(dum,n) = min(aic{:});
mss = m{n};
impulse(mss)
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Estimate a Model: Regularized ARX

Now, let us try an ARX model with na=5, nb=60. Estimate a
regularization matrix with the ’TC’ kernel (2 parameters, C, λ each for
the A and B parts):

aopt = arxOptions;
(L,R) = arxRegul(z,[5 60 0],’TC’);
aopt.Regularization.R = R;
aopt.Regularization.Lambda = L;
mr = arx(z,[5 60 0],aopt);
impulse(mr)
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The Oracle

The examined data were ob-
tained from a randomly gener-
ated model of order 30:

y(t) = G0(q)u(t) + H0(q)e(t)

The input is Gaussian white noise
with variance 1, and e is white
noise with variance 0.1. The im-
pulse responses of G and H are
shown at the right.
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How Well Did Our Models mss And mr Do?
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G : fit: mss: 79.42% mr: 83.55% H: fit mss: 77.05%, mr: 81.59%
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Surprise ?

ML beaten by an ”outsider algorithm”!: That is a surprise!
There is a certain randomness in these data, but Monte-Carlo
simulations substantiate the observed conclusion.

Even though ML is known to have the quoted optimal properties for
best bias and variance, the observation is still not a contradiction.

Recall: Mean Square Error (MSE) = |Bias|2 + Variance.

ML: Bias ≈ 0⇒: MSE = Variance = CR Lower bound for unbiased
estimators

But with some bias, Variance could be clearly smaller then CRB

Recall for Lin Reg: CRB = (ΦΦT)−1 > (ΦΦT + P−1)−1 = MSE for
best regularized estimated. More pronounced for short data
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Objections?

Recall: mss fit 79.42%, mr fit 83.55 %
We were just unlucky to pick order 3 (AIC). Other model
selection criteria would have given better results.
• If we ask the oracle what is the best possible state-space order

for ML estimated model, the answer is order 12 for G with a fit
82.95 % and order 3 for H with a fit 77.04% So the regularized
ARX -model gives better fit to both G and H than is at all
possible for ML estimated state-space models [for these data].

The R-ARX model is of order 60, and it is unfair to compare it
with SS models of low order.
• Try mred = balred(mr,7) to create a 7th order SS-model.

It still has a G-fit of 83.56% and outperforms the oracle-selected
ML SS models.
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Discussion

In this case Regularized ARX gave a much better and more
flexible bias–variance trade off through the continuously
adjustable hyperparameters in the regularization matrix —
Compared to the state-of-the art bias–variance trade off in
terms of discrete model orders.
Can we forget about ssest and move over to regularized
ARX?
• No, recall that the studied situation had quite few data, and the

good trade-off is reached for rather large bias, not favouring ML.
• But one should be equipped with regularized ARX in one’s

toolbox
Regularized ARX (possible followed by balred) can be seen
as a convexification of the state-of-the art SS model estimation
techniques.
NB: Tuning of hyperparameters normally non-convex
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FIR Impulse Response Estimation

The system:

G(z) =
0.02008 + 0.04017z−1 + 0.02008z−2

1− 1.561z−1 + 0.6414z−2 (1)

Impulse response:
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Figure : The true impulse response.
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The Model and the Data

The model:

y(t) =
nb

∑
k=0

g(k)u(t− k) (2)

The data: (Input low pass filtered white noise, white measurement
noise: SNR: 400)
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Figure : The data used for estimation.
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Best FIR model (nb=13)

arx(z,[0 13 0])
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Figure : The true impulse response together with the estimate for order
nb = 13.
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Ridge Regression (nb=50)

aopt=arxOptions; aopt.Regularization.Lambda=1;
m50r=arx(z,[0 50 0],aopt);
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Figure : The true impulse response together with the ridge-regularized
estimate for order nb = 50.
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Tuned Regression

[L,R]=arxRegul(z,[0 50 0],’TC’); aopt.Regularization.Lambda=L;
aopt.Regularization.R=R; mrtc=arx(z,[0 50 0],aopt);
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Figure : The true impulse response together with the tuned regularized
estimate for order nb = 50.
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Bias-Variance Trade–off for FIR-50 Model

MSE = BIAS2 + Variance (function of lag for IR)
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Bias-Variance Trade–off for FIR-50 Model

MSE = BIAS2 + Variance (function of lag for IR)
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with λ increased
50 times.
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Discussion

In this case the main reason for the poor conventional estimates
was the poor input excitation at high frequencies

The simple prior ”smooth decaying IR” (with the numerical
details being estimated) was sufficient to fill out this lacking
information.
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Conclusions

The State-of-the art system identification relies upon a solid
statistical ground, with (ML-like) parameter estimation in chosen
model structures.

The bias-variance trade-off in terms of model order could be
unsatisfactory, esp. for smaller data sets.

Regularization is well known in statistics, but has not been used
so much in system identification.

Regularized ARX-models offer a fined tuned choice for efficient
bias–variance trade-off and form a viable convex alternative to
state-of-the-art ML techniques for linear black-box models.

Regularization also offers important complements for
inadequate information contents in data.
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