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ABSTRACT

In an earlier contribution we proposed a particle filter for
underwater (UW) navigation, and applied it to an experi-
mental trajectory. Here we focus on performance improve-
ments and analysis. First, the Cramér Rao lower bound
(CRLB) along the experimental trajectory is computed, which
is only slightly lower than the particle filter estimate after
initial transients. Simple rule of thumbs for how perfor-
mance depends on the map and sensor quality are derived.
Second, a more realistic five state model is proposed, and
Rao-Blackwellization is applied to decrease computational
complexity. Monte-Carlo simulations on the map demon-
strate a performance comparable to the CRLB.

1. THE NAVIGATION SYSTEM

In [2], we applied the particle filter on the following model
for an underwater (UW) vessel.
Model I. Position model where xt ∈ R

2 is the horizontal
position state vector.

xt+1 = xt + ut + wt, (1a)

yt = h(xt) + et. (1b)

Here yt is the measured depth, ut is the INS corrections and
wt the process noise due to drift. We assumed that the veloc-
ity vector ut is measured or that, for instance, rudder angle
and propeller speed can be converted to a velocity vector.
We will here re-visit the Cramér-Rao lower bound (CRLB)
calculations in [2], and apply it to an experimental trajectory
and map from [2, 9]. A more realistic model, often used in
aircraft traffic control, is based on the co-ordinated turn as-
sumption (CT).
Model II. CT-model with Cartesian position (x, y), orienta-
tion (ϕ) and yaw rate (ω) and velocity (v) as state variables

xt =
(

x(t) y(t) ϕ(t) ω(t) v(t)
)T

. (2)

The continuous-time CT-model is discretized assuming con-
stant noise values during the sample period as in [4, p.317].
The discretization of the unknown noise signal can be done
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Fig. 1. Underwater navigation using sonar depth measure-
ments and a true UW-terrain data base.

in several ways, but to simplify the model we assume that it
is white noise whose influence during one sample is TQ as
discussed in [4].

xt+1 =










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xt + 2vt

ωt

sin(ωtT
2 ) cos(ϕt + ωtT

2 )
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ωt
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2 ) sin(ϕt + ωtT

2 )
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ωt + u1 + w1

vt + u2 + w2













. (3)

Here the rudder angle and propeller speed are the inputs,
which is a more realistic assumption than model I, and that
the yaw rate and velocity are smooth highly correlated sig-
nals (integrated white noise here). Using a higher number
of states is prohibitive for an efficient real-time implemen-
tation, so Rao-Blackwellization is applied for that case. The
advantage is that more states for sensor and actuator offsets,
more sensors like compass, GPS (when available for UW
vessels), accelerometers etc., as well as disturbance states
as current drifts are easily incorporated, without substan-
tially increasing the complexity. In Fig. 1, the system is de-
scribed. The sonar measurement is denoted st, the vessel’s
depth, dt, and the database depth in location xt, is h(xt).



2. PARTICLE FILTER

To solve the non-tractable Bayesian UW-navigation prob-
lem in an on-line application without using linearization
or Gaussian assumptions, sequential Monte Carlo methods,
or particle filters, could be used. Here only a brief de-
scription of the theory is given. For more details we refer
to [1, 3, 5, 6]. Consider

xt+1 = f(xt, ut, wt), (4a)

yt = h(xt) + et, (4b)

where xt ∈ R
n denotes the state of the system, ut the input

signal and yt the observation at time t. The process noise
wt and measurement noise et are assumed independent with
densities pwt

and pet
respectively. Let Yt = {yi}t

i=1 be
the set of observations until present time. The particle filter
method provides an approximative Bayesian solution to

p(xt+1|Yt) =

∫

Rn

p(xt+1|xt)p(xt|Yt)dxt, (5a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (5b)

by approximating the probability density p(xt|Yt) by a large
set of N particles {x(i)

t }N
i=1, where each particle has an as-

signed relative weight, γ
(i)
t , such that all weights sum to

unity. The location and weight of each particle reflect the
value of the density in the region of the state space. The
likelihood p(yt|xt) is calculated from (4) yielding

γt = p(yt|xt) = pet
(yt − h(xt)). (6)

By introducing a resampling step as in [5] problems with
divergence can be handled. This is referred to as sampling
importance resampling (SIR), and is summarized in Alg 1.
Sampling Importance Resampling (SIR)

1. Generate N samples {x(i)
0 }N

i=1 from p(x0).

2. Compute γ
(i)
t = pe(yt|x

(i)
t ) and normalize, i.e.,

γ̄
(i)
t = γ

(i)
t /

∑N

j=1 γ
(j)
t , i = 1, . . . , N .

3. Generate a new set {x(i?)
t }N

i=1 by resampling with re-
placement N times from {x

(i)
t }N

i=1, with probability
γ̄

(j)
t = Pr{x

(i?)
t = x

(j)
t }.

4. Prediction: x
(i)
t+1 = f(x

(i?)
t , ut, w(i)

t ), i = 1, . . . , N
using different noise realizations.

5. Increase t and iterate to step 2.

Alg. 1. Sampling Importance Resampling.

If part of the state vector is linear-Gaussian the com-
putational complexity can be reduced in many cases using
the Rao-Blackwellizations technique [7, 8]. In principle the
posterior density is divided in two parts by conditioning

and applying Bayes theorem. Hence, the conditional linear-
Gaussian states are estimated with a Kalman filter (one for
each particle, but with the structure below the covariance is
the same for all) and the nonlinear states with the particle fil-
ter. Partitioning the state vector in (3) as xt = (zT

t ,mT
t )T ,

where zt = (ϕ, ω, v)T and mt = (x, y), the structure with
the linear-Gaussian equation (7b) is given by

zt+1 = f(zt,mt) + wz,t, (7a)

mt+1 = Atmt + wm,t, (7b)

yt = h(zt) + Ctmt + et. (7c)

The algorithm is summarized in Alg 2.
Rao-Blackwellized SIR (RB-SIR)

1. Generate N samples {z
(i)
0 }N

i=1 from p(z0) and let
{m̂

(i)

0|−1, P0|−1}, i = 1, . . . , N .

2. Compute γ
(i)
t = pe(yt|z

(i)
t ) and normalize, i.e.,

γ̄
(i)
t = γ

(i)
t /

∑N

j=1 γ
(j)
t , i = 1, . . . , N .

3. Generate a new set {x(i?)
t }N

i=1 by resampling with replace-
ment N times from {x

(i)
t }N

i=1, with probability γ̄
(j)
t =

Pr{x
(i?)
t = x

(j)
t }.

Kalman filter measurement update, i = 1, . . . , N .

m̂
(i)

t|t = m̂
(i)

t|t−1 + Kt(yt − h(zt) − Ctm̂
(i)

t|t−1)

Pt|t = Pt|t−1 − KtCtPt|t−1

Kt = Pt|t−1C
T
t (CtPt|t−1C

T
t + Rt)

−1

4. Prediction: z
(i)
t+1 = f(x

(i?)
t , ut, w(i)

z,t), i = 1, . . . , N using
different noise realizations.

Kalman filter time update, i = 1, . . . , N .

m̂
(i)

t+1|t = Atm̂
(i)

t|t−1 + Btut

Pt+1|t = AtPt|tA
T
t + Qm,t

5. Increase t and iterate to step 2.

Alg. 2. Rao-Blackwellized SIR (RB-SIR) for eq. (7).

3. THE CRAMÉR-RAO LOWER BOUND (CRLB)

The simplified model (model I) consists of position only in
order to derive and interpret the CRLB in terms of funda-
mental noise properties. The observation relation consists
of sonar measurements of the depth, where et is the mea-
surement noise. Using standard notations we consider inde-
pendent noise sources, with variances Qt = E{wtwT

t } and
Rt = E{ete

T
t }. The CRLB for one step prediction with

models according to (1) is given in [1, 3]. We can formulate
this as

Pt+1 = (P−1
t + E{ϕ(xt)R

−1
t ϕT (xt)})−1 + Qt, (8)



where Pt is the covariance matrix for the estimation error,
evaluated around the position xt and where

ϕ(xt) = ∇xh(x)|x=xt
. (9)

For scalar measurements, Rt = r, we have

Pt+1 = (P−1
t + r−1Zt)

−1 + Qt, (10)

Zt = E{ϕ(xt)ϕ
T (xt)}. (11)

We are interested in the stationary behavior in each posi-
tion, i.e., Zt = Z(x). The assumption is that we get the
global behavior by studying the covariance locally in each
position. For stationary systems, Pt → P̄ (x), we have

P̄ (x) = (P̄−1(x) + r−1Z(x))−1 + Q

= (I + P̄ (x)r−1Z(x))−1P̄ (x) + Q

≈ (I − P̄ (x)r−1Z(x))P̄ (x) + Q. (12)

Hence the covariance P̄ for the CRLB is given by

P̄ r−1Z(x)P̄ = Q, (13)

under the assumption that the Taylor expansion is valid, i.e.,
P̄ r−1Z(x) is small. If not the covariance is iterated until
convergence. The actual value of Z is given by substituting
the expected mean by the sample average in a neighborhood
of x. It is natural to assume Q = q · I2×2. Factorization of
the symmetric positive-definite matrix Z = ΛΛT using a
symmetric matrix square root Λ in (13) yields

q · I2×2 = r−1P̄ΛΛT P̄T = r−1P̄Λ(P̄Λ)T . (14)

Identifying P̄ = Λ−1√qr, we have P̄ 2 = P̄ P̄T = qrZ−1.
We can directly interpret this relation, for example increased
model uncertainty (q) yields higher covariance. Conversely,
a better sensor (smaller r) or higher terrain excitation (larger
Z) reduces P̄ . By subtracting the process noise the CRLB
for estimation is given, which can be compared with the root
mean square error (RMSE) from Monte Carlo simulations.

4. EXPERIMENTS AND SIMULATIONS

The particle filter is tested on experimental data from an
UW-vessel system as well as evaluating Monte Carlo simu-
lations from simulation data. The CRLB calculations from
Section 3 are compared to the particle filter RMSE.

CRLB and map generation. In [9] an UW-terrain map
was collected using sonar depth measurements and differen-
tial GPS. In Fig. 3 (a) the original data is shown. The depth
data is here resampled and interpolated to a uniform grid
presented in Fig. 1. If the level curves are studied one can
see that the terrain is sufficiently varied even in the some-
what flat regions for successful positioning. The CRLB val-
ues for each position in the map are given in Fig. 2 with
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Fig. 2. CRLB ||P̄ || for each position and the trajectory
(light grey line) used in the Monte Carlo simulations.

||P̄ || =
√

tr{P̄}. CRLB values above 15 m are truncated
to enhance the resolution in interesting regions.

Experimental test run. The SIR method is tested on the
UW-map and initialized by placing particles uniformly over
the entire map. The process and measurement noises are as-
sumed Gaussian with covariances Q = I2×2 and R = 0.1
respectively. The filter uses model I and is initialized with
N = 20000 particles, but after a few iteration it is reduced
to 5000. The depth of the vessel is constant during the ex-
periment. The input signal ut is from the GPS computed po-
sition since no true speedometer was present. However, the
signal is perturbed to emulate true performance by adding
an error of 10 percent with a uniform distribution. In Fig. 3
(a) the data used in the depth map generation is shown, to-
gether with the vessels true trajectory. In Fig. 3 (b) the mean
value estimate is shown from the particle filter. The original
sample rate was 10 [Hz], but data was decimated so the filter
was updated with 0.2 [Hz]. The model used in the experi-
ment is the one presented in Section 3. Also in Fig. 3 (b) the
RMSE from the particle filter is presented together with the
CRLB as a function of time. The CRLB is not calculated in
regions where the depth data is too sparse to ensure a well
defined gradient. In Fig. 3 (b) it is indicated approximately
when the vessel is close to the steep UW-slope. Note also
that the RMSE is from a true experiment, so only one real-
ization is compared to the ensemble averaged CRLB.

Monte Carlo simulations. In a Monte Carlo simulation
the particle filter performance is evaluated using 500 sim-
ulations on the true depth map, but with simulated sensors
using the trajectory indicated in Fig. 2. Both the SIR and
the RB-SIR are evaluated using the RMSE as seen in Fig. 4
using N = 10000 and N = 2000 particles respectively.
These are reduced by half at sample 20 and 50. In the
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Fig. 3. Experimental test run and map generation trajectory.

RMSE calculation divergent simulations were removed, 8
for SIR and 4 for RB-SIR. RB-SIR thus gives fewer diver-
gences and lower RMSE with a much smaller number of
particles. The comutational burden (measured in simulation
time) was about 30% lower for RB-SIR. The cloud is ini-
tialized uniformly over the map positions corresponding to
a depth close to the initial measurement. Here model II is
used with sample time T = 5 s, with measurements of depth
(st), speed (v) and yaw rate (ω). We consider disturbances
(process noise) in yaw rate (ω) and speed (v). The process
noise Q and measurement noise R are assumed Gaussian
with values

Q =

(

4 · 10−6 0
0 9 · 10−2

)

, R =

(

10−2 0 0
0 4 · 10−2 0
0 0 10−6

)

.

For the RB-SIR method the following matrices are used in
the Kalman filter

A = I3×3, C =





0 0 0
0 0 1
0 1 0



 .

To improve tracking performance for this particular model
a jittering noise is also added to all components of the state
vector.

5. CONCLUSIONS

We have addressed performance issues of the particle filter
algorithm for UW navigation proposed in [2]. First, CRLB
computed on a measured test trajectory shows that the par-
ticle filter almost attains the performance bound. Second,
a more flexible model was proposed, which in conjunction
with Rao-Blackwellization promises a very flexible high-
performance real-time algorithm which is easily extended
with more states. Monte Carlos simulations are used to ver-
ify that the RMSE is close to the CRLB.
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Fig. 4. RMSE for 500 Monte Carlo simulations.
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